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Spiral states in the square-lattice Hubbard model
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We present a variety of physical implications of a mean-field theory for spiral spin-density-wave
states in the square-lattice Hubbard model for small deviations from half filling. The phase dia-
gram with the paramagnetic metal, two spiral (semimetallic) states, and the ferromagnet is calcu-
lated. The momentum distribution function and the (quasiparticle) density of states are dis-
cussed. There is a significant broadening of the quasiparticle bands when the antiferromagnetic
insulator is doped. The evolution of the Fermi surface and the variation of the plasma frequency
and a charge-stiffness constant with U/t and b are calculated. The connection to results based on
the Schwinger-boson-slave-fermion formalism is made.

The possibility of spiral and linear incommensurate
spin-density-wave states in doped Heisenberg antifer-
romagnets (the t-J model and its relatives) and in the
Hubbard model has been revived in the context of high-T,
superconductors. ' A variety of approximate techniques
have been used to address this problem. Recently, we pro-
posed a mean-field theory of the Mott-Hubbard metal-
insulator transition on nonbipartite lattices5 at half filling.
Here, we discuss the physical consequences of our theory
which accounts for spiral states in the square lattice away
from half filling. We have evaluated the momentum dis-
tribution function and the quasiparticle density of states
in the spiral phase. The quasiparticle bands are narrow at
half filling; upon doping, significant expansion of the
bands occurs with additional states appearing in the gap
region of the insulator and the Fermi energy now lies in
these states. %'e also present results for the plasma fre-
quency determined by the f sum rule and also a charge-
stiffness constant studied by Kohn; ' the latter vanishes in
the undoped, insulating phase and its value yields the os-
cillator strength of the low-frequency part of the f sum
rule.

Consider the square-lattice Hubbard model given by

H —g t(c;t~~ +H c )+Up. n. ;ln;l
(ij ), cr

where (ij) denotes near-neighbor sites and n; l c;tlc;l. We
have performed a mean-field analysis of spiral states in
the doubly occupied site-state-holon representation. The
possibility of linear spin-density waves and charged-spin
solitons will be discussed elsewhere. In fact, for large
values of U (in units of t) the spiral states have lower en-
ergy than the other states (see below). At half filling we
have an antiferromagnetic insulator for all U. Our results
for the phase diagram at small deviations from half filling

are as follows: At small values of U the system is in a
paramagnetic metallic phase. At U, ~, there is a Hartree-
Fock instability into an incommensurate spiral state with
Q along the zone boundary Q (q, tr) or (tt, q). At a
higher value of U U, i there is a transition into a spiral
state along the (1,1) direction, in agreement with our cal-
culations based on a Schwinger-boson-slave-fermion for-
malism. At very large U the system goes into a fer-
romagnetic state in agreement with Nagaoka's results. '

We have established the existence of the (1,1) spiral and
the ferromagnetic phases analytically within a 1/U expan-
sion of the Hartree-Fock equations. The moinentum dis-
tribution function yields a Fermi surface that is very an-
isotropic for intermediate U but becomes less so at larger
values.

We first perform a particle-hole transformation on the
spin-u~p electrons and redefine the operators by c;1 h;
and c;"i~d;t. With respect to a reference vacuum state
( 0) that has a spin-up particle at every site, h;t creates a
holon and d;t, a doubly occupied site state at site i. The
Hamiltonian in this representation assumes the form

H t g h;th1 —t g d;tdj + U g d;td; —U g d;td; h;th; . (2)

Note that the holons and doubly occupied site states have
an attractive on-site interaction leading to an instability
toward pairing at a nonzero center-of-mass motnentum Q.
A coherent Bose condensation of holon-doubly occupied
site-state pairs into a single wave vector Q corresponds to
an xy-spiral spin-density wave with long-range order, with
the order parameter (dth;t) (S; ) bne' ", whet'e bn is
the condensate density of the spiral magnetization. The
spiral state which is uniformly charged has the advantage
that the diagonalization of the quadratic Hamiltonian
that results from the Hartree-Fock factorization can be
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performed analytically. Other condensates require exten-
sive numerical calculations. We have carried out numeri-
cal diagonalization on lattices as large as 40X40 and find
that at 6=0.1 and for U& 12t uniformly charged spiral
states have lower energy than a state with charged solitons
separating antiferromagnetic domains. For intermediate
U, preliminary investigations show that allowing the spin
configuration of the domains to spiral lowers the energy
with respect to the antiferromagnetic soliton state while
the pure-spiral state is higher in energy. In this paper we
confine our attention to states in which the charge is uni-
form and only spiral states need be considered.

