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Mean-field approach to magnetic ordering in highly frustrated pyrochlores
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The metal atoms in the pyrochlore system of compounds ( A2B207, where A and B are metals)

form an infinite three-dimensional network of corner-sharing tetrahedra with cubic symmetry. For
antiferromagnetic nearest-neighbor interactions and only B atoms magnetic, there is a very high de-

gree of frustration, and no long-range order is predicted in the absence of further neighbor interac-

tions. A general form of the mean-field theory is developed for dealing with n-component classical

vector spins on any lattice. Calculations for the pyrochlore problem show that the Fourier modes

of the system are completely degenerate for all wave vectors in the first Brillouin zone. In some

cases further neighbor interactions will select the q=0 or incommensurate modes. A comparison is

made with long-range order known to exist in the pyrochlore form of FeF3. The highly degenerate

ordered phases of more complicated systems, where both A and B atoms are magnetic, will also be

discussed. A comparison is made of the corner-sharing tetrahedral lattice and the more familiar

stacked triangular antiferromagnets, with regard to the degree of frustration in both systems. Re-

sults for the Kagome lattice and the square lattice with crossings, which are the two-dimensional

analogs of the corner-sharing tetrahedral lattice, are also briefly discussed.

INTRODUCTION

Pyrochlores have the chemical composition A2B207
and crystallize in the cubic, face-centered space group
Fd3m, where the A and B atoms are metals located on
the sites 16c and 16d of the space group. Each of the
metal atoms in this system forms an infinite three-
dimensional lattice of corner-sharing tetrahedra. If ei-
ther of the A or B atoms is magnetic then there is a very
high degree of frustration when the nearest-neighbor in-
teractions are antiferromagnetic. A schematic diagram
of the tetrahedra formed by the 16c lattice within a unit
cell is shown in Fig. 1; the 16d sublattice is identical ex-
cept for a spatial displacement of ( —,', —,', —,

' ). The problem
of antiferromagnetic ordering on this lattice was first con-
sidered by Anderson, ' who predicted on qualitative
grounds a very high ground-state degeneracy and that no
long-range order would exist at any temperature for Ising
spins. Villain reached basically the same conclusion for
Heisenberg spins, calling the system a "cooperative
paramagnet. "

This interesting lattice is also realized in spinel com-
pounds, AB204 at the B site, and in the cubic Laves
phase RMnz where the Mn atoms lie on the 16d site.
Many of these systems undergo lattice distortions at the
magnetic phase transition which will lift the degeneracy
of the magnetic ground state. Neutron-diffraction experi-
ments on a large number of the spinel compounds and
YMn2 (Ref. 4) have shown significant diffuse scattering
over a wide temperature range above T, and complex
magnetic order below T„which are both indications of
magnetic frustration.

Very little is known about magnetic ordering in pyro-
chlore antiferrornagnets, in fact, FeF3 is the only such
compound for which a low-temperature magnetic struc-

ture has been observed. Here the low-temperature phase
consists of four sublattices oriented along the four [111]
directions. Thus any two sublattices are oriented at 109'
from each other. Signs of frustration are evident at tem-
peratures on the order of 10T, where the susceptibility
shows strong deviations from Curie-Weiss behavior.

Heat-capacity measurements for the series of
compounds R2M207 (R = rare earth,
M=Ti, Sn, Zr, —,'IGa +Sb ]) show transitions to long-

range order in only a few cases, and then only at tempera-
tures below 2 K. The remaining systems show broad
features in the heat capacity which may be due to the on-
set of short-range order over a wide temperature range.
It is reasonable to suspect that antiferromagnetic cou-
pling between the rare-earth atoms, and therefore frustra-
tion, are in some part responsible for the observed effects.

