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Exact solution of an anisotropic centered honeycomb Ising lattice: Reentrance and partial disorder

H. T. Diep and M. Debauche
Laboratoire de hfagnetistne des Surfaces, Uniuersite de Paris 7, 2 place Jussieu, 75251 Paris CEDEX 05, France

H. Giacomini
Instituto de Fisica Rosario, Pellegrrni 250, 2000 Rosario, Santa Fe, Argentina

(Received 28 November 1990}

The exact phase diagram of an anisotropic centered honeycomb Ising lattice is obtained by
transforming the system into a 32-vertex model that satisfies the free-fermion condition. We
show that for a range of interaction parameters, a paramagnetic reentrant phase exists, on the
temperature scale, between two ordered phases. The high-temperature ordered phase possesses

partial disorder, in agreement with theoretical conjecture.

Frustrated-spin systems have been subjected to exten-
sive studies during the last decade. The frustration, due to
competing interactions between spins, is known to cause
unexpected behavior. Examples are found in spin glasses,
where the disorder in spin positions also plays an impor-
tant role. We are interested here in frustrated Ising spin
systems without disorder. These systems are interesting in
statistical mechanics because they are periodically defined
and thus subject to exact treatment. For a recent review,
the reader is referred to Ref. 1. To date, very few frus-
trated systems have been exactly solved. They are limited
to one and two dimensions. ' A three-dimensional case
has also been solved recently. A few well-known systems
include the centered-square and the Kagome lattices.
In a recent paper, we obtained the exact solution of the
Kagome lattice with nearest-neighbor and next-nearest-
neighbor interactions. The phase diagram shows a rich
behavior with reentrance, coexistence of order and disor-
der, and a disorder line. The reentrance has been found
also in the centered-square lattice and its extended ver-
sions. We have conjectured that, in order to have a
reentrant paramagnetic phase between two ordered
phases, the necessary, but not sufficient, condition is that
the system possesses a partial disorder in the high-
temperature ordered phase to compensate for the loss of
entropy. This feature is also found in the centered-square
lattice ' ' and other complicated cluster models. Partial
disorder is possible when a set of spins is free to fiip, due to
competing interactions. In three dimensions, a few s s-
tems such as the fully frustrated simple-cubic lattice, ' "
the stacked triangular antiferromagnet, ' and a body-
centered-cubic (BCC) crystal' also exhibit this property,
although evidence of reentrance is found only for the BCC
case ' and a complicated lattice model.

In this paper, we study an anisotropic centered honey-
comb lattice with Ising spins. The model is shown in Fig.
1 with the following Hamiltonian:

Ji g Q'tQ'J J2 g t3't+~' J3 g Q''tr) (1)
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where a; ( + 1) is an Ising spin occupying the lattice
site i, and the first, second, and third sums run over the
spin pairs connected by heavy, light, and doubly light
bonds, respectively (see Fig. 1). When J2 J3 0, one re-
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FIG. 1. Unit cell of the centered honeycomb lattice: heavy,
light, and doubly-light bonds denote the interactions J&, J2, and
J3, respectively. The sites on the honeycomb are numbered
from 1 to 6 for decimation.

covers the honeycomb lattice, and when Jl J2 J3 one
has the triangular lattice.

The phase diagram at temperature T 0 is shown in
Fig. 2 for three cases (JieJ2 J3), (J|WJ3, J2 0), and
(J i 8J2, J3 0). The ground-state (GS) spin configur-
ations are also indicated. Note that the phase diagram is
symmetric with respect to the horizontal axis. In each
case, there is a phase where the central spins are free to
fiip. Let us call this the partially disordered phase (PDP).
In view of this common feature, one expects a reentrant
phase occurring between the PDP and its neighboring
phase at finite T. As it will be shown below, that though
partial disorder exists in the GS, it does not in every case
studied here yield a reentrant phase at finite temperature.