Spiral states can be described by factorizing the quartic
Coulomb term allowing for the corresponding order pa-
rameter. We obtain the quadratic mean-field Hamiltoni-
an displayed below:

HMF =g ( —rk p)dkdk—+g (tq —k+p)h$ khq
k k

+Ubo gdkhg-k+H. c.
, k

where p is a renormalized chemical potential. A unitary
transformation yields the quasiparticle dispersion rela-
tions for holons and doubly occupied site states Epk,
E2k Rk ~ [p+ (tg k+tk )/2], wh—ere

Rk =[[(rg k rk)/2]'+(Ub—o)']' '.
In terms of the original degrees of freedom, one has the
lower and upper spiral Hubbard bands and the holon
(doubly occupied site-state) quasiparticles are merely
holes (particles) in the lower (upper) bands. The self-
consistent equations which determine the spiral magneti-
zation bp and the chemical potential pp can be derived
easily. The mean-field energy is minimized with respect
to the condensate wave vector Q and bo.

For small values 8'(40), the wave-vector-dependent
susceptibility g(Q) for the U=O Hubbard model on a
square lattice displays a peak at (+' Q, n) and (z, ~ Q) as
noted, for example, in Ref. 6. We have verified that at
larger deviations from half filling the peak moves first
along the zone boundary and then toward (0,0) along
(O, Q) at large B. The spiral instability occurs ats"
U, ~ g '(Q*) a: [ln(b)] for small k We have per-
formed a detailed numerical solution of the self-consistent
equations for U&U, ~

and minimized the energy with
respect to the ordering wave vector. An accurate deter-
mination of the variation of the energy with the wave vec-
tor around the minimum involves a careful numerical
evaluation of the Brillouin-zone integrals. These compu-
tations lead to the phase diagram displayed in Fig. I. For
fixed filling, as one increases U the paramagnetic phase
loses stability to an incommensurate spiral with ordering
wave vector (Q ~, x) at U, ~. As U increases, Q t moves
away from the zone corner and at U, 2 there is first-order
transition (on an energy scale of 10 t) into a spiral
phase with Q along the diagonal; diagonally incommensu-
rate order facilitates hole motion, thus allowing greater
gain in the kinetic-energy term which begins to predom-
inate over the magnetic term at larger values of U. As U
is increased, the ordering wave vector moves along the di-
agonal toward zero. At large U there is a continuous

10

gnetic

s l i i & t I i i & i I s t t t I

0.0 0.2 0.4 0.6 0.8 1.0

FIG. 1. The phase diagram in the U/t-8 plane showing the
paramagnetic, ferromagnetic, and spiral [(Q,Q) and (gi, x) 1

phases. See text for discussion.

transition into a ferromagnetic state as in the analysis
based on the Schwinger-boson-slave-fermion formal-
ism. '

We have studied the large-U, small-6 behavior analyti-
cally. By expanding in powers of t/U the self-consistent
equations can be analyzed to yield the sublattice magneti-
zation bo = (1 —8)/2+ O(t /U ); this result is obvious
since quantum fluctuations are not included in the treat-
ment of magnetic ordering. The energy for the diagonal
spiral is given by —2v —28 /v where v=t/(Ubo) while
that for the ferromagnetic state is —46+ 2+6 . There-
fore, the phase boundary between the spiral phase and
the ferromagnetic phase occurs at v, =8(1 —~6'/2)/
(1 —2+8 ). At large U the diagonal spiral is energetically
favored over the spiral with the wave vector at (Q~, rr)
which has an energy —2v —b /v. The transition between
the spiral phase and the ferromagnetic phase is continu-
ous. These analytic results agree with the numerical com-
putations. The large-U part of the phase diagram and the
dependence on b of the spiral wave vector, etc. are in
semiquantitative agreement with results from a mean-field
theory based on Schwinger bosons and slave fermions for
the t —J model and for the Hubbard model. The latter
theory, however, does not give rise to the spiral along
(Qttx) at smaller U obtained in this paper: The
Schwinger-boson representation incorporates charge-spin
separation, a phenomenon likely to occur only at moderate
to large values of U. '

We have also calculated the momentum distribution
function nk =(ck~k ) by reexpressing it in terms of the
quasiparticle operators that diagonalize the mean-field
Hamiltonian. The discontinuity in nk defines the Fermi
surface. The Fermi surfaces for 6 =0.05, U =8 and
b=0. 10, U=15 are shown in Fig. 2(a) for the diagonal
spiral. Note that for intermediate U, the Fermi surface is
very anisotropic but becomes less so as U increases. This
is also confirmed by a calculation of the efI'ective-mass
tensor at the bottom of the hole band. The principal
directions are along the (1,1) direction and perpendicular
to it. At U =8.0 and 6 =0.05 the ratio of the masses is 6.6
while at U =15 and 6=0.1 it is about 1.6. For the spiral



SPIRAL STATES IN THE SQUARE-LA I I ICE HUBBARD MODEL 8777

(a)

O

0.8—
0.6—
0.4—
0.2—
00-----

-0.2—
-0.4

I
-0.)—
-0.8—
10

-1.0 0.11 :D.6 -0.4

I

I

I

I

I

I

I

I

I

I

I

I

I

I I I I I

-0.2 0.0 0.2 0.4 0.6 0.8 1.0

16

12—

cD 0.6

~o 0.4
~~

~ 0.2

CD
CD

CD

o 8
CD

«D 4—

(b) 1.0

q„(units of 7ria)

