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Theoretical analysis of R-line shifts of ruby subjected to different deformation conditions
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A theoretical approach to analyzing ruby R-line wavelength shifts under different types of defor-
mation (uniaxial-strain compression and tension under shock loading, hydrostatic compression, and
uniaxial-stress compression) and for different crystallographic orientations is presented. A
symmetry-adapted representation of the various loading conditions in conjunction with crystal-field
theory, but no point-ion model, is used to relate the shift of the R lines to deformation. The pararn-
eters needed in the model are obtained from shock-wave-compression data along the c and a axes.
Without further iteration, these parameters are used in a consistent manner to analyze all remaining
data: shock-wave-tension results, hydrostatic results, and uniaxial-stress results for different crystal
orientations. Very good agreement is obtained between theoretical predictions and measurements.
Changes in local site syrnrnetry have been related to macroscopic deformation. For nonhydrostatic
loading, effects of crystal orientation are important in analyzing R-line wavelength shifts. Sugges-
tions for using ruby calibration at high pressures in diamond-anvil-cell measurements are presented.
Implications of the present work for understanding shock-wave deformation in crystalline solids are
indicated.

I. INTRODUCTION

The optical spectrum of ruby (Alz03:Cr +), at ambient
conditions, has been investigated extensively in spectro-
scopic studies, ' and there exists a good understanding
of the spectral details in terms of crystal-field
theory. ' ' The ruby R lines (originating from the E
level), because of their sharpness and sensitivity to pres-
sure, are now used routinely for pressure calibration into
the megabar range in static pressure studies utilizing the
diamond anvil cell (DAC). ' At higher pressures the
state of stress in the DAC is not hydrostatic, and a good
understanding of the effects of nonhydrostatic stress on
the R-line shift is of considerable interest. The effect of
uniaxial stress along the c and a axes, at very low
stresses, '"' on the ruby R lines had been examined prior
to the use of ruby for pressure calibration in an attempt
to gain insight into the nature of the local environment
around the Cr + ion in A1203. Recently, experimental
methods have been developed in our laboratory to exam-
ine the R-line shifts under shock loading. ' Shock-wave
experiments, though inherently difficult, can permit an
examination of the R lines in samples subjected to well-
defined uniaxial strain (but strongly nonhydrostatic
stress) states along different crystallographic orientations.
Shock-wave experiments' ' have been carried out in
which both c- and a-axis ruby crystals have been subject-
ed to 125 kbar longitudinal stress in compression and 110
kbar in tension. Given the hydrostatic, uniaxial-stress,
and uniaxial-strain data, it is desirable to understand the
R-line response to different loading conditions.

The present work had two main objectives: (a) to de-
velop a theoretical framework to analyze and understand
the R-line data under different loading conditions in a
consistent manner, and (b) to examine the possibility of

using the optical spectra as a microscopic probe of
shock-induced changes in crystalline solids. Shock-wave
experiments provide information about continuum and
thermodynamic properties, but little information, if any,
exists regarding shock-induced processes at the atomic
and/or molecular level. The use of optical spectroscopy
under shock loading to obtain this information is a
promising but new undertaking. The present work
represents a start toward describing shock-induced defor-
mation in solids in terms of local-site-symmetry changes.

There have been two first-principles calculations to un-
derstand the behavior of R lines. In both calculations a
cluster of Cr + ions and surrounding atoms was embed-
ded in the host lattice. Ohnishi and Sugano carried out
their calculation using the discrete variational x
method. They embedded an octahedral (Cr06) cluster
in a Hat potential well to represent ruby. The calculated
redshift of the R lines was in reasonable agreement with
experiments. The subsequent calculation by Shangda
et aI. ' is for ambient conditions, but models the ruby
more realistically. The Cr +, or various clusters involv-
ing Cr +, is embedded in the proper Alz03 crystal poten-
tial. These results indicate that the good agreement in
Ref. 20 may be accidental. This latter calculation, '

despite disagreement with experimental results, em-
phasizes the need to relax the atoms around the Cr + to
obtain even qualitatively meaningful results.

Crystal-field theory, though phenomenological, has
been reasonably successful in understanding the nature of
deformation-induced variations. R i-R2 splitting can be
written in terms of stress-induced changes in the trigonal
field for stress along the c axis. Point-ion-model esti-
mates of stress splittings of impurities in rocksalt lattices
have been reasonably successful. ' For ruby these
splittings had not been calculated because of the
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difficulties in getting the correct sign for the trigonal field
at ambient conditions. ' However, our estimates of the
splitting change for hydrostatic pressure give a reason-
able agreement with observed results.

The redshift of R lines under hydrostatic pressure has
been modeled using scaling theories. The scaling
theories, in essence, use a renormalized point-ion crystal-
field model; the parameters vary with interatomic dis-
tances as for a point-ion model, but with the coefficients
suitably altered to be determined from fit to experimental
data. Scaling of parameters has been carried out for iso-
tropic deformation. It is difficult to generalize the scaling
theories to anisotropic deformation because a general an-
isotropic deformation is a tensor of second rank.

Our approach to understanding the shift of the R lines
to different deformation conditions is based on the gen-
eral framework of crystal-field theory; the point-ion mod-
el, however, is not used. %'e have chosen a symmetry-
adapted description for different strain conditions to ana-
lyze the optical spectra. Parameters characterizing the
effects of various irreducible strain tensors on the R lines
are obtained using data from shock-wave-compression
experiments along the c and a axes. ' ' All subsequent
calculations used for predicting the uniaxial-strain ten-
sion results, hydrostatic stress, and uniaxial-stress results
are then based on these parameters without any iteration.
Although some of the developments presented here may
be applicable to other parts of the ruby spectrum, we are
confining the present work to the R lines. Hence discus-
sion regarding the absorption bands and other lines
will not be presented here.

Section II presents a compilation of shock-wave results
needed for subsequent analysis. Section III presents
relevant background regarding crystal structure and am-
bient spectrum. Section IV describes the theoretical de-
velopments to analyze the effects of external deformation
on the R lines. Evaluation of the parameters for the
theoretical model and analyses of experimental data are
presented in Sec. V. Discussions and conclusions regard-
ing the present work are presented in Sec. VI.

II. SUMMARY OF UNIAXIAL-STRAIN RESULTS

A summary of experimental data' ' from shock-
wave uniaxial-strain experiments along the c and a axes is
presented here for use in the subsequent sections. The
compression data range up to a longitudinal stress of 125
kbar (approximately 2.5% density change), and the ten-
sion data range up to a longitudinal stress of 108 kbar
(approximately 2.2%%uo density change). Details regarding
the experimental methods and results are given else-
where. "

In the following the spectral quantities are in units of
cm ' and the density strain is defined as p=plpo —1.
The error bars refer to 95% confidence limits to the fits.

A. c axis

The shifts for the R
&

and R2 lines for both compres-
sion and tension can be fitted as

6v =0.21(+0.41 )
—1604.7(+21 )p

—16 339.4(+ 1418 )p

5(R )
—Rq) =29.6—221.7(+21)@+306.3p

(3)

The constant term in Eqs. (1)—(3) should be zero; the
small value reAects merely the +1 cm ' precision of the
experimental data. Similar remarks apply to the a-axis
data below.