Now we proceed to solve our model. Let us denote the
central spin in a lattice cell shown in Fig. 1 by o, and
number the other spins from cr~ to o6. The Boltzmann
weight associated to the elementary cell is given by

exp~ K I (tr1tr2+ cr2t33+ rr3tr4+ tr4rr5+ &5tr6+ cr6rrl )

+K2tr(t'ai + rr2+ «+ rr5) +K3tr(o 3+ 0'6) &,

where K; J;/kT (i 1,2,3), T being the temperature and
k the Boltzmann constant. The partition function of the
model is written as
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critical surface, which enables us to analyze the problem
of reentrance. The critical temperature is determined by

Q/+ Q2+2Q3 2maxj», Q2, Q3]

where

(4)

(a)

Q
~ =exp(3K~ ) cosh(4K2+ 2K3) +exp( —3K

& ),
Q2=exp(K~)+exp( K~) c—osh(4E2 —2K3) (5)

Q3 =exp(K ~ )+exp( —K& ) cosh(2K3) .

The phase diagram in the three-dimensional space (K~,
K2, K3& is rather complicated to show. For simplicity, we

consider the phase diagram in three particular planes
(K) &K2 =K3), (K) &K3, K2 =0), and (K) WK2, K3 0).

When K2=K3, the critical line obtained from (4) and

(5) is

exp(3E ) ) cosh (6K2) +exp ( —3K ( )

3[exp(K~)+exp( —K~) cosh(2E2)] . (6)

In the case K2 =0, the critical line is given by

exp(3K& )cosh(2K3) +exp( —3K ) )

3[exp(K) )+exp( —K) ) cosh(2K3)] . (7)

J = 03

The phase diagrams obtained from (6) and (7) are
shown in Figs. 3(a) and 3(b), respectively. Note that the
phase diagrams are symmetric with respect to the K] axis
due to the invariance K3 —K2 [see Eq. (6)] and

K3 —K3 [see Eq. (7)]. These two cases do not present
the reentrance phenomenon. Let us consider first Fig.

(c)

FIG. 2. Phase diagram of the ground state shown in the
plane: (a) (J~, J2 J3); (b) (J~, J3) with J2-0; (c) (J~, J2)
with J3 0. Heavy lines separate different phases and spin
configuration of each phase is indicated (up, down, and free
spins are denoted by +, —,and 0, respectively).

where the sum is performed over all spin configurations
and the product is taken over all elementary cells. Period-
ic boundary conditions are imposed. Since there is no
crossing-bond interaction, the model is exactly solvable.
To obtain the exact solution of our model, we decimate
the central spin of each elementary cell of the lattice. In
doing so, we obtain a honeycomb Ising model with multi-
spin interactions. This resulting model is equivalent to a
special case of the 32-vertex model on a triangular lattice
that satisfies the free-fermion condition. ' The 32-vertex
model is soluble when the free-fermion condition is satis-
fied, and the corresponding free energy has been calculat-
ed by Sacco and Wu. ' Following the same method, we
can obtain the free energy per spin of our model, and also
the critical surface.

The explicit expression of the free energy as a function
of interaction parameters K], K2, and K3 is very compli-
cated. We give here only the explicit expression of the
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FIG. 3. Phase diagram in the plane (a) (ICi =JilkT,
Ez E3 J2,3/kT), (b) (E~, IC3, 162=0). Solid lines are critical
lines which separate diff'erent phases I (paramagnetic), II (par-
tially disordered), and III (ordered). Discontinued lines of slope
—

1 are the asymptotes. See text for comments.
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(9)

The phase diagram obtained from (8) and (9) is shown in
Fig. 4 where one observes a reentrant phase in the range
K2/Ki = ( —0.6, —0.5). For a given ratio of Kq/Ki in this
range, starting from the paramagnetic phase (I), with de-
creasing temperature one enters first an ordered phase
(II) with a partial disorder due to free spins at the cen-
tered sites (we have verified this by MC simulations), then
the reentrant paramagnetic phase before crossing the crit-
ical line to the low-temperature ordered phase III. Since
this is not easily seen on the scale of Fig. 4, we show in
Fig. 5 the phase diagram in the reentrant region in the
space (T, a =K2/Ki). The reentrant paramagnetic phase
goes down to zero temperature with an end point at
a = —0.5.

When K3 is nonzero, the slope of the asymptote in Fig.
4 tends from —0.5 to —1 when Ki/K2 varies from 0 to 1

[situation between Fig. 4 and Fig. 3(a)]. The reentrance
exists in this range of K3/K2.