0.8 I

I

0.6 I

I

I

I

I

I

0.2 I

I

00 I
~ %F

I

I

-0.2
I

I

I

I

-0.6 I

I

I

I

-1.0 I I 1 s I I I

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

0.4

-0.4

-0.8

q„(units of vr/a)

FIG. 2. The quasiparticle Fermi surface in the spiral phase.
For the diagonal spiral the dashed line is for U 8 and 8 0.05,
and the solid line is for U-15 and b 0.1 in (a). In (b) the Fer-
mi surface at U 3.5, b 0. 1 for the spiral wave vector (0.87, 1)
in units of n is shown.
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FIG. 3. The quasiparticle density of states per site in units
t ' at U~15 and b' 0 (upper figure) and b 0.1 (lower figure)
exhibiting the rapid expansion of the band with doping.

effect, lending support to the existence of at least local
spiral order. The shifting of Q implies that hole pockets
will appear slightly away from (tr/2, tr/2). It is di%cult to
account for this broadening by a rigid-band approxima-
tion. If one interprets the upper band as the unfilled Cu
d' band, then this broadening can also be seen in inverse
photoemission experiments. We also note that from Fig.
2(b) it is clear that Fermi-surface crossings should be ob-
served both along I -S and I -X directions. '4 The in-
clusion of the oxygen bands is necessary for detailed com-
parison with photoemission experiments.

Following Kohn, we have calculated a stiffness con-
stant which measures the response of the system to an
electromagnetic field. The stiffness constant Y is defined

phase with pitch along (Q~, tr), the Fermi surface is
displayed in Fig. 2(b). Note that in contrast to the diago-
nal case the Fermi surface is now composed of disjoint
curves; this will lead to distinctive signals in de Haas-van
Alphen measurements and in magnetoresistance.

In Fig. 3 we have plotted the quasiparticle density of
states for the diagonal spiral at U=15. There is signifi-
cant broadening of the bands as the system is doped with
holes. At zero doping the width of the band is given by
St /Ubo, i.e., of the order of J. The width increases non-
linearly with deviation from half filling and becomes of or-
der t; the Fermi energy shifts upward by a corresponding
amount. Numerically, for U 15 the width is approxi-
mately t for 8' 0 and at 8 0.1 is about 4.9 times larger.
In fact, the gap between the bands decreases by about half
as it gets partially filled by states from above and below.
The Fermi surface in the doped case lies in the insulating
gap. These features are in rough accord with data from
recent photoemission experiments. ' We stress that the
shifting of Q from the zone corner is essential for this
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FIG. 4. The stiffness constant defined in Eq. (4) at 8 0. 1 as
a function of U in the diagonal spiral phase.
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Y- —,
' (a'/V) —(T„&—2 g I&01j.I.&I'

n~0 E~ —Eo
(4)

A

where T„—2tpk cos(k a)cg~k is the kinetic-energy
operator along the x axis and j 2tgk~sin(k„a)ck~k~.
Y is a measure of how good a metal the system is,
and vanishes for an insulator. It is easily shown that
lim„oooo". (co)] 2(e /h )Y where cr" is the imaginary
part of the frequency-dependent conductivity. We find
that in the diagonal spiral the stiffness constant vanishes
nonlinearly with b as b 0. We show a plot of Y as a
function of U for 8 0.1 in Fig. 4. Note the initial de-
crease and subsequent increase as a function of U; as the
system approaches the ferromagnetic state it becomes a
better metal. It has the least metallic characteristics at
intermediate U. An effective plasma frequency that
characterizes the low-frequency properties to~ can be
defined as to~ 8x(e2/d)Y where d is the interplanar
spacing, and at b 0.15 this has a value of 2.75(eV) if we
assume an effective value of 0.5 eV for t. We have also
calculated the effective plasma frequency which is deter-
mined by the f sum rule:' co~

—(4x e a /5 V)&T,&.

For large U, in the classical Neel state ( —T„) has the
value (x /2)(t/U). The deviations with doping are quan-

titatively small. We have also computed the number of
doubly occupied sites to be —,

' (1 —b) —bo and find that it
decreases linearly with h. We have not extended these
calculations to values of b larger than those considered
here since particle-hole excitations of the holon Fermi
sea—that destroy ferromagnetism and restore the Lut-
tinger-Fermi surface's at very large values of U and for
large b—are absent in this calculation.

It is also worth pointing out that effects due to the in-
teraction between fluctuations of the spiral order parame-
ter and the doubly occupied site-state and holon quasipar-
ticles in the spiral metallic phase can, in principle, destroy
the long-range spiral order, leaving behind just short-
range spiral correlations. A precise elucidation of the
phase diagram requires a careful calculation of the fluc-
tuation effects for intermediate values of U/zt
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