B. a axis

The average of the R, - and R2-line shifts for both
compression and tension could be fitted to a single curve
given by

b v=0. 68(+0.31)—2163.8(+12.2)p
—11 453(+993 )p (5)

Because of the strongly nonlinear response of splitting for
shock compression along the a axis, a single equation
cannot be fitted to the splitting data. Hence the compres-
sion and tension data along the a axis are presented as
follows:
compression:

b.v, = —2420. 2(+21 )p —16 669(+1035)p

b, v~ = —2104. 1(+25 )p;
tension:

b, vi = —2042. 8(+80)p —25 739.6(+4228)p

b v2= —1920.6(+112)p—18 202(+5886)p (9)

Comparison of Eqs. (6) and (7) to Eqs. (8) and (9) shows
that for a given value of density compression p, the
change in line splitting can be written as

&(R, —R, ) I., p
& &(R, —R, )I(,„, (10)

Over the stress range indicated here, the response of
the ruby is completely elastic. The above data have been
corrected' for the very small temperature change (=10
K) due to shock compression in room-temperature exper-
iments.

C. Curvature and asymmetry ia shock results

For completeness two aspects of the shock-wave results
that are analyzed in Sec. V are indicated here. Further
details may be seen in Ref. 19. Over the hydrostatic pres-
sure range (to 150 kbar) considered in the paper by Mun-
ro et al. ' and others, ' the R lines shift linearly with
pressure (or mean stress). In the shock experiments, the

hv =0.519(+0.34)—1493.9(+17.5)p
—16 492. 5(+1167)p,

Av = —0.312(+0.24) —1715.6(+11.9)p
—16 186.3(+805)p

The average of the R
&

and R2 shifts, and R, -R2 splitting
from Eqs. (1) and (2) is given by
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R lines shift nonlinearly with mean stress and the ob-
served curvature reAects the changes in local site symme-
try due to nonhydrostatic deformation. This observed
curvature is analyzed in the present paper.

Because hydrostatic data exist only for compression,
we have extrapolated these into tension to permit com-
parisons with shock data. Comparison of the hydrostatic
results in compression and tension with the mean of R &-

and R2-line shifts under shock loading show an interest-
ing variation with crystal orientation. For shock
compression along the c axis, the mean shift deviates
away from the extrapolated hydrostatic results in tension.
For shock compression along the a axis, the mean shift
deviates away from the hydrostatic results in compres-
sion. This asymmetry again rejects the changes in local
site symmetry and is analyzed here.

X

III. BACKGROUND

A. Crystal structure

Ruby has a corundum structure [R3C (No. 167)]
with aluminum along the threefold axis. Cr + replaces
Al + substitutionally, and at 0.1% atomic concentration
there is approximately one chromium atom per 60-unit
cells. It is diFicult to determine the exact atomic coordi-
nates of Cr + in dilute ruby. X-ray-diffraction stud-
ies ' of samples with higher chromium concentrations
(4% and 5.2%) indicate that the chromium is located on
the trigonal axis, but may be shifted slightly toward the
nearest aluminum neighbor. Because all of the shock ex-
periments have been carried out on dilute ruby
(0.3 —0.4% concentration), it is difficult to ascertain the
validity of this finding for the present work.

The structure of ruby ' and sapphire has been ex-
amined as a function of hydrostatic pressure up to ap-
proximately 100 kbar. The ruby results were reanalyzed
by Kottke and Williams to show that the c axis is more
compressible by approximately 12%, in agreement with
the macroscopic compliance constants for sapphire. '

For dilute ruby samples of interest to the present work,
the macroscopic elastic constants are taken to be the
same as those for sapphire (a-A1203).

The first-neighbor O ions form almost an octahedron
with respect to the Cr + ion; a very small change in the
positions of the first neighbors would make the arrange-
ment exactly octahedral. In this hypothetical unit, a sys-
tem of Cartesian axes can be centered on Cr + such that
the six 0 ions are along the xyz axes, at a distance +R
from the Cr ion. Looking down the threefold axis
[11lj of this octahedral arrangement, the hypothetical
unit looks as shown in Fig. 1. The two sets of triangles
define planes (containing the 0 ions) above and below
the Cr + ion. The xyz axes shown in Fig. 1 are projec-
tions of the orthogonal axes in the plane of the figure.
For subsequent discussion it is convenient to define a
coordinate system XYZ, in which the Z axis coincides
with the crystallographic c axis ' (or the threefold axis
of the octahedral xyz system) and the X and F axes are
obtained by a 60' rotation of the crystallographic a and m

FIG. 1. Difterent crystallographic systems used in the
theoretical analysis. The two sets of triangles define planes con-
taining oxygen ions above and below the Cr + ion. The XYZ
system is referred to as the trigonal system. This figure is simi-
lar to Fig. 6.2 in Ref. 45.

axes about the crystallographic c axis.
In the actual structure, the two sets of triangles shown

in Fig. 1 are rotated (around Z) away from each other by
a 3'54' angle and all the oxygens are not equidistant. The
displacement of Cr + ions with respect to the host Al +

sites, as observed in high-concentration ruby, makes the
arrangement more octahedral. However, distant neigh-
bors do not conform to an octahedral arrangement, and
only threefold symmetry exists. For a description of the
properties which arise from the localized nature of the d
electrons, the nearest neighbors have the dominant efFect;
this conclusion is confirmed by analysis of the ambient
spectrum. '

B. Ambient spectrum

For discussing the localized electronic states of Cr +,
the Hamiltonian can be written as

total octahedral +Htrig +Hso

H„, includes all the interactions which conform to octa-
hedral or higher symmetry, H„; is invariant with respect
to C3 symmetry, and Hso represents the spin-orbit in-
teraction. Because of the complexity of the crystal struc-
ture, H„; in Eq. (11) is expected to be a complicated
operator. It includes the interaction of Cr with more
distant neighbors as well as the effect of distortion of the
local octahedron to generate the actual atomic arrange-
ment. Hence an analytic representation of Ht g may be
very difficult, but Eq. (11) can be used to present all the
necessary interactions in a phenomenological manner.

The analysis ' of the ruby spectrum at ambient con-
ditions shows that the effects of H„; and Hsz can be
treated as perturbations with respect to that of H„„h,d„&.
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For use in subsequent analysis, we briefly discuss, using
the developments in Ref. 45, the effects these perturbative
terms have on the energy of t2.. E states which give rise
to the R lines.

In the absence of spin-orbit interaction and trigonal
field, the energy of the E state depends only on electron-

electron repulsion characterized by the Racah parame-
ters B and C. The presence of the above-mentioned per-
turbative interactions couple E and T2 states within the
t2 configuration. The effect of this coupling may be cal-
culated using second-order perturbation theory by
evaluating the following matrix elements:

M M"
s

&r2 EM,'M'~H „,~t', T2M,"M"&&t23 T2M,"M" H „,~t2 EM, M&

e('E )
—e('T2 )

(12)

where the notation t2 E represents the E state arising from three electrons in t2 -type states, M, represents the mag-
netic quantum number, and M denotes the basis of E as u+ and u and of T2 as x+, x, and xo.

