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Incompletely ordered phase in the three-dimensional six-state clock model:
Evidence for an absence of ordered phases of XFcharacter
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By employing our interfacial method, which uses Monte Carlo simulations, we show in various
ways that the three-dimensional six-state clock model has an incompletely ordered phase (IOP) due
to entropy gains where two nearest clock-spin states are dominant with equal weight. Our obtained
results strongly imply its equivalence with the three-state antiferromagnetic Potts model, confirming
the absence of ordered phases of XY'character and the existence of a difterent universality class for
the upper phase transition of the IOP. The disordered flat phase recently found in the restricted
solid-on-solid model is pointed out to be an IOP.

Two-dimensional (2D) clock models have been inten-
sively studied so far, ' but there are few studies on 3D
ones. One seems to expect that high-state clock models
undergo a phase transition from a disordered state to an
intermediate state which shows the same critical behavior
as expected in the XYmodel, like the 2D models with the
state number larger than four. ' However, there are no
grounds for this. Besides the above question, recent stud-
ies on related models such as antiferromagnetic (AF)
Potts models have also stimulated our interest in the 3D
six-state clock (6CL) model with the following questions.
Is it equivalent to the three-state AF Potts (3AFP) model
with ferromagnetic next-nearest neighbor interactions in
three dimensions in the same way as it holds in two di-
mensions? If the answer is yes, then does it undergo a
phase transition belonging to a distinct universality class
as Ueno et al. argued or a phase transition of the XY
universality class as Banaver et al. and Wang, Swend-
son, and Kotecky argued in the 3AFP model?

Recently, we studied the 3D q-state AF Potts models
by developing an interfacial approach by use of Monte
Carlo (MC) simulation. The MC interfacial approach
has been found to have various advantages in studying
properties of ordered phases as well as critical behaviors.
In fact we obtained that each of these Potts models with
q =3—5 undergoes a second-order phase transition while
the q=6 model does not. Further we got strong sugges-
tions that the q= 3 and 4 models are in different univer-
sality classes; the q=5 model is also suggested to be in
some distinct. universality class, which is only a sugges-
tion. Our results are contrary to the theoretical results
obtained by Banavar et al. who argue that equivalence
between the q-state AF Potts model and the n ( =tI —1)
vector model. Very recently, Wang, Swendson and
Kotecky studied the 3AFP model and obtained critical
exponents v and y which are close to the corresponding
values of the n=2 vector model obtained by Le Guillou
and Zinn-Justin. '

The present model is also attractive according to the
suggestion from the studies in the 2D case that it is
closely related to the 3D stacked triangular AF Ising

model with ferromagnetic next-nearest-neighbor interac-
tions. We also studied the latter 2D model, as well as the
3D model by our interfacial method. Our results clearly
revealed the existence of the Kosterlitz-Thouless phase
transition in two dimensions as expected, whereas in
three dimensions they are contrary to the phase transi-
tion of the XYuniversality class. Therefore it is our main
purpose to solve these problems by studying, with our in-
terfacial method, the 6CL model with Hamiltonian

b,F p(T, L)- AL (3)

This is the asymptotic form for L ~ Qo below the critical
point T„where a p(T) becomes a constant (ao &0) and
this ao represents a measure of magnetic stiffness of the
ordered phase. For L ( ~, owing to the finite-size effect
a ( T) depends on T and L in the region of L & g, where g
is the correlation length, as seen from finite-size scaling
bF(T, L)=f(tL'~ ), where t =(T—T, )/T, and
f- ~t~ ', f (x)-x ' for ~x~ )&1(T(T, ) and fo+f,x
for ~x~ &(1. However, since

(t)a/aL)/~t)a/t)t~ = ~t~/vL «1

where J()0) is the nearest-neighbor (NN) coupling con-
stant and 8; =urn; /3 and n; =0, 1, . . . , 5.