A large amount of work has also been done on the re-
lated series of compounds R2M207 [R = rare earth,
M=Mo (Ref. 7), Mn (Ref. 8)]. Magnetic measurements
for the Mo series show a wide range of magnetic behav-
ior, in particular Nd2Mo207 and Sm2Mo207 have corn-
plex magnetization curves with two apparent critical
temperatures. For R =Tb, Dy, Ho, Er, Tm, Yb, and
Y, the susceptibility data indicate strong deviations from
Curie-Weiss behavior and no evidence for long-range or-
der down to 4 K. In fact Y2Mo207 seems to exhibit
spin-glass-like behavior even though there is no evidence
for structural disorder. ' Recent susceptibility and
neutron-diffraction data for Tb2Mo2O7 (Ref. 11) are also
reminiscent of spin glasses.

All of the RzMn207 compounds appear to be fer-
romagnetic from high-field susceptibility data; however,
it is still of interest to discuss the possibility of antiferro-
magnetic nearest-neighbor interactions for the Mn sub-
lattice. In fact low-field susceptibility data for Y2Mn207
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(1.7)
or

p;=C; 'exp(A, S, ), (2.5b)

thus

(1.8)

plJI
eb p 1, p~2. (1.9)

The constraint function is now defined as the ratio of the
system energy per unit cell, to its basis energy

where A, ; and A; are Lagrange multipliers for the con-
straints (2.4a) and (2.4b), respectively, and C; is deter-
mined by the normalization condition (2.4a). For n-

component classical spins the trace has the form of an in-
tegral over the surface of an n-dimensional hypersphere,
thus

C;(A;)= f dQexp(A; S;)

F, =
—1 p2.

p 1
(1.10) (2') +'I ( A;)

(2.6)

In general, F, ranges from —1 (nonfrustrated) to + 1 (ful-
ly frustrated). For the model of p antiferromagnetically
coupled sublattices, the degree of frustration increases
with p. According to this definition the pyrochlore sys-
tem (p =4, F, = —

—,
'

) is more frustrated than the triangu-
lar lattice systems (p =3, F, = —

—,
' ). The constraint func-

tion has been discussed in more general terms by
Lacorre however, this measure of frustration is only
relevant to the q=o mode of the system. To analyze
more complicated structures it is necessary to perform a
more elaborate calculation which considers all possible
modes of the system in a systematic manner. The ap-
propriate formalism for such a calculation is the Landau
expansion.

II. MEAN-FIELD- THEORY FORMALISM

I,+, (A;)
I (A;)

(2.7a)

or

where I ( A; ) is a modified Bessel function, A, =
I A; I

and
v=n/2 —1. It is also useful to obtain an expression for
the order parameters 8;

Tr(p, S, )=C, 'f dQS, exp(A;. S;)

V~C;(A;)
C;(A;)

BC;( A;)

C;(A, )

We consider a system with the Hamiltonian

S=—
—,
' $ J;JS;.S —H. $S;,

l7 J
(2.1)

I +, (A, )

I (A;)
(2.7b)

where the J; are isotropic exchange interactions (J)0
corresponds to ferromagnetic coupling), H is a uniform
external field, and S; is an n component unit spin at lat-
tice site i. The stability of the system is governed by the
free energy which has the form

The A s can be interpreted as local effective fields acting
on the spins and are collinear with the order parameters
8, Substituting expressions (2.4), (2.5), and (2.7) into
(2.2), one obtains an expression for the free energy of the
system in terms of the order parameters 8;,

F=Tr(p&)+ T Tr(plnp) . (2.2) F(T,H)= —
—,
' g J;,8; BJ —H g 8;

Here p is the full density matrix of the system which,
within the mean-field approximation, is approximated by
a product of single spin density matrices,

+ T g (B,A(B, ) —In{C[A(B, )].] ), (2.8)

(2.3) A(B;)= A; . (2.9)

Tr(p, ) =1,
Tr(p;S; ) =8;,

(2.4a)

(2.4b)

Following the procedure of Harris, Mouritson, and Ber-
linsky, ' we substitute (2.3) into (2.2) and minimize with
respect to the p, , subject to the constraints (which keep
the internal energy fixed)

VBF(T,H)= —M, 8, +TA;=0,
i

(2.10)

The function A(B, ) is the inverse of (2.7b). The stability
conditions for the system can be obtained by minimizing
F(T,H) with respect to the 8 s or the A, 's. For simpli-
city we choose the former option, yielding the mean-field
equations for this problem,

obtaining M, =gJ;8 +H.
J

(2.11)

Trl p;Inp, . —p;(A, , + A, -S;)]=0a
Bp;

(2.5a) Small B, expansions of the entropy term in (2.8) and rela-
tions (2.7) and (2.9) will be useful for a Landau expansion
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—S, =ln

8(A)= — +2
n (n+2) n (n+2)(n+4)

A (5n+12)
n (n+2) (n+4)(n+6)

&+ n 8 + n (n+8)B
n +2 (n+2) (n+4)

n (n +14n+120)8
(n+2) (n+4)(n+6)
1(n/2) nB; n 8;+ —+

2 4(n +2)

(2.12)

(2.13)

f(T,H)=i Tl —QUOH %0
ai

+,' g g@' @' (nT —
A, ')

q

The convention that indices (ab ) label sublattices and in-

dices (ijkl) label the normal modes will be used. Thus
U" is the ath component of the ith eigenvector of J'.
In general, diagonalizing the second-order term has the
efFect of complicating the form of the fourth-order term
in the expansion

n (n+8)8;+ + 0 ~ ~

6(n+2) (n+4)
(2.14) (q) ij kl

Ual U aJ Uak U a1
q& q2 'q3 q4

In order to take advantage of the translational symmetry
of the lattice, we also expand the order parameters B, in
terms of Fourier components. When considering non-
Bravias lattices, it is convenient to label the spins in
terms of unit-cell coordinates and a sublattice index
within the unit cell,

(2.20)

Obviously the characteristic physics of the system is con-
tained in the A,q and the U„".The first ordered state of
the system will occur at a temperature

B;=QBqexp(iq. R, ),
q

(2.15)
T, =—maxI A,

' I,1

n q, i
(2.21)

qbJg" =—g Jq exp( —iq. R, ) .
V

q

(2 16) where max I I indicates a global maximum for all i and q.

I( T, H ) /N =f ( T, H )

&(n /2)=@Tin
2&~"

—gH Bo

Here i and j refer to unit cells and a and b refer to sublat-
tices. To obtain the Landau theory we substitute (2.14),
(2.15), and (2.16) into (2.8). Keeping terms up to fourth
order in the order parameters, the free energy per unit
cell is

III. APPLICATH3N TQ PYRDCHLQRKS

A. The pyrochlore lattice

rhoma 0 & & ', cubic
2 2 a

In order to simplify the calculations somewhat, the sys-

tem will be described in a nonstandard rhombohedral set-

ting with a unit cell having one-quarter the volume of the
cubic cell. The lattice vectors of the two systems are re-
lated by

+ ] y y Ba Bb (nTgab . Jab )

q ab C

0 —' b
1 1 0 ic

(3.1)

where

ql, q2, q3, q4

r X (Bq Bq )(Bq 'Bq )
a [q)

&(qi+ q2+ q3+ q4)

(2.17)

for a system with X unit cells and p spins per unit cell,
and 6' is a Kronecker delta. Diagonalizing the second-
order term requires transforming to normal modes of the
system

The advantage of the rhombohedral basis is that there are
only eight metal atoms per unit cell (four of the type 16c
and four of the type 16d), as opposed to 32 per cell in the
cubic system. The corresponding space group is R3m,
which is a subgroup of Fd3m. Thus the rhombohedral
representation has the disadvantage that some of the in-
herent symmetry is hidden. Table I shows a list of metal
positions for both systems along with their nearest neigh-
bors (NN's) listed by atom number. The factor of 2 in
front of each list of NN's indicates that there are two of
each type of NN, which are related by spatial inversion.

Ba—y Uai@i (2.18) B. The general NN coupling matrix

JabUbi gi Uai

b

(2.19)

where Uq is a unitary matrix that diagonalizes Jq with ei-

genvalues A,

From the Fourier transform of (2.16) and the informa-
tion in Table I, one can calculate the matrix Jz for the
general pyrochlore problem with nearest-neighbor in-

teractions. We first define
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TABLE I. Pyrochlore metal atom positions in rhombohedral and cubic basis, nearest neighbors are
listed by atom number. FC stands for the face-centering operation (0,0,0;0,—', —'; —',0, —'; —,', —', 0).

Site

Atom

No. Rhom

Position

Cubic Nearest neighbors

16c
16c

16c

16c

16d

16d

16d

(o,o,o)

(-,', o, o)

(o, ~,0)

(0,0, —')

(0,0,0)+FC
1 1 )+FC

(-,',o, —,')+Fc
(-,', —,',o)+Fc

2X(2, 3,4, 6, 7, 8)
2 X(1,3,4, 5, 7, 8)

2 X(1,2, 4, 5, 6, 8)

2 X(1,2, 3, 5, 6, 7)

2X(2, 3,4, 6, 7, 8)

2X(1,3,4, 5, 7, 8)

2X(1,2, 4, 5, 6, 8)

2X(1,2, 3, 5, 6, 7)

cos(q )

cos(q, —
q ) cos(q, —

q )

s(q —q, )

0

cos(q„)0

cos(q, )
=2intra cos( q )

cos(q, )

0 cos(q„—q )

cos(q )

cos(q, )

cos(q~ —
q, )

cos(q, —
q )inter cos(q, )

cos(q )cos(q„—q~ ) cos(q )

cos(q„—q ) 0 co

cos(q, —q, ) cos(q» —q, )

cos(q —q, ) cos(q, —q, )

0 cos(q, )

which are, respectively, the intrasublattice and the inter-
sublattice couplings matrices for the 16c and the 16d
sites. The full coupling matrix now has the form

J
1 ~intra J12 +inter

Jab (3.2)
12 +inter J2 ~intra

we have

A, '=A, = —2Jq q 1

Aq=2Ji(1 —v'1+Q ),
A, =2J, (1+&1+Q ) .

(4.3)

abJq =J,8;„„,,

which can be diagonalized explicitly. By defining

Q =
—,'[cos(2q„)+cos(2q )+cos(2q, )

+cos(2q„—2q ) +cos(2q~ —2q, )

+cos(2q, —2q„)],

(4.1)

(4.2)

where J
&

and Jz are couplings for metal atoms within the
16c and 16d sublattices, respectively, and J&2 is the cou-
pling between 16c and 16d.

In the next section systems will be considered in which
only one of the metal atoms is magnetic. This is applic-
able to materials such as FeF3, YzMoz07, ' and
Y2Mnz07, where the yttrium atoms are diamagnetic.

IV. ONK MAGNETIC SUBLATTICK
(ONE OF A OR B IS MAGNETIC)

A. Ordering wave vectors

For this model there are four magnetic atoms per unit
cell and

Note that A,
' and A, are completely independent of q and

that these are the maximal eigenvalues for the system
when J, (0. Dispersion curves for the four modes are
shown in Fig. 2, from which one can see that mode 3 is
also degenerate with 1 and 2 at q=O. Bertaut was aware
of this high degree of degeneracy but only along certain
high symmetry directions in q space. ' Thus mean-field
theory predicts a special temperature, T, =

—,
'

~ Ji ~
below

which the system preferentially samples modes 1 and 2,
i.e., a phase space with half the dimensionality of the
high-temperature phase space. The heat capacity for this
system should show an entropy change of k ln2 over a
rather broad temperature range. Whether or not this en-
tropy change will appear in the form of a Schottky anom-
aly is not yet clear.

In light of this information one can see that any sort of
long-range order [within the mean-field (MF) approxima-
tion] in this system can only arise from the presence of
further neighbor interactions, such as second neighbor
exchange, dipole forces, or perhaps an external field. It is
therefore interesting to examine the eAects of further
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0.0— 0.0—

—5.0—

—10.0
0 1,0 1,0

q/2rr
1,0

5.0

FICz. 2. Dispersion curves along certain symmetry directions,
for one-sublattice pyrochlore systems with only NN exchange
interactions. The unstable or critical modes will have the larg-
est eigenvalue A,q which is measured in units of J& which is the
NN coupling constant.

0.0—
/

/
J

/
/

/
J

/

/
r

r

neighbor interactions by considering the first four coordi-
nation shells. Table II shows the type of neighbors and
their distances for atom 1. The neighbors for atoms 2, 3,
and 4 are easily obtained by permuting atom labels. TheJ' matrix now becomes significantly more complicated
and the matrix elements are written out explicitly in Ap-
pendix A. In order to get a qualitative idea of the effects
of these weak further neighbor interactions, it is useful to
look at how the eigenvalues for the four modes behave
for the six exchange models listed in Table III. Disper-
sion curves for these models are shown in Figs. 3, 4, and
5. Model I, will order in an incommensurate phase with
wave vector (qo, —qo, 0) or (qo, qo, 2qo), where qo is an
irrational function of J, /J2. By permuting the indices
one can see that the two points above are each sixfold de-
generate, making a total of 12 independent ordering wave
vectors in the first zone. Models Ib and II, order with
wave vector (0,0,0), where three out of the four modes are
degenerate. This corresponds to the type of ordering ob-
served in FeF3, as determined by neutron diffraction,
which will be discussed further in the next section. The
last three models have critical modes which are disper-
sionless along certain symmetry directions. Thus no
long-range order is expected for these models (within the
MF approximation).

Figures 6(a)—6(c) show the ordering wave vectors in the

—10.0
0

(b)

1,0 1,0
q/2rr

(q, 0,0) (q, q, 0) (q, —q, 0) (q, q+ "/2, /q)

0.0—

5.0

FICx. 3. As in Fig. 2 with the addition of a small second-
neighbor interaction. J2 )0 in a and J2 (0 in b.

Shell

No. Neighbors Distance/a fhQm

Coupling

constant

TABLE II. Neighbors for one-sublattice pyrochlores in the
first four coordination shells with distances (in units of rhom-
bohedral cell edge) and exchange constants.

0.0—

(b)

/
/

/
/

/
J

/

r
r

I
/

J
J

I
/

J
/

I
/

1

3

4

2(2,3,4)

4(2,3,4)

12(1)

4(2,3,4)

1/2
&3/2
1

&5/2

J;
J2
J3
J4

1,0 1,0
q/2rr

1,0

FIG. 4. As in Fig. 2 with the addition of a small third-
neighbor interaction. J3 )0 in a and J3 (0 in b.
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TABLE III. Six different exchange models for which dispersion curves are shown in Figs. 3, 4, and 5.

Model Fig.

I.
Ib

II,
IIb

III,
IIIb

&0
&0
0
0
0
0

0
0
&0
&0
0
0

0
0
0
0
&0
&0

3(a)

3(b)

4(a)

4(b)

5(a)

S(b)

coupling constant space J2 and J3 for J& = —1 and three
different choices of J4. In the (2q, q, q) and (O, q, q) re-
gions the critical modes are, in general, incommensurate
with finite degeneracy. Dotted lines indicate regions
where the system is continuously unstable along certain
directions in q space with infinite degeneracy and there-
fore no long-range order. Note that for consistency all q
vectors discussed in this work are in the rhombohedral
basis. Table IV lists all ordering wave vectors in both
systems, as well as the associated multiplicities required
by cubic symmetry. Unstable modes characterized by
q=(2q, q, q ) are actually 12-fold degenerate, correspond-
ing to the star of (q, q, O) directions in the cubic basis, i.e.,
directions (2q, q, q ) and (0,q, —

q ) in the rhombohedral
basis are equivalent by symmetry.

T, = ——2(J)+2J2 —6J3+2J4) .
n

(4.4)

It is important to remember that J, (0, and one expects
that J, ~

&) ~J2~ and J, ~
))

~
J3~. Substituting the infor-

mation in Table V into expression (2.20) and considering
only the q=o terms in the summations, we obtain the
Landau free energy for this model

f=pp 2H'0 4+ 2rpm + 2r~C

+ —,'u[(m +@~) +4(a +b +c )]

+ —,
'

U [(m +44 )'+ l 2( m +4~ )( a 2+ 6 2+ c 2
)

B. Landau theory for q=0 (one magnetic sublattice)

The normal modes of Jo are listed in Table V and the
critical temperature at H =0 is

(q, o,o) (q.q, o) (q, —q.o) (q.q+ "/~ o)
where

+48abc ]+ (4.5)

0,0—

—5.0—

C

/
/

/
/

/

I (n/2)pp=4T ln

rp=n(T —T, ),
r, =n(T+3T, )

—48J3,
Tn

4(n +2)
Tn (n+8)

16n(n+2) (n+4)
2 @2+q)2+ q 2

a =Wi.@2+@3 @4,

~ =~'i.@3++'2.~'4

C =@i.@4+@2.N3 .

(4.6)

(4.7a)

(4.7b)

(4.8a)

(4.8b)

(4.9)

(4.10a)

(4.10b)

(4.10c)

(b)
—10.0 —'

0
l

1,0 1,0
q/2 sr

1,0

FIG. 5. As in Fig. 2 with the addition of a small fourth-
neighbor interaction. J4 & 0 ln Q and J4 (0 in 6.

Multiplicity

(0,0,0)
(O, q, q)
(2q, q, q )

(O, q, —q)
(0, 1/2, 1/2)

(0,0,0)
(2q, 0,0)
(0,2q, 2q )

(0, —2q, 2q )

(1,0,0)

TABLE IV. Relevant q vectors in rhombohedral and cubic
basis and their multiplicities.

Rhombohedral Cubic
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0.5
(~) &4=0

TABLE V. Eigenvectors and eigenvalues of the coupling ma-

trix Jo for one-sublattice pyrochlores.

0 0

(2q, q, q)

, o,o)

Eigenvectors

2(1 1 1 1)

+ =-'(1,—1, 1, —1)

%3=—'(1,—1, —1, 1)

%,= —,'(1, 1, 1, 1)

Eigenvalues

2( J& +2J2 6J3 +2J4 )

—2(J, +2Jq —6J3+2J4)
2( J& +2J2 6J3 +2J4 )

6(J(+2Jq+2J3+2J4)

—0.5—0.5

q, q,

0.5

One can see right away that the direction of @4 is deter-
mined by the external field and minimizing with respect
to a, b, and c gives the conditions

a =b =c =0. (4.11)

0.5

0.0
02

, o)

Equations (4.11) and (4.9) impose four constraints on
W&, @2, and 4?3 leaving 3n —4 degrees of freedom. Thus
there is no restriction on the relative magnitudes of
@&, 4'2, and @3 (which for n =3 corresponds to the inter-
nal two-dimensional degeneracy mentioned in Sec. I) and
also no restriction that one of the modes must be parallel
to @4 for n ~ 3. Also note that only ro is critical and not
r, . The sixth-order term has been included in order to
check for tricritical behavior. Setting @4 parallel to H
and imposing condition (4.11), the Landau free energy is
expressed in terms of the two variables m and N4, where
m should be interpreted as the order parameter for the
antiferromagnetism and @4 the higher energy noncritical
ferromagnetic mode that couples to the external field

f=go 2HC&4+ ,'(—rom +r, @—4)+,'u(m +—44)
—0.5—0.5 0.5 + —,'v(m +4& ) +4 (4.12)

0.5 \ I

with equilibrium conditions

[ro+u(m +44)+v(m +%4) ]m =0,
[r, +u(m +@4)+v(m +@4) ]&54=2H .

(4.13)

(4.14)
(c) g, = —0.05

('Zq, q, q)

/
/

/
/

/
/

/
/

/
/

/
I

o.o — (o, '/. , '/. ) (0,0,0)

N =2 1—H
4

1 r& r& r) r)

and from (4.13) and (4.14) in the ordered regime

2H
(r) ro )

H
2(nT, —1273)

In the paramagnetic region where m =0 we have
2 4

u 2H v 2H
(4.15)

(4.16)

—0.5—0.5
I I

0.0
~s/1~ ii

0.5

which is independent of temperature and exact to all or-
ders in (m +4'4) within the mean-field approximation as
explained in more detail in Appendix B. We have also
defined h which is the reduced field for the system. When
(4.16) is substituted into (4.12) the second-and fourth-
order coefficients in m are, respectively,

FIG. 6. Ordering wave vectors in the coupling parameter
space J3 and J2 with J, = —1 and J4=0 in a, J4=0.05 in b,
and J4= —0.05 in c. Along the dashed line the system is con-
tinuously degenerate and critical along the (q, q+~/2, m/2)
direction.

—,'(ro+uh +vh ),
—,'(u+2vh2) .

(4.17)

(4.18)

The fourth-order coefficient is positive definite and there-
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fore no tricritical point exists within the mean-field ap-
proximation. Setting (4.17) equal to zero determines a
line of second-order phase transitions in the (H, T ) plane.
Neglecting the v term we have

1/2
T, —T n+2

T tl
(4.19)h=2

which presumably saturates at low temperature due to
the higher-order terms in the Landau expansion. At zero
temperature

3.0

2.0

1.0

0.0

+8 =g@ =m +@ =4 (4.20)
—2.0

h, =2, (4.21a)

or

Substituting (4.16) into (4.20) and setting m =0 defines
the critical field at zero temperature

—3.0
0.0 2.0

FIG. 7. {H,T) phase diagram for the q=0 systems with
J& (0. h is defined in (4.16), T, in (4.4), and m is the order pa-
rameter for modes 1, 2, and 3. The solid line indicates a line of
second-order phase transitions.

H, =4(nT, —12J3) . (4.21b)

Figure 7 shows the mean-field phase diagram for q=0
systems.

C. Neutron scattering for q=0 systems

The general structure factor for magnetic neutron
scattering at reciprocal-lattice point (h, k, l ) is

Fl,„,= g S,~exp[2~i(hx +ky + lz ) ], (4.22)

where S,~=S,—e(e S) is the component of the spin, at
( xy, z), perpendicular to the scattering vector (h, k, l),
and c is the unit scattering vector. Working with the cu-
bic unit cell, the structure factor for one sublattice pyro-
chlores with a q =0 magnetic structure is

F~kl = S,~+Sz~exp i (@+1—) +S3~exp i (l +h )
—+S4~exp i—(h +k )

X(1+exp[iv(k+l )]+exp[in(l+h )]+exp[in(h+k)]) . (4.23)

S& along (1, 1, 1),
Sz along ( —1, 1, 1),
S3 along (1,—1, 1), (4.24)

S4 along (1, 1, —1) .
The magnetic (1,1,1) refiection in FeF3 was absent which
means for a powder that F& & &

=F &» =F
=F»

&
=O. One can solve this system of equations ex-

plicitly and show that indeed (4.24) is the only possible
spin structure. In terms of the normal modes we have

—(m, 0,0),1

3

Nz= —(O, m, O),1

3
(4.25)

—(0,0, m),1

3

The second factor is a result of face centering and im-
poses the usual constraints on h, k, and I. Ferry et al.
have proposed the following spin structure for FeF3
based on powder diffraction:

which is consistent with but much more restrictive than
(4.9), (4.10), and (4.11). There must therefore be some an-
isotropy in FeF3 that breaks the five-dimensional degen-
eracy of the ordered state predicted by mean-field theory.
This uniaxial anisotropy is consistent with local site sym-
metry of the Fe ions, as dictated by the space-group
symmetry. In principle, one should be able to determine
from powder neutron diffraction the magnitudes and
directions of @„@2,and @3for any q =0 system.

D. Kagome lattice and square lattice with crossings (Ref. 19)

By removing the third axis in the rhombohedral
description of the corner-sharing tetrahedral lattice, one
obtains the corresponding two-dimensional analog with
basis vectors oriented at 60 and atoms at (0,0), ( —,', 0), and

(0, —, ) which is the Kagome lattice. The corner-sharing
tetrahedral lattice can be generated by stacking kagome
lattices along a (111)direction. The coupling matrix is a
3 X 3 version of 8;„„,with eigenvalues
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X,'= —2J, ,

A, =J, (1—&3+Q'),
k =J,(1+&3+Q'),
Q'= [cos(2q )+cos(2q» )+cos(2q„—2q» )] .

(4.26)

(4.27)

A,
' = —2J
q

A, =2J[1+cos(2q„)+cos(2q )], (4.29)

This is virtually the same as the three-dimensional (3D)
case except that the q-independent mode is now nonde-
generate.

If one looks at the corner-sharing tetrahedral lattice
along one of cubic (100) directions, the square lattice with
crossings appears. This is now a two sublattice system
with the following coupling matrix and eigenvalues:

cos(2q„) 2 cos(q„)cos(q» )

J b=2J, (4 28)2cos(q )cos(q») cos(2q )

incommensurate phases. The dotted lines along J,2 =0 in
both diagrams indicate regions where the whole zone is
degenerate. This stems from the fact that the two sublat-
tices are decoupled and thus have the q-independent ei-
genvalues shown in (4.3). Of particular interest is the
large region in Fig. 8(b) where the system is degenerate
along the (O, q, q) direction. Again one expects no long-
range order for such model systems.

J, +J,
2

+J)2

j. /2

(5.1)

(5.2)

1.0

B. Landau theory for q =0 (two magnetic sublattices)

Again we list the eigenvalues and eigenvectors of Jo" in
Table VI where

yet again we have a completly dispersionless mode.
Thus no long-range order is predicted on either lattice

within mean-field theory. These results are not surprising
as the Kagome lattice can be thought of as a corner-
sharing triangular lattice, which is a natural two-
dimensional (2D) extension of the 3D corner-sharing
tetrahedral lattice. Similarly the square lattice with
crossings can be thought of as a 2D sheet of corner-
sharing tetrahedra, and is therefore just as frustrated as
the 3D analog. It seems that antiferromagnets, formed
by triangles or tetrahedra that only shape corners, are so
sparsely connected that magnetic correlations can only
communicate over short distances. Edge-sharing analogs
would be the regular triangular lattice (edge-sharing tri-
angles) and the face-centered-cubic lattice (edge-sharing
tetrahedra), which both exhibit long-range order for NN
antiferromagnetic interactions. This is understandable
since edge sharing allows a higher degree of connectivity.
Liebmann has discussed both of these 2D lattices in more
detail in his book. ' He finds very high ground-state de-
generacies and no long-range order for antiferromagnetic
Ising models on both lattices.

V. TWO MAGNETIC SUBLATTICES
(BOTH A AND BARE MAGNETIC)

A. Orderiag wave vectors

(o,o,o)

—1.0—1.0 0.0
3,2 (K)

1.0
JI ———1

(a,o, o)

0.0

- (a) ~, =O

1.0

For this problem we are dealing with an 8 X 8 coupling
matrix as defined in (3.2) and a three-dimensional cou-
pling parameter space spanned by J&, J2, and J&2. The
efFects of further neighbor interactions will not be con-
sidered here. In general the magnetic species on the two
sublattices will have difFerent moments which can be ab-
sorbed into the J's in such a way that all spins are still
unit vectors. Figures 8(a) and 8(b) show maps in parame-
ter space of J2 and J&2 for J& =0 and J, = —1, respective-
ly, which covers all cases of interest. The phase diagram
is seen to be invariant under changes in the sign of J,2.
As before there are large regions where the q=0 mode
becomes ordered below T„and also regions of (2q, q, q )

—1.0—1.0

No Disp

I

I

I

I

I

I

I

I

0.0
&i2/I& il

No Di.sp.

1.0

FIG. 8. Ordering wave vectors in the coupling parameter
space J2 and J» with JI =0 in a and J, = —1 in b for two-
sublattice pyrochlores with NN interactions. Along the dashed
line the system is continuously degenerate and critical
throughout the whole zone. "No Disp. " indicates that the sys-
tem is continuously degenerate along the (O, q, q ) directions.



43 MEAN-FIELD APPROACH TO