Matrix elements of Eq. (12) are calculated, as shown in Chap. 8 of Ref. 45, by using the Wigner-Eckart theorem:

(13)

where the second factor on the right represents Clebsch-
Ciordan coefficients, tabulated in Ref. 45, and the
double-barred elements are "reduced matrix elements"
tabulated in Ref. 5. For matrix elements of interest to
the present work, the following quantities have been eval-
uated in Ref. 45: & t~ ~E~~H, „; ~~tz T2 &

= —6K, where
3E =e(E) e( 3,—), and & tz E ()Hso )) t z T2 &

= &6i (, —
where g= —2& t2s 1/2, x+ ~Hso ~t2s 1/2, x+ &. Using
these results, the shift of the E state due to the trigonal
field is given by

—6K&(e('E) ) =
e( T2) e( E)—

The coexistence of the trigonal field and spin-orbit in-
teraction splits E states into the Kramers' doublets
E( 4, + Az):+I/2u+ and E(E):+1/2u+ associated

with the R2 and R i lines, respectively. The R &-R2 split-
ting is given by

l

lack of information about how the parameters character-
izing configuration interaction, viz. U' and g', change,
these corrections are not considered in the present work.
This issue is commented upon in Sec. VI.

IV. THEORETICAL FORMULATION

To evaluate the effect of external strains, it is necessary
to relate these to changes in the interaction Hamiltonian.
The idealized, first-neighbor interaction, described by oc-
tahedral symmetry, provides a good unperturbed descrip-
tion of the E state. Hence we shall use this as the basic
symmetry, which is then perturbed by external strain or
stress. The effect of ambient distortions is taken as addi-
tive in the spirit of Eq. (11). Because the change in the
interaction Hamiltonian depends directly on strain, we
formulate the problem in terms of strain. Throughout
this paper strains will be assumed to be positive in
compression and negative in tension.

e( E(A&+32.R2)) e( E(E:R&)—)= 2 ze('E )
—e('T& )

(15)

In recent papers, the trigonal field is represented by v

and v' using the definition by Pryce and Runcimen:
U = —3& tzsx+ ~U„;s ~tz~x+ & (and for the configuration in-
teraction U'=

& t2 x+ ~ v„; ~e u+ & ). It can be shown that
v = —3 K, and the above results can be easily written in
terms of v. For subsequent numerical calculations in Sec.
V, the following comments are helpful: K in Eq. (15) is a
negative quantity because the denominator as written is
negative; an increase in the trigonal field causes K to be
more negative (bK is negative and AU is positive) and re-
sults in increased line splitting. The redshift due to the
trigonal field in Eq. (14) depends only on the magnitude
ofEor v.

Inclusion of a configuration interaction changes Eqs.
(14) and (15) somewhat. For the strong-field approxima-
tion, this calculation has been carried out by Sugano and
Peter, and for the weak-field approximation the calcula-
tion has been carried out by Macfarlane. ' Because of a

A. Symmetry-adapted strains

The transformation properties of a strain tensor, due to
its second rank, are the same as that of a dyadic —the
product of Cartesian coordinates. Hence there exists a
one-to-one correspondence between the components of
the strain tensor and the symmetry-adapted d-electron
wave functions for the octahedral group; the latter have
been presented in Chap. 2 of Ref. 45. The symmetry-
adapted d orbitals can be classified according to irreduc-
ible representations (Tz, E, A) of the octahedral group.
The one-to-one correspondence between the basis func-
tions for the d electrons and the strain tensor components
permits a decomposition of the strain tensor into similar
irreducible components. Using this approach, the six in-
dependent strain components are grouped into three sets
as shown in Table I. In the notation used, the symbols in
parentheses represent the irreducible representation (IR)
and the subscripts represent basis functions in that IR.
Similar symmetry-adapted strains in conjunction with the
point-ion model were used by Schawlow, Piksis, and
Sugano to calculate the uniaxial-stress response of the
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TABLE I. Strains in the octahedral basis.

Strain component Transformation Characteristic feature

(1) e(A))
(2) e„(F.)
(3) ~, (&3

(4) &g(T2)

(5) e„(T2)
(6) ~g(T2)

x +y +z
2z x

X

yz

xy

preserves octahedral symmetry
tetragonal distortion with respect to the z axis
rhombic distortion preserving reflection

symmetry with respect to the xz and yz planes
rhombic distortion preserving mirror with respect

to a plane l yz plane and passing through y =z or y = —z

analog of 4
analog of 4

1[z Ifz

e(A, ) 8„„+eyy+ ezz e„(E)—28«-8»-eyy ey(E) exx eyy

spectrum of Cr + in magnesium oxide (rocksalt struc-
ture). The geometric nature of the various distortions is
shown in Fig. 2. While the equivalence of the three Tz
strains is transparent, the equivalence of E-type strains
would require appropriate linear combinations, similar to
those for the wave functions.

For analyzing the deformation in ruby, it is more con-
venient to carry out the theoretical analysis with respect
to the XYZ system (referred to as the trigonal axes) indi-
cated in Fig. 1 and discussed on p. 131 of Ref. 45. In this
system the Z axis is parallel to the crystallographic c axis
and the X axis makes an angle of 60 with respect to the
crystallographic a axis. The symmetry-adapted strains in
Table I can be transformed to refer to the new axes. The
irreducible strain components with respect to the new
axes (XYZ) are given in Table II. These new irreducible
strains are complex quantities and are related to the
strains in the coordinate system defining the octahedral
basis by the same unitary transformation that relates the
d-electron basis functions in these two coordinate sys-
tems. ' We emphasize that the strain components in
both Tables I and II refer to an unperturbed octahedral
basis; they are merely related by a coordinate transforma-
tion.

The independence of each irreducible set of symmetry-
adapted strains emerges from the orthogonality of bases
of IR's with respect to each other. An arbitrary strain at

the local level around Cr + can, therefore, be split and
written in terms of irreducible strains using Tables I and
II.

The strain around Cr + changes the interaction Hamil-
tonian for the 3d electrons at Cr, and Eq. (11) be-
comes

total Hoctahedral + trig +HSO +Hstrain

H„„;„=H~ +HF+HT

(16)

(17)

where the three terms, on the right side of Eq. (17),
represent mutually independent changes in the interac-
tion Hamiltonian due to deformation.

By writing H„„;„in the form shown in Eq. (17), the
symmetry-related equivalent interactions can be
identified. This approach, in conjunction with the
Wagner-Eckart theorem [Eq. (13)] minimizes the number
of parameters needed for analytic calculations. Essential-
ly, there is one reduced matrix element for each type of
irreducible strain, and these can be treated as phenome-
nological parameters to be obtained from the experi-
ments. Therefore, the theory cast in the form of irreduc-
ible strains introduces three parameters. Because the am-
bient trigonal field can be written ' as V„(T2g), the

V ( T2) component of H„„,„due to the imposed defor-
0

mation adds onto this ambient interaction algebraically.
In subsequent calculations the last three terms in Eq. (16)
are treated as perturbations with respect to H«tahedr» and
the ambient trigonal field effects are appropriately sub-
tracted out in the analysis. The model parameters are ob-
tained solely from shock-wave, uniaxial-strain, compres-
sion data. Because the procedure we have used is in-
dependent of any microscopic model of interaction poten-
tial (e.g. , point-ion model), it is expected to be successful
in a wide variety of situations.

z p z B. Strain e6'ects on E states

e&(T2) 8» eq (Tg) ez x e~(T&)

eely

FICx. 2. Geometric representation of the different distortions
represented in Table I.