Let us briefly introduce our method. The tota/ inter-
facial free energy under boundary conditions (BC) a and
p is given as the excess total free energy between the sys-
tems with an interface and without interface,

bF p(T, L)=F p(T, L) F(T,L) . —

Here, our lattice has L stacked triangular planes besides
the top and bottom boundary planes on which the spins
are fixed according to BC, ct or p. Each triangular plane
is L XL in size along two different lattice axes and is un-
der the periodic BC's. Then the stiffness exponent which
plays a central role in the present study is defined by
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in the critical region, the L dependence of a (T) is almost
negligible in the situation of usual simulations. T, is
given by a ( T, ) =0.

In the case of two successive phase transitions with
critical points T, and Tz( T, ) Tz ) as seen in the stacked
triangular Ising antiferromganet one has two stiffness ex-
ponents a, and a2 for two ordered phases. Naturally
a& &az. Then finite-size scaling yields b.F p(T, L)
=f, (t&L ') and bF s(T,L)=L 'f2(t2L ') with ap-
propriate BC's aP and y5, respectively, for the critical re-
gions at t, and T, .

It is worth noting that our interfacial method has the
excellent advantage (which has been found in this oc-
casion) that the error of b,F ( T) is much smaller than that
of each of the excess energy and entropy b,E ( T), b,S ( T),
i.e.,

f5F(T)f «I5E(T)f, f5S(T)f .

In order to calculate b,F ( T) at T & T„suppose one per-
forms MC simulations from some high-temperature
To( & T, ) down to T at intervals of b, T to get a series of
b.E(T;) with i =0, 1, , n, where T„=T. Since To is
chosen so that bF(TO) =0, b.S (To)=b,E(TO)/To. Then
b,S(T) is given in a simple way by

n

bS(T)=bS(TO)+ g [bE(T, ) bE(T;, )]—/T;
i=1

Eventually 5S( T) becomes the same order of magnitude
as 5E ( T), whereas 5F ( T) is reduced to 10 ' —10 of 5E
depending on n ( T),

I5F ( T) I
& ( To —T) /T 15EI /&n ( T),

where f5Ef is the average of errors. This large reduction
led to the results obtained previously with remarkably
high accuracy, despite relatively small sizes and short
simulation time.

In order to consider the relations between 3D 6CL and
3AFP models, it is useful to make a cell transformation
for the Potts model described by

&pT J]+5(o;,o J ) —J2+5(o;,o~ )

where J, ( )Jz )0) and Jz are NN and next-nearest-
neighbor (NNN) interactions, respectively, and cr; takes
1, 2, and 3. We take a cubic lattice instead of the hexago-
nal one; otherwise one has another model with different
symmetry from the 6CL one. Let us consider cells spins
each of which consists of spins in a cubic of size 2 X 2 X 2.
Each cell has six antiferromagnetic ground states
0=(1,2), 1=(1,3), 2=(2,3), 3=—(2, 1), 4—:(3,1), 5—:(3,2),
where (a, b) is the state in which Potts states a and b oc-
cupy two sublattices. In terms of cell spins &z which are
assumed to take only these six states, one gets interac-
tions V(o'x, o r) with

Let us assume that this picture is still valid for the
3AFP model with J2 =0, as previously studied,
though V(0,0)= V(0, 1)= V(0, 5)=0. The ordered phase
found in it has an incomplete order such that states 2 and
3 occupy one sublattice at random while state 1 occupies
the other sublattice dominantly which we shall represent
(1,2

f
3). This incompletely ordered phase (IOP) is nothing

but a mixed state of (completely) ordered states 0=(1,2)
and 1=(1,3) which are nearest. Then one can expect, in
the 6CL model, such an IOP as state Of 1 where clock
states 0 and 1 are dominant with equal weight. This
phase is also expected to have the same nonintegral
stiffness exponent a =1.25 as obtained in the 3AFP mod-
el.

Now we apply our method to the 6CL model. We im-
pose three different BC's: with one boundary fixed in
state 0, the other is fixed in 1, 2, and 3, respectively, i.e.,
aP=01, 02, 03. If there appears an ordered phase of XY
character its stiffness exponent should be 1 irrespective of
these BC's, aQ, =aQ2 =aQ3 =1. On the other hand, if the
IOP exists then aQ& &0 and aQ2, aQ3 )0 are required for
the existence of state 0

f
1. We have performed MC simu-

lations using a standard single-spin-Aip Metropolis algo-
rithm for the systems of size I.=12, 16, 18, 21, 24 with
5-20X10 MC steps/spin at each measuring tempera-
ture of interval b.T=0.1 (in the unit of J= 1); the thermal
average was done after discarding the initial data of 30%.

When comparing AFQ, with AFQ2 and EFQ3 on their T
dependence we have found distinct differences between
T=2.0 and 3.0 though AFQ2 and EFQ3 show the same be-
havior. It is more clearly seen in th T dependence of the
stiffness exponent in Fig 1. The curves for BC's 02 and
03 behave very similarly making a step at intermediate
temperatures and vanishing at the same critical point
TI =3.03. On the other hand, the curve for BC 01 de-
creases monotonously with T rising and vanishes at
another critical point T~-—2.73. It is remarkable that
a03(T)=1.25 at 2.4& T&2.8, in agreement with the re-
sult for the 3AFP model (a =1.25). We have made
another calculation with different random numbers and
obtained almost the same results as in Fig. 1, with
TI =3.03, TM =2.71 and aQ3 —1.23 at 2.4 ~ T ~ 2.9 except
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V(0, 0) & V(0, 1)= V(0, 5) & V(0, 2)
= V(0,4) & V(0, 3)

-2
0
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3

for the NN's which have the same Z6 symmetry as the
6CL model in Eq. (1).

FIG. 1. Stiffness exponent vs temperature for the systems
with BC's 01 (0 ), 02 (A ), and 03 ( X ).
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that the data of ap at 2.1 & T&2.7 describe a little con-
cave curve contrary to those in Fig. 1. These results
clearly deny the existence of the ordered phase of XY
character and strongly support the existence of the same
IOP as found in the 3AFP model, suggesting the
equivalence of both models.

Let us closely consider the IOP which has ap& &0 and

ap2, ap3 &0. apI &0 means there is no interface tension
between domains which are in NN states; strictly speak-
ing the free energy for a domain wall decreases as the
domain gets larger in size, However, there is interface
tension between domains in the states more distant than
the nearest neighbors. Thus one gets a state distribution
function for the IOP, where two NN states are dominant
as given in Fig. 2. These are in contrast to the properties
of the low-temperature phase (LTP) where only one state
is dominant and ap& =ap2=ap3 d —1. These charac-
teristics are also confirmed in the interface profiles of
each state for the system of L=24 with BC 02 as shown
in Fig. 3. These profiles were taken instantaneously to
avoid the ambiguity that comes from the displacement of
the interface as a whole. Nevertheless, one can consider
that they are almost in thermal equilibrium because the
values of the profiles at each point are the ones averaged
over 24X24 lattice points. At T=2.1 the profiles of
states 0, 1, and 2 cross with each other with a gentle
slope, indicating diffuse interfaces. At T=2.8 where the
IOP exists, there are distinct regions where states 0 and
1, 1 and 2 coexist with equal weight, whereas states 0 and
2 still repel each other. This can be simply explained by
considering the differences in the energy levels of the XX
interactions: the difference between states 0 and 2 is
three times larger than the one between 0 and 1. Thus in
the IOP thermal Auctuation can get over the lowest-
energy barrier but is repelled by the other energy bar-
riers.

In order to see the correlation among spin states in the
IOP we have also calculated the susceptibilities Xp, and

X&~, where

X p=X ' g [(6(o,,a)5(o, ,P) )

G$

0
Ck

(b)

5 0 1 2 3

clock state
5 O

clock state

FIG. 2. State distribution functions (probability I' vs clock
state) expected for the IOP (a) and LTP (b).
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from 0.669 for the XY model. All the results obtained
here strongly imply the equivalence of both models. Fur-
ther, no wonder that the IOP transition is in a distinct
universality class because the IOP is a different type of
order.

It is of considerable interest to consider other phase
transition from the IOP to the LTP. It is remarkable to
observe that this has an extremely large critical region
ranging roughly from T~ to T=1.2, where a becomes 2,
i.e., I)T/TM)0. 44. This extreme width can be ex-
plained by observing in Fig. 2 that the symmetry of the
LTP is not a subgroup of the IOP and vice versa. There-

—(6(o.;,a) ) (5(cr, /3) ) ] . 0 0
0 5 10 15 20 25

BC 00 was imposed because with the periodic BC Auctua-
tion had been too large to get definite results in the IOP
region. With very small absolute values Xp& is negative
and positive at low and high temperatures, respectively,
while it Auctuates weak without regular size dependence
between T=2.4 and 3.0. In contrast X&5 is very large
with the negative sign and strongly size dependent be-
tween T=2.4 and 3.0. These results are all consistent
with the properties and the picture of the IOP given
above.

In order to ensure the equivalence of both the 6CL and
3AFP models, we have estimated critical exponent v for
the IOP transition applying finite-size scaling for AFo3( T)
at 2.6& T & T„and obtained v=0. 57+0.03. This value
is very close to 0.58+0.01 for the 3AFP model and
0.57+0.03 for the 3D stacked triangular AF Ising model
(which has an IOP with a& ——1.25), but obviously far

O. O
0 15 20 25

FIG. 3. Interface profiles along the triangular plane axis z for
the system of I.=24 with BC 02 at T=2.1 (upper) and 2.8
(lower) where the symbols represent the clock states: 0 (& }, 1

( & ), 2 (+},3 (0), 4 ( ), 5 (0). Thin curves are guides to the
eye.
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fore, this transition cannot finish in an infinitesimal
change of the state. In other words, there is a large tem-
perature region where both the phases coexist. This is a
new type of second-order phase transition which does not
undergo the usual symmetry change considered by Lan-
dau.

It was already shown that the phase transitions in the
3D AF Potts models of q=3, 4, and 5 with Jz=0 are
completely due to entropy gains. They exhibit charac-
teristic T dependence of AS starting AS (0 at T=O and
making a sharp peak at some temperature near T, . We
have also obtained in the 6CL model with BC 03 the
same behavior above T=2.4 except that AS&0. As al-
ready suggested the IOP is maintained by the entropy
gained within the region of phase space limited by the
second lowest energy barrier, or the entropy for parti-
tioning the system into domains in a pair of NN states.
Thus the present study has clarified that entropy-gained
phase transitions can occur even in other models than
those which have frustrations' ' or highly degenerate
ground states.

There exist other kinds of IOP's in the four- and five-
state AFP models which have a] —1 ~ 85 and 0.66, respec-
tively. Further, the IOP found here looks very similar
to the disordered Rat (DOF) phase found recently in the
restricted-solid-on-solid model for the roughening of

crystal surfaces. " It is a surface consisting dominantly
of two nearest heights with the average height of a half-
integer which is stabilized by entropy and NNN interac-
tions. The height distribution functions for the rough,
DOF and flat phases correspond well to the state distri-
bution functions for the disordered phase, the IOP, and
the LTP of the 6CL model, respectively (see Fig. 2).
Therefore, the DOF phase itself is an IOP. It is as well
equivalent" to the valence-bond-solid phase in quantum
spin chains. ' In the 3D general 6CL model, since it in-
cludes the ferromagnetic six-state Potts model' that un-
dergoes a first-order transition, the IOP region is expect-
ed to shrink to the first-order transition surface. This is
quite reasonable in view of the role entropy plays in the
temperature-driven first-order transition. In this way, en-
tropy plays a crucial role in IOP's and entropy-gained
phase transitions, and they seem to exist much more than
expected but unexplored.
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