
PHYSICAL REVIEW 8 VOLUME 43, NUMBER 10 1 APRIL 1991

Metal-semiconductor transition in partially compensated Ge:Sb
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The conductivity exponent a =d lno/d ln(nD n, ) =—0.5 for uncompensated shallow donor-
impurity bands, but it crosses over to a= 1.0 for partially compensated impurity bands with

n~/nD. I calculate K„ the crossover compensation, and obtain a result in excellent agreement
with experiment.

Metal-semiconductor transitions have become more in-
teresting since the discovery of high-T, superconductivity
(HTSC) in layered cuprates. ' These materials, however,
are extremely complex, and it is never certain whether the
disorder that is responsible for their high room-tem-
perature resistivities (comparable to metallic glasses,
where homogeneity is also questionable) is random or mi-
croscopically homogeneous. The situation in Si:P impuri-
ty bands is much more favorable. The chemical interac-
tions between impurities in Si:P can be extremely small,
and with modern semiconductor technology, it is possible
to produce Si:P which is more nearly homogeneous than
any other material which exhibits a metal-semiconductor
transition. Other factors, such as the ability to shift the
dopant concentration nD relative to the critical transition
concentration n„by means of uniaxial strain on a single
sample, are also very favorable for precise determination
of the microscopic character of the transition. It may be
fair to say that any theoretical technique which cannot ex-
plain the metal-semiconductor transition for relatively
simple Si:P impurity bands is unlikely to explain the ori-
gin of anomalous electronic properties (such as HTSC) in
other much more complex materials (such as layered cu-
prates) which are also vicinal to this transition.

The central facts are the following. ' When Si is doped
with donors only (P, As, Sb, or P+As), the zero-tem-
perature conductivity o(0) is given by

o(0) cc [(nD/n, ) —1 1

where nD is the donor concentration and n, is the critical
donor concentration separating metallic and insulating
states. The best experimental value for a is 0.51(5).
However, when the donors are partially compensated by
acceptors, a rapidly crosses over from —0.5 to —1.0. If
E =n~/nD measures the degree of compensation, the
crossover value where a=0.7 is @=0.05, which is
small, and perhaps surprisingly so, even for what may pos-
sibly be an interference effect.

The theoretical situation is the following. Almost all
theories which have discussed this transition approached
from the metallic side have used a perturbative treatment
of strong scattering in the context of one-component
Fermi-liquid theory (FLI). Such perturbative treatments
of localization and Coulomb interaction effects are valid
for homogeneous well-ordered quasicrystals with narrow
diffraction bands, such as I-Al-Li-Cu. There the localiza-
tion eff'ects are of order 10%, while the Coulomb interac-

tion effects are of order 0.1%, but there is little indication
of a metal-insulator transition. To obtain a formula
resembling Eq. (1), one can extrapolate perturbation
theory beyond its region of applicability, ' but this yields
a=1 for d=3 dimensions. (This is the value also ob-
tained by classical scaling theory. ) A recent attempt to
combine scaling theory with one-component Fermi-liquid
theory disappointingly led to a discontinuous conductivity
ere-o for n (n, and cro=o;„ for n & n„which corre-
sponds to a =0 and is essentially Mott's minimum con-
ductivity picture. The discouraging result here is that
technical refinements (replacement of Born scattering by
diffusive scattering) in one-component Fermi-liquid
theory with interactions (FLI) produce worse results
than were previously obtained in the one-electron approxi-
mation.

The obvious conclusion which can be drawn from this
brief discussion, or from a more lengthy review of pertur-
bative one-component Fermi-liquid theories, is that the
problem here is fundamentally not technical but concep-
tual. The fundamental assumption that perturbation
theory or even convergent one-component Fermi-liquid
theory can predict the correct value for a may be in-
correct. Even classical scaling, which gives a =1, may be
correct in most materials [such as 'Si or Ge with partially
compensated shallow impurities, or deep impurities
(Si:Au)l only by accident. Until we understand the origin
of a=0.5 in the ideal case, Si:P, we do not understand
subtle quantum interactions near metal-semiconductor
transitions.

Because the approach of perturbative one-component
Fermi-liquid theory (or FLI) produces such disappointing
results, it is natural to discard this assumption in favor of
nonperturbative two-component Fermi-liquid theory
(FLII). The two components here are the obvious ones:
localized states (which may or may not be magnetic, and
which are the only states present for nD & n, ) coexist for
nD & n, with extended states, and at the outset are non-
perturbatively separable from them. ' The separability is
discussed from the point of view of set theory, which is
intrinsically nonperturbative, and the set-theoretical de-
scription in FLII is not derivable from increasing interac-
tion strengths in FLI. Of course, increasing the carrier
charge e does not increase the ratio of electron-electron
interaction energies (e ) to electron-ion interaction ener-
gies (Ze ), and it actually decreases the ratio of collective
plasma oscillator energies (pro~, re~ =4+We /m) to
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need to modify our set-theoretic approach to include the
effects of compensation.