We now apply the procedure indicated above to under-
stand the shock response of ruby and to derive specific re-
lations needed for evaluating the coefficients in Sec. V.
We have assumed that the spin-orbit interaction does
not change significantly under deformations considered
here. Furthermore, this approximation appears reason-
able for comparable strains under hydrostatic loading as
shown by the analysis of lifetime variations of R lines.
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TABLE II. Irreducible strains with respect to the trigonal axes.

e( ~1 ) exx+eYY+ezz

(2) e„(E)=—e„(E)=—1
"+ "- &6

(3) e, (T2)= —e (T2)= 1

1
(4) e (T2)= —(2ezz exx

[exx e—rr 2—iexr +2&2( ezx+ iezr ) j

1 . 1

2 v'2(exx eYY 2iexY) &
—(ezx+iezY)

Uniaxial strain along the c axis e„(T2)= e
0 3

(18b)

e(A, )=e, (18a)

A uniaxial strain along the c axis has the simple feature
that the symmetry of the unit cell is not altered. So,
physically, we expect this strain to essentially change the
parameters characterizing the ambient spectrum. This is
indeed the case.

The uniaxial strain e along the c axis in terms of the
trigonal axes indicated in Fig. 1 is e„,with all other com-
ponents vanishing. Using Table II, this gives the follow-
ing irreducible strains:

e( A& ), characterizing uniform compression or tension,
alters only the Racah parameters 8 and C. But e„(T2)

0

brings about changes in the ambient trigonal field and,
hence, changes in v and v'. Within the t2 configuration,
the energy matrix due to the trigonal field and spin-orbit
interaction can be written as Eq. (12) and can be calculat-
ed, similar to ambient conditions, using the Wigner-
Eckart theorem in Eq. (13). The results are analytically
the same as Eqs. (14) and (15), and are written in the form
of a matrix as follows:

1

2
1

2
1

2
1

2

1

2

—zv +—'vg
3 3

0
0
0

1

2

0
——'v~ ——'vg

3 3
0

3 3

0

1

2

0
0

——'v +—'vg
3 3

(19)

V =Vp+AV (20)

Av represents the strain-induced change in the trigonal
field, and vp is the ambient trigonal field. Recall that
v= —3K to get Eqs. (14) and (15). Appropriate terms
from the above matrix should be added to the function
representing energy of E states in terms of the Racah pa-
rameter, to account for the changes caused by e( A, ).

For uniaxial strain along the c axis, e(A&) only con-
tributes to a shift of the R lines, while e„(T2 ) contributes

0

to both the shift and the change in R, -R2 splitting.

All of the matrix elements have a common denominator
[e( T2 ) e( E ) ] and th—e parameter v is given as

—V'3e
0

—&3e 38
4
0

0

0

(21)

e(A, )=e, (22a)

e„(T~)=—
—,
' ~—

e (T, )= —e' (T, )= (1 i &3) e—

(22b)

(22c)

Using Table II, the symmetry-adapted strains can be con-
structed as

2. Uniaxial strain along the a axis e„(E)=—e„* (E)= (1—i v'3) e
"+ "- 2v'2 &3

(22d)

Uniaxial strain e along the a axis, when transformed to
the trigonal coordinate system (XY'Z) in Fig. 1, can be
written as the following strain matrix:

When we compare Eq. (22) with Eq. (18), for the same
value of applied strain e, the following results are ap-
parent: e(A, ) is the same for the two cases; e (Tz) for

0
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the a axis, responsible for changes in U, is half the magni-
tude, but of opposite sign to that for the c axis; rhombic
strains e„(T2 ) are also nonvanishing for the a-axis case.

In addition, we now have strains characterized by sym-
metry E.

As in the case of the c axis, the uniform strain e( A, )

causes only a shift of E without affecting the R&-R2
splitting. The trigonal potentials introduced by e and

0

e couple E and T2 and result in a shift of E. These

states are also coupled, as noted in Sec. III B, by spin-
orbit interaction. Hence e in conjunction with spin-

orbit interaction affects the splitting, which can be calcu-
lated using Eq. (12). Further, from Eq. (13) we note that
for the same value, e„-,e„-,and e„-induced potentials

+ 0

have the same reduced matrix element.

The strains of symmetry E (a component of which
refers to tetragonal distortion ' in the octahedral refer-
ence system) bring about an additional splitting of R-
lines. The e(E)-induced potential V(E) does not couple
E to the other states in the t 2 configuration, and there-

fore there is no shift of E due to V(E). Instead, there
exist nonvanishing, first-order off-diagonal elements of
V(E) in the E bases which cause the splitting. We
represent these matrix elements ( Eu+ ~

V(E)~ Eu ) by
Q, where Q is a complex number representing the effects
of e(E)-type deformation. The form of Q is indicated
next.

Again, we can calculate the eigenmatrix. e( T2) contri-
butions are obtained using Eqs. (12) and (13), and for
e(E) we represent the effect as Q. Thus we get the fol-
lowing matrix:

1

2

1

2

M+ 2"&

3
(1—i&3)

3&2

1

2

(I+i&3) uhu+

1

2

1

2

( I+ i&3)
3&2

2vg
3

( I+i &3)
3

1

2

(1—

i&3)veau

3
+ * (1—i&3)

3&2

1

2

(1—i&3)uhu
3

(I+i&3)bug
3&2

M+
3

(23)

where

2 hv AUM=—— Uo+ +
3 ' 2 3

(24)

In this matrix all the terms involving U and/or b, v have a
common denominator [e( T2) —e( E)]. In all of the
terms that contain Q or Q', a term —

—,', ( I+i&3) b u is

dropped, as this will be quite small compared to the other
terms. The form of Q is given by

Q =( Eu
~
V„(E)+V„(E)~ Eu.

3
(25)

—eQ+

Qi
v'2 e

(26)

The last factor in this equation is a reduced matrix ele-
ment for the strain e and is denoted as Q&. Hence

Equations (25) and (26) show that Q, in general, is a com-
plex number. As before, terms from the above matrix
have to be added to the function representing E states in
terms of the Racah parameter, to account for the changes
caused by e ( A, ).

Despite the complicated nature of the matrix for the a
axis, the off-diagonal elements do not remove the full de-
generacy. This is because the states corresponding to R

&

and R2 lines already have the minimal degeneracy, name-

ly, Kramers' degeneracy. To lift this degeneracy, the
perturbing Hamiltonian must destroy time-reversal sym-
metry. However, none of the strain-induced potentials
has this feature, and therefore each state is still a Kra-
mers' doublet.

b, v entering in the matrix in (23) is the same as in (20)
for the same strain e. Therefore, one can diagonalize the
matrix in (23), and from the splitting data along the a
axis, Q can be obtained. In Sec. V we shall use the ideas
developed in this section to explain the experimental re-
sults in ruby.
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U. ANALYSIS OF EXPERIMENTAL RESULTS

In this section all of the experimental results pertaining
to the response of ruby R lines to external stresses and
strains are analyzed in a consistent manner. The parame-
ters needed for the theoretical analysis are obtained only
from the uniaxial-strain-compression data along the c and
a axes. The same are then used to analyze the remainder
of the shock data, hydrostatic stress, and uniaxial-stress
results.

II( A, ) = —1977.5+32 cm '/density compression .

(27b)

The negative sign indicates a redshift.
By combining the above result with the linear term in

Eq. (3), we can see that the decreasing trigonal field, due
to uniaxial-strain compression along the c axis, results in
a blueshift of 372.8+38 cm per unit density strain. Us-
ing Eq. (18b), this corresponds to a blueshift of

A. Evaluation of parameters
II(e„)=645.7+66 cm '/trigonal strain .

0
(27c)

As discussed in Sec. IV, there are essentially three
parameters —one for each type of symmetry-adapted rep-
resentation of strain. The shift associated with e( A, )-

type strain is characterized by one parameter. e(E)-type
strain introduces splitting, but no shift, and is character-
ized by Q. e( T2 )-type strain brings about changes in

splitting and contributes to the shift. In principle, the
splitting and shift changes for e(T2) are related to each
other by relations like (14) and (15) (for the c axis). To
keep the theoretical framework general and independent
of experimental accuracy or relations like (14) and (15),
we shall introduce two parameters to characterize
e(T2)-type strain. The first characterizes the shift associ-
ated with the trigonal field change per unit trigonal
strain. The second characterizes the change in R&-R2
splitting per unit trigonal strain. These two parameters
are determined from the uniaxial-strain-compression data
along the c axis. The evaluation of the parameter Q shall
be postponed until we discuss the R, -R2 splitting for
uniaxial-strain compression along the a axis.

To evaluate the parameter characterizing the shift as-
sociated with uniform strain e(A, ), we proceed as fol-
lows. For uniform strain e, the strain tensor can be ex-
pressed as

e/3 0 0
0 e/3 0
0 0 e/3

This strain tensor can be expressed as a sum of strain ten-
sors representing strain e/3 along the c axis, e/3 along
the a axis, and e/3 along the m axis. It can be shown
that the response for the same strain magnitude along the
m and a axes is the same. Hence the shift of the average
of R, and R z lines due to e ( A, ) can be expressed as

e( A ) ),h'ft 3
(shift for strain along c axis

+2Xshift for strain along a axis) . (27a)

This result may be seen directly from Eqs. (18) and (22):
If the strain along the a axis is doubled and added to the
strain along the c axis, the trigonal strain, source of the
additional shift, vanishes. As indicated, e and e do

not contribute. Applying Eq. (27a) to the measured aver-
age shift of the R, and R2 lines for compressive uniaxial
strain along the c and a axes [see Eqs. (3) and (5) in Sec.
II] in the linear approximation, we obtain the parameter
characterizing 3 &-type of strain:

B. Shock propagation along the c axis

Compression

The average shift and splitting results were used to ob-
tain the parameters as discussed above. The one new re-
sult in the shock-compression data is that the average of
the shift of the two R lines varies nonlinearly with mean
stress in contrast to the hydrostatic data. Here we show
that the variation of R

~
"R p splitting observed under

shock loading is consistent with the observed curvature
of the average R-line shifts. Further, because the curva-
ture for compression and tension is the same, the follow-
ing analysis is also valid for the tension results. For sub-
sequent analysis of the hydrostatic measurements, it is
convenient to recast the experimental results along the c
axis in terms of the mean stress cr ( = cr /3):

b,R, (cm ') =0.88 —0.6115cr—0.0025cr

b.R z (cm '
) = —0.41 —0.708cr —0.0022cr 2 .

(29)

(30)

These equations also give the change in R &-Rz splitting
as a function of mean stress. These results, along with
Eq. (15), can be used to obtain the change in the trigonal

From the experimental results for splitting in Eq. (4), we
can write down the change in R &-R2 splitting from the
ambient splitting value in terms of trigonal strain as

h(R z-R
&

) = —384e +530.Se
0 0

e, is the trigonal strain given by Eq. (18b), and we have
0

ignored the second-order term in Eq. (28) in subsequent
calculations. For strain magnitudes considered in the
present work, this approximation is reasonable. Equa-
tions (27c) and (28) show that a positive trigonal strain, as
per the convention defined at the beginning of Sec. IV, re-
sults in a blueshift of the mean of R

&
and R2 lines and a

decrease in line splitting with respect to the ambient
value; a positive trigonal strain causes a decrease in the
trigonal field.

Using the parameters derived above and substituting
them in the eigenmatrix in Eq. (23), the measured R, -R,
splitting for uniaxial compression strain along the a axis
can be analyzed to determine Q. From Eqs. (22) and (25),
we note that Q is a complex number and depends on the
applied strain e in a complicated manner. In view of this,
we discuss the evaluation of Q after the discussion of
R )-R2 splitting for shock compression along the a axis.
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field. Taking the ambient trigonal field as 800 cm ' and
e( T2) —e( E)=6734 cm ', we can obtain the varia-
tion of U ( = —3K ) with mean stress as

U =800—2.607o. +8.3X10 o (31)

2. Tension

From Eq. (18) we see that both uniform and trigonal
strain change sign in tension. Hence a blueshift of 1977.7
cm / density compression is obtained for uniform strain
e( A, ) in tension. The trigonal field increases in tension
(e, is negative) with the consequent increase in splitting

0

given by Eq. (28). The c-axis results in Sec. II show that,
to within the linear term, the tension and compression re-
sults for the average shift and splitting are of equal mag-
nitude, but opposite in sign. Hence the present analysis
explains quantitatively all of the tension results including
the curvature.

Finally, we can examine the source of the asymmetric
behavior of the mean shift for uniaxial tensile strain along
the c axis with respect to uniform tension (extrapolation
of hydrostatic data to tension). This asymmetry arises
due to the variation in the trigonal field. The shift due to
uniform compression can be identified with the hydrostat
(to a good approximation) and can be written as

Substituting Eq. (31) in Eq. (14) [or equivalent in terms of
U in Eq. (19)], we can calculate the shift due to the
changes in trigonal field, and this gives a calculated
coefticient of the o. term in the shift expression as
2X10 . This compares well with the observed average
curvature for R &,R2 lines, which is 2.35X10

The above calculation suggests that the curvature of
the mean of the R &, R2 line shifts result from a variation
in the trigonal field and is consistent with the splitting
changes. Despite the good numerical agreement shown
here, we emphasize only the qualitative agreement. This
is because the observed results of R] R2 splitting have
considerable scatter around the fitted curve.

C. Shock propagation along the a axis

Because the experimental results from shock-wave
propagation along the a axis' exhibit more complexity,
this subsection is organized somewhat differently than
Sec. V B. From Sec. II we see that for shock propagation
along the a axis, the mean of the R, - and R2-line shifts in
tension are close to the extrapolation of the hydrostatic
data. Thus the asymmetry arises for a-axis propagation
in compression in contrast to the c-axis data.

1. Compression: curvature and asymmetry

All of the diagonal elements in the eigenmatrix in Eq.
(23) have a common term, denoted by M, which
represents a shift of the mean of the R

&
and R2 lines due

to rhombic strains of the T2 symmetry. This term is
given by

—', (Uo+ b, u /2) +b, v /3

e( T2) —e( E)

For a given strain e, the b, v entering in Eq. (34) is the
same as the AU for uniaxial strain e along the c axis. As-
suming a second-order variation with mean stress as in
Eq. (31), we have

(35)

The numerator of Eq. (34) can then be written as

—,
' I2(uo+ —,'(a, o+azo. )j+(a,o+a2o. ) I .

Thus the terms proportional to o. are
P

2 1A o
+U ao +—acr =—cxo. +—

U o,'o.—2 1 2—2 1 2—2

3 4
0 2 3 1 2 l 3 0 2

(36)

For shock along the c axis, the corresponding term is
—

—,'(a, o +2uoa2o ). Hence the curvature ratio for the
a and c axes is given by

~+uniform +P & (32)
0.75m &+ UOo. 2

cx i +2UOcx2
2

(37)

where p is the density compression defined in Sec. II and
a is a parameter that fits the data. Using Eqs. (14) and
(28), the shift due to trigonal field variation can be writ-
ten as

Taking az/a, =3.184X10 from Eq. (31), we find that
the calculated curvature for the average of the shift of the
R lines, for a given mean stress, is smaller by a factor of
1.71 compared to that along the c axis. Using the calcu-
lated c-axis value of 2 X 10,we have, for the a axis,

b.v, „; =/3p yp— (33)
calculated curvature = 1.17 X 10

The total shift for uniaxial strain along the c axis is
given by sum of Eqs. (32) and (33). Because /3 and y are
positive numbers, the two terms in Eq. (33) have oppos-
ing contributions under compression, and the mean of
R, - and R2-line shifts under shock loading are close to
the hydrostatic compression data. In tension both terms
in Eq. (33) are negative and, therefore, reduce the blue-
shift due to uniform tension. Consequently, the shock re-
sults in tension deviate away from the extrapolated hy-
drostatic response curve and give rise to the asymmetry.

measured curvature= 1.04 X 10

As in Sec. VB, we want to downplay the quantitative
agreement and emphasize the qualitative agreement be-
tween the calculated and experimental results. The cur-
vature is a consequence of the trigonal field changes.

The asymmetry between the mean of the R &- and R2-
line shifts under shock loading and the hydrostatic results
can be understood as follows. Comparison of Eqs. (22b)
and (18b) shows that compressive strains along the a and
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c axes lead to trigonal strains with different signs in the
two cases. For compression along the a axis, the trigonal
strain from Eq. (22b) is negative or tensile; for tension
along the a axis, the trigonal strain is positive. Because
of this feature, the two terms in Eq. (33) have the same
sign in compression, but tend to cancel in tension. Thus,
in contrast to the c-axis results, we predict that the mean
of the R-line shifts will deviate away from the hydrostat
in compression and be closer to its extrapolation in ten-
sion. This is indeed the case as discussed in Sec. II. This
change in asymmetry between the hydrostatic results and
the shock results for the two orientations demonstrates
that it is caused by changes in the trigonal field.

2. R z -R 2 splitting in compression: evaluation of Q

As mentioned in Sec. II, the observed changes in R-line
splitting for shock compression along the a axis' are
considerably larger than for shock compression along the
c axis. ' This larger splitting arises due to additional
rhombic distortions Eq. (22c) and E-type of strains [Eq.
(22d)]. In general, the eigenmatrix in Eq. (23) needs to be
diagonalized to evaluate the R-line splitting. However,
the form of the matrix in Eq. (23) along with the assump-
tion that changes in splitting are small compared to am-
bient splitting (valid for small strains) permits some
simplification. Using the procedure indicated in the Ap-
pendix, the square of the R&-R2 splitting can be ex-
pressed as

8(hug) +4
9A

2—(1+i&3)ubu +
3A

=3638.7 cm ' or
e e„

= —2572. 93 cm ' . (38b)

Evaluation of Q along with Eqs. (27b), (27c), and (28) pro-
vides all the parameters needed to evaluate wavelength
changes in the R lines for an imposed deformation.

3. Analysis of tension results

The average of the R, - and R2-line shifts for uniaxial-
strain tension along the a axis' is given by Eq. (5). The
applied strain is decomposed into a uniform tension ( At
strain) and a trigonal strain. By adding the blueshift due
to uniform tension and the blueshift due to the trigonal
term [see Eqs. (27b) and (27c)], the calculated blueshift in

(38a)

where A =e( Tz) e( E)=—6734 cm ', u=uo+b, u, and
uo, the ambient value, is the same as used earlier (800
cm ). As indicated above and in Eq. (22b), trigonal
strain is negative or tensile for compression along the a
axis. Hence hu is positive (leading to a larger trigonal
field, u ) uo ) and is half the value due to the same magni-
tude of tensile strain along the c axis; compare Eqs. (18b)
and (22b). Thus all the terms on the right side of Eq.
(38a), except for Q, are known from the c-axis data. Us-
ing the experimentally measured value of splitting for a-
axis compression, ' Eq. (38a) can be solved for Q:

tension matches the linear term in Eq. (5) very well. The
curvature of the average of R i- and R2-line shifts is the
same as in compression and, as discussed in Sec. V C j. , is
in good agreement with the calculated data. The analysis
of the R-line splitting is discussed next.

4. R &-Rz splitting in tension and compression

Unlike shock propagation along the c axis, the R, -R2
splitting increases both in compression and tension for
shock propagation along the a axis. The splitting, at
small strains, is larger for compression than tension at
higher strains, both sets of data show a nonlinear in-
crease. These results can be understood as follows.

From Eq. (38a) we note that the last term on the right
side is predominately symmetric with respect to a change
of sign of the strain; a small term proportional to Av can
be ignored. The second term on the right side is also
symmetric with respect to a change of sign of the strain.
Hence the splitting change between compression and ten-
sion can be written, at small strains, as

~ ~comp ~ ~tens 2( comp tens)
9A

(39)

Because of the relationship between the trigonal strain
and trigonal field parameter v discussed earlier,
v„&v„„„and therefore the splitting in compression is
larger than the splitting in tension.

The magnitude of the splitting difference in Eq. (39),
because it depends only on the trigonal field, can be ob-
tained directly from the shock compression results along
the c axis. For example, at a density compression of
0.827%%uo, the splitting for a-axis compression is 33.35
cm ', this represents an increase of b.~„p=3.75 cm
over the ambient value. The right side of Eq. (39) can be
calculated entirely from the c-axis results discussed ear-
lier: By writing Eq. (15) in terms of u and using Eqs.
(22b) and (28), the value of u„„and v„„,can be obtained
for a density compression of 0.827% along the a axis.
These values when substituted in Eq. (39) along with

=3.75 cm ' result in a calculated value of
b. ~„„,=2. 1 cm . This value is in good agreement with
the measured value of 2.0 cm '. Thus, for small strains,
Eq. (39) describes the splitting differences adequately.

Positive definiteness of the change in splitting is also
contained in Eq. (38a). The last two terms are always
positive definite, irrespective of the sign of the strain.
Only the first term can decrease in magnitude in tension,
but it is not the dominant term.

D. Hydrostatic compression of ruby

To analyze the static compression data, we obtain the
strain states corresponding to the applied stresses. We
can then use the theoretical formalism developed here to
predict the hydrostatic and uniaxial-stress results, and
compare these predictions with the experimental observa-
tions.

The point-group symmetry for ruby, associated with
the space group R3c, is 3m. For this point group, the
strain is related to the stress using the following relation:
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e,
e2

S11 $12 $13 S14

S12 $11 $13 —S14

$13 $13 S33

$14 s14 0

0

$44 0
03

(40)

0 0 0 0

0 0 0 0
$44 2S 14

—2s t4 2(s11 S12 ) o 6

where s; represent the compliance constants and for
A1203 these have been measured by Gieske and Barsch; '

other reported values are given in Ref. 41. A11 the quan-
tities in Eq. (40) are referred to the crystallographic sys-
tem, and the usual convention for expressing stresses,
strains, and elastic constants in the matrix notation is
used.

For hydrostatic loading, o. , =o.2=o.3, and all other
stresses are zero in Eq. (40). For cr, =o 2

= cr 3
=unity, the

strains are given by

I

predicted decreases in splitting =0.003 cm '/kbar,

observed decreases in splitting

=0.0025+0.004 cm '/kbar,

where the observed decrease is from Ref. 10. It is clear
from these results that the theoretical predictions are in
excellent agreement with the experimental measurements.
The predicted change in splitting is within experimental
error and is too small to be observed.

1 2 11 + 12 + 13

3 13 + 23 + 33

e4=e, =e, =o .

(41a)

(41b)

(41c)

E. Uniaxial-stress compression of ruby

1. Stress along the c axis

The above set of strains are in the crystallographic sys-
tem. However, transformation to the trigonal system
(XYZ in Fig. 1) does not change the strains because of the
equality of e1 and e2. The same result can be seen from
symmetry considerations.

From the above equations, we note that hydrostatic
stress does not correspond to hydrostatic strain, as ex-
pected. By substituting the compliance constants, ' we
find that e3 is greater than e, by approximately 10.6%.
This result is in agreement with the observation by
Kottke and Williams that the c axis is approximately
11% more compressible than the a axis. For an applied
hydrostatic pressure of 100 kbar, the symmetry-adapted
strains can be written using Table II:

For uniaxial stress along the c axis, o 3%0, and all oth-
er components are zero. Using Eq. (40), the strain tensor
for unit stress can be written as

s13 0 0

[e]= 0 s3 0

0 0 s33

(43)

e( A, ) =2s,3+s33, (44a)

The strains in Eq. (43) are written with respect to the
crystallographic system. However, as was the case for
hydrostatic loading, transformation to the trigonal sys-
tem (XYZ in Fig. 1) leaves the strains unchanged. Using
Table II, the symmetry-adapted strains can be written as

uniform strain: e(A&)=2e&+e3

=0.3933x 10-',
1

trigonal strain: e, (T2)= (e3 —e, )
P 3

(42a)
1

e, (T2)= —(s33 —s,3),Xp

e ( T2) =e ( T )=2e„(E)=e„(E)= .0

(44b)

(44c)

=0.007 79 x10-',
e„(Tz)=e (T2)=e„(E)=e„(E)=0.

(42b)

(42c)

Only the uniform and trigonal strains are nonvanishing.
Using the compliance constants from Ref. 51, the strain
values for o.3=1 kbar are

Using the parameters in Eqs. (27b), (27c), and the strain
values given above, the shift of the mean of R1 and R2
lines is given as

predicted mean shift= —0.773 cm '/kbar,

observed mean shift= —0.76 cm '/kbar,

where the observed mean shift is from Ref. 10. Using Eq.
(28) and the trigonal strain value in Eq. (42b), the change
in R1 —R 2 splitting is given as

e ( A, ) =0. 1401 X 10

e„(T2 ) =D. 1477 X 10

(45a)

(45b)

predicted mean shift= —0. 182 cm '/kbar,

observed mean shift= —0.215+0.01 cm '/kbar,

Using Eqs. (27b), (27c), (45a), and (45b), the mean redshift
due to uniform compression is 0.277 cm '/kbar and the
mean blueshift due to the trigonal field is 0.095
cm '/kbar. Therefore, the results are
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where the observed decrease is from Ref. 15.

2. Stress along the a axis

For unit stress along the a axis (o 11&0) and all other
stresses being zero, the strain matrix in the crystallo-
graphic system is given as

$11 0

0 $12 2 $14

0 ~$14 $13

(46)

Unlike the strains in Eqs. (41) and (43), this strain tensor
is changed upon transformation to the trigonal system
(XYZ in Fig, 1); the transformation consists of a 60 rota-
tion about the z axis. In the trigonal system, the strain
tensor is given by

where the observed mean shift is from Ref. 15.
Although this agreement is quite good, the dift'erence

between these two numbers is larger than any other set of
results. We note that the statistical precision due to the
trigonal field is +66 cm '. Using the lowest value in the
95% confidence limits, we get a predicted mean shift of—0. 191 cm '/kbar, which is closer to the observed
value; the use of this lower bound does not impair the
other agreements. Finally, we point out that uniaxial-
stress measurements are obtained for very small stress
values and, therefore, have more room for error.

The splitting for uniaxial-stress compression along the
c axis can be calculated by combining Eqs. (28) and (45b)
and is in excellent agreement with the experimental mea-
surements:

predicted decrease in splitting=0. 057 cm '/kbar,

observed decrease in splitting

=0.058+0.003 cm '/kbar,

—1 1 $14
e = — —(s —s )(i3/3 —1)+ —( 3/3+i )u+ ~6 2 11 12 v'2

=(0.095 774 6 i—0 08. 8 482 7)= —e„* (48d)

For convenience, o.
1 was taken to be 1 Mbar in writing

the above values. For 0.1=1 kbar, all of the numerical
values in Eqs. (48a) —(48d) should be multiplied by 10

From the discussion of uniaxial-strain compression
along the a axis in Secs. IV B2 and V C 1 [see Eqs. (23),
(24), and (34) in particular], the contributions of e, and

e to the mean shift are proportional to (Av ) . Because

this is a very small change, it can be ignored in the
present case. Hence the main contribution to the shift of
the mean of R1 and R2 lines arises from strains in Eqs.
(48a) and (48b). Using these equations in conjunction
with Eqs. (27b) and (27c), the mean redshift due to uni-
form strain is 0.2504 cm '/kbar and the mean redshift
due to trigonal strain is 0.0452 cm '/kbar. Therefore,
the results are

predicted mean shift= —0.296 cm '/kbar,

observed mean shift= —0.28+0.01 cm '/kbar,
where the observed mean shift is from Ref. 15.

For calculating splitting for uniaxial stress along the a
axis, we need to use Eq. (38a). The first term on the right
side of Eq. (38a) is due to trigonal strain. The contribu-
tion of the second term, because of (b,v), is negligible.
The contribution of the last term can be evaluated using
the Q value in Eq. (38b). The splitting calculation gives a
nonlinear increase with compression: At 1 kbar we have
a splitting rate of 0.0322 cm '/kbar; at 2 kbar the split-
ting rate is 0.0376 cm '/kbar. Using an average value,
we get

predicted increase of splitting =0.035 cm /kbar,

observed increase of splitting

=0.038+0.004 cm '/kbar,

—(s„+3s,2)
1

( $11+$12)
1

4
—(3s„+s,2)

$14

4

v'3 v'3

4
( $11 +$12 ) $14

(47)

where the observed increase is from Ref. 15. Both the
mean shift and splitting results show excellent agreement
between theory and experiment.

v'3
4 $14 4 $13

e( A, ) =s» s12+$13 0. 1266,
1

e ( T2 ) = —(2s, 3
—s» —s, 2 ) = —0.069 975,

23/3

(48a)

(48b)

(T2)= — (i3/3 1)(s„—s,—2)— ( 3+i)
+ 4 3

11 12

= ( —0.0524+ i 0.0714)= —e * (48c)

From the matrix in (47), we can again write down the
symmetry-adapted strains using Table II. Numerical
magnitudes are obtained using the compliance constants
in Ref. 51:

VI. DISCUSSION AND CONCLUSIONS

The present work provides a theoretical framework for
calculating R-line shifts in ruby for an imposed deforma-
tion. Because the developments are quite general, they
are expected to have broader applicability. As long as
the general theoretical approach described in Sec. IV is
applicable, it may be used to relate spectroscopic results
to mechanical deformations. Thus macroscopic deforma-
tions can be analyzed in terms of local-site-symmetry
changes. We also emphasize that shock data, though
convenient, are not necessary for obtaining the relevant
model parameters. The principal advantage of the shock
experiments is that they provide well-defined strain states
along the crystal orientations of interest.

One issue not discussed so far is the configuration in-
teraction (CI). As mentioned in Sec. III B, the CI of the
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E state with higher excited states has been ignored in
writing Eqs. (14) and (15). These equations represent
85% of the total contribution due to the trigonal field.
In principle, the inclusion of CI is likely to change these
equations somewhat. But the consequent predictions do
not necessarily provide better agreement with the experi-
mental results. Irrespective of this matter, most of our
analysis, except the explanation of the curvature of the
redshift, is independent of Eqs. (14) and (15). It is pri-
marily for this reason that in Sec. V we introduced two
parameters: one to explain the shift associated with tri-
gonal field and the other to describe the splitting change
with trigonal field. This procedure incorporates
configuration interaction implicitly. In the region of
modest strains, U and v' are expected to change linearly
with strain; thus shift and splitting parameters represent
two independent equations of appropriate form even in
the presence of configuration interaction.

The present work has interesting implications for pres-
sure calibration at very high pressures in diamond anvil
studies. Under nonhydrostatic loading, knowledge of the
relative orientation between the crystal axes and stress
components is needed for an accurate analysis. To the
best of our knowledge, oriented ruby chips are not used
in diamond-anvil-cell measurements. We recommend
that the use of oriented ruby crystals, if feasible, be ex-
plored in high-pressure measurements because such usage
would permit separation of effects due to stress gradients
from those due to crystal orientation and nonhydrostatic
loading, and lead, therefore, to improved pressure cali-
bration.

In the absence of oriented ruby chips, the use of the Rz
line as a pressure calibrant has been recommended in
DAC studies. The present analysis can be used to under-
stand qualitatively the observed insensitivity of the R2-
line shift, for a given density compression, to crystal
orientation and nonhydrostatic stresses. Under purely
hydrostatic loading, uniform strain [e(A, ) type] totally
dominates and the trigonal strain [e(Tz) type] contribu-
tion is negligible (see Sec. V D). Hence both R lines shift
equally, and the redshift [Eq. (27b)] arises due to changes
in Racah parameters because of density compression.

Uniaxial strain, in contrast, leads to a strongly nonhy-
drostatic state. ' ' As indicated in Sec. IV, the imposed
strain along the c and a axes consists of e( A

&
) and other

types of strain. The effect of e( A, ) causes a redshift of
the mean of R& and Rz lines ( E) as just discussed. For
c-axis compression, the trigonal strain magnitude is
significant and results in a blueshift of the mean [Eq.
(27c)] and a decrease in splitting of the lines [Eq. (28)].
For the higher-energy E2 line, these trigonal strain effects
tend to cancel and the overall change is the redshift due
to density compression as in hydrostatic loading. For a-
axis compression, there exists e(T2)- and e(E)-type
strains as indicated in Eq. (22). The increase in splitting
is given by Eq. (38a) and arises due to Q and an increase
in v. However, the trigonal strain now has a different
sign [Eq. (22b)] and leads to a redshift of the mean.
Again, for the higher-energy Rz line, the splitting in-
crease and redshift of the mean tend to cancel each other

and the overall change is the redshift due to density
compression as in hydrostatic loading. For the R

&
line,

the contributions add in both cases and the overall
change is not just due to density compression. We em-
phasize that the analysis in Sec. V can be used to quanti-
tatively evaluate the discussion presented here. At
compressions much greater than those discussed here, in-
corporation of higher-order strains in the theory need to
be considered. This is expected to be relatively straight-
forward because nonhydrostatic stresses beyond the
range of present shock experiments are unlikely due to
yielding. Hence only e( A, )-type strains need to be con-
sidered at higher compressions.

The present work also opens up the possibility of un-
derstanding shock deformation at the local level. As in-
dicated in Ref. 19, the Hugoniots of sapphire, represent-
ing a continuum response, are indistinguishable for shock
loading along the a and c axes, yet the R-line data, ana-
lyzed here, show large differences. Thus the optical data
are more sensitive than continuum measurements to
changes at the microscopic level. The ability to analyze
the data in terms of site symmetry changes underscores
the use of dopant ions to study the environment around
the ion to understand shock-induced changes at the
atomic and/or molecular level. For shocked solids this is
an exciting possibility. We are currently working on ex-
tending the optical measurements to stress ranges beyond
the yield limit to understand inelastic deformation at a
microscopic level.

In conclusion, a theoretical framework has been
developed to relate changes in the ruby R-line data to irn-
posed deformation for a broad range of loading condi-
tions. Our approach is based on the general framework
of crystal-field theory and avoids the assumption of an
approximate description like the point-ion model. How-
ever, the use of a generalized approach requires the use of
some experimental data to evaluate the relevant parame-
ters in the model. The ability to predict results of experi-
ments very different from those used to obtain the model
parameters provides significant credibility to the theoreti-
cal developments. We close by emphasizing that the suc-
cess of the theoretical developments was not expected
when we started this work and has been very gratifying.
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APPENDIX

The matrix in Eq. (23) has the following form:
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C D 0
C* 8 0 D

D 0 B C
(Al)

0 D 0
0 B' 0 D

D* 0 B' 0
0 D 0

(A5)

We shall solve it using a perturbation approximation;
that is, ~C~ and ~D~ are small compared to the diagonal
terms. We also consider the perturbation terms sequen-
tially. First, CWO and D =0, and then D is made
nonzero.

For CWO and D =0, the matrix has a block diagonal
form and the eigenvalues are solutions of the following
quadratic equation:

D B' 0 0
0 0 B' D

0 0 D*

(A6)

The interaction D between the states 3 ' and B' can be
seen as indicated by the submatrices. We can rewrite this
matrix by permuting the basis appropriately to give the
following diagonal matrix:

D 0 0

(3 —e)(B—e) —iCi =0.

Solving for e, we get

( & +»+P( ~ —»'+4ICI']'"
2

(A2)

(A3)

As before, the eigenvalues of this matrix are

( A '+B')+[( A ' B')'+—41DI']'"
2

( ~ +B)+[(~ —B)'+4(
I
C I'+ IDI')]'"

2

If we represent the eigenvalues as 3 ' and B', then

B'=[(3 B—) +4~C~ ]—' (A4)

We now switch on the interaction term D, and the matrix
takes the form

This result has been used in writing Eq. (38) in the text.
In efFect, the procedure used here assumes that in the first
diagonalization (CWO, D =0), the value of D does not
change. In reality, D changes to D'. But the correction
term will be proportional to CD or C . Hence, for our
problem, the correction term to D will be proportional, to
the lowest order, to the square of the strain and can be
neglected.
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