--2

3(a) for a given ratio KQKi (Ki K2), one crosses only
one critical line at Pnite temperature (except at K/Ki- —I). In the ordered phase II, the partial disorder,
which exists in the GS, remains so up to the phase transi-
tion. We have verified this by examining the Edwards-
Anderson order parameter associated with the central
spins in Monte Carlo (MC) simulations. When K2 K3
=0 one recovers the transition at finite temperature found
for the honeycomb lattice, ' and when K2 K3
=K~ —1 one recovers the antiferromagnetic triangular
lattice which has no phase transition at finite tempera-
ture. ' The case K2 0 [Fig. 3(b)] does not have a phase
transition at finite temperature in the range—~ &Ki/Ki & —1, and the ordered phase II has the
same partial disorder as in Fig. 3(a).

Let us consider now the case K3=0. The critical lines
are determined from the equations

exp(4K i ) +2 exp(2K i ) + 1
cosli 4K2 8

[1 —

exp�(4K

i ) ]

exp�

(2K i )
3 exp(4K i ) + 2 exp(2K i ) —1

[exp(4Ki) —1]exp(2Ki)
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FIG. 5. Phase diagram in the plane (T, a=J2/Ji) in the
reentrant region. I, II, and III denote the paramagnetic, partial-
ly disordered, and ordered phases, respectively.
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Note that the model that we have studied in this work
does not present a disorder solution with a dimensional
reduction.

To investigate the kind of ordering in each phase, we
have performed MC simulations. The sample sizes are up
to 60x60 lattice sites with periodic boundary conditions.
We discarded about 10000 MC steps per spin for equili-
brating and averaged physical quantities over 10000 MC
steps per spin. We show in Fig. 6 an example of ordering
in the reentrant region. The order parameter in the low-

temperature ordered phase is defined by an appropriate
staggered magnetization [see the upper configuration on
the left-hand side of Fig. 1(c)]. In the high-temperature
phase, the order parameter of the sublattice containing
the spins at centered sites is defined by the Edwards-
Anderson order paraineter q, and that of the other sublat-
tice by the staggered magnetization m [see the lower
configuration on the left-hand side of Fig. 1(c)]. As seen,
the sublattice of centered spins stays disordered in the
high-temperature (partially) ordered phase, while the oth-
er sublattice becomes disordered in the reentrant region
and in the high-temperature paramagnetic phase. Note
that due to the well-known problem encountered at low

temperatures, the MC simulations overestimate the tran-
sition temperatures in the reentrant region when using the
heating procedure.

Let us try now to analyze the origin of the reentrance
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FIG. 4. Phase diagram in the plane (Ki =Ji/kT, K2 =Jz/kT,
K3=0). Solid lines are critical lines which separate diff'er-

ent phases I (paramagnetic), II (partially disordered), III
(ordered), and IV (ferromagnetic). Discontinued line is the
asymptote with slope —0.5. The reentrant region is in the range
K2/Ki =(—0.6, —0.5).

FIG. 6. Order parameters m (solid line as guide to the eye)
and q (discontinued line) obtained from MC simulations (heat-
ing from the ground state) in the reentrant region with
a =Jz/Ji = —0.514. See text for the definitions of the order pa-
rameters and comments.
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phenomenon. The necessary condition for reentrance to
occur is the existence of partial disorder in the high-
temperature ordered phase to compensate the loss of en-
tropy, as has been conjectured. But this partial disorder
alone is not sufficient to make reentrance as shown in Figs.
3(a) and 3(b). So, the finite zero-point entropy due to the
partial disorder of the ground state which is the same for
three cases considered in Fig. 1, So = —,

' ln2 per spin, is not
a sufficient condition. Another ingredient which favors
reentrance may be the anisotropic character of the in-
teractions. For example, the reentrant region of the
centered-square lattice is enlarged by anisotropic interac-
tions. Finally, the presence of reentrance may require a
coordination number at a disordered site to be large
enough to inffuence the neighboring ordered sites. It may

have an upper limit to avoid the disorder contamination of
the whole system. A quantitative formulation has been
suggested by Morita: the effective multispin interactions
which are functions of temperature and are generated by
the deciination of the free spins at centered sites, may can-
cel the original pair interactions on the remaining sites at
some temperature region, leading to the paramagnetic
reentrant phase.

To conclude, we emphasize that we have solved exactly
the Ising model on the anisotropic honeycomb lattice. We
have found, in some region of parameters, successive
phase transitions with a paramagnetic reentrant phase.
The partial disorder in the GS remains up to the transition
at finite temperature and plays a fundamental role in the
occurrence of the reentrance.
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