In Si:P with homogeneous samples we assume that the
P is randomly distributed, and this may be the case for
both Sb and the background acceptors A in partially com-
pensated Ge:Sb as well. We divide the Sb donors into two
types, "pure" donors which contain no acceptor atoms A
in their nearest-neighbor sphere (type Dp), and compen-
sated donors which contain one or more A atoms in this
sphere (type Di). The nearest-neighbor sphere is defined
as the volume which lies within r of the central atom, with
0 ~ r ~ l.2ro, ~here ro is the average donor spacing. One
can estimate (for instance, from random-sphere packing
models) that for d 3 this sphere contains on the average
about

(7)

atoms. The fraction fp of Dp atoms is given by the Pois-
son distribution as

fp=e
We assume that electrons in extended states percolate

through the crystal along paths containing pure donors
Do. There are a number of possible reasons for this as-
sumption, but the simplest one is that an electron is an ex-
tended state passing through a D~ compensated donor
may exchange with an electron localized on the near-
neighbor A acceptor. ' This exchange scattering inter-
rupts the phase coherence of the extended state, because
the phase of the localized A electron is random. Alter-
natively, we have mixed a localized state (A ) into the
donor extended state, contrary to our original prescription
which separated extended and localized states. Localiza-
tion can also occur because of donor clustering, and that is
why sample homogeneity is necessary to observe a =0.5.
Compositional inhomogeneities can always broaden the
transition and give a = 1.0.

The necessary condition for Do percolation in the
mean-field approximation ' is that on the average each Do
atom has at least two (and probably three) Dp neighbors
in the first-neighbor sphere, i.e.,

fp=e ' =2.5(5)/Ni, (9)

For d & d, localized and extended states can coexist and
be separated. ' This is the case for Si:P.

If extended states exist, what is their effect on the con-
ductivity? Because the states have energy E and an aver-
age direction e, we can define k =m*(E —Ep)/h and
k=ke. Here k corresponds to a Bloch vector in the sense
that its component parallel to the applied field measures
the average wavelength of the extended state in that direc-
tion. Near E =Eo,

dN, /dE =dN, /dk (dE/dk)

(3)

so that

dN, /dE cx: (E —Ep), m =(d —2)/2.

For E near Eo, the density of localized states

(4) which with Ni =10 gives the percolation threshold

K, =0.14(2) . (10)

electron-ion interaction energies. It is primarily the ran-
domness of the electron-ion interactions that produces lo-
calization, not strong electron-electron interactions; the
Mott-Anderson transition in impurity bands is different
from the %'igner transition of a free-electron gas. The
impurity-band transition may well be explicable entirely
within the context of the Hartree-Fock one-electron ap-
proximation without many-electron dynamical correla-
tions.

The question of whether extended states can coexist
with and be separated from localized states depends not
on the strength of electron-electron interactions, but rath-
er on dimensionality d. In general, the central limit
theorem tell us that the effects associated with random-
ness scale with N"~, where N is the number of donor elec-
trons and d is the dimensionality. This feature applies not
only to the quantum-mechanical impurity band prob-
lem ' but also to the classical random-field Ising mod-
el. " In the latter, phase transitions to ordered states are
suppressed in lower dimensionalities by the formation of
domains bounded by domain walls with surface filling fac-
tors proportional to N '. For impurity bands the
quantum-mechanical limits on measuring momentum
with electrodes separated by sample dimensions similarly
introduce the same factor N '. The same marginal
dimensionality d„arises in both cases when d —

1 =d
—I d /2, or

a (d —2)/2 (6)

or a =0.5, in agreement with the experimental result (1).
This simple argument rests on nothing more complicat-

ed than a quantum-mechanical analogue of the set-
theoretic reasoning which is agreed to be seminal in classi-
cal random-field Ising models. " Because of its nonpertur-
bative character, however, we would like to test the
reasoning against the observed crossover of a from 0.5
(K 0) to 1.0 (K—1) near 0.7 (K=0.05). To do this we

dN(/dE » dN, /dE

so that the scattering rate I or I/z is nearly constant.
This gives

By interpolating linearly on (K, a) between (0, 0.5) and
(0.14, 1), we obtain a crossover near

(Ki, ai) = [0.06(1),0.7],
in excellent agreement with the sparse experimental data
with K i =0.05 (5).

The set-theoretic, or topological, approach embodied in
FLII seems to be poorly suited to calculation, while per-
turbation theory, combined with scaling arguments, as in
FLI, produces very lengthy calculations, which are widely
recognized. ' ' Thus, if one measures the significance of
a theoretical paper by the number of equations it contains,
FLI would seem to be much more powerful than FLII.
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However, one of the characteristics of set theory is that in
the few problems not soluble by analytic methods it is
sometimes able to derive a few important results. This is
because when analytic methods are applied to infinite sets
they may produce counting errors (for instance, by includ-
ing amplitudes but not phases) which set theory avoids.
The present example of a and I/'. t, both of which necessari-
ly involve measuring (or counting) infinite sets of basis

states associated with randomly distributed impurities,
seems to fit this description. Phase also plays an impor-
tant role in superconductivity, and I have argued else-
where that loss of the phase coherence of extended states
by scattering into localized states can explain the linear
dependence on temperature of the normal state resistivity
of layered high-T, cuprates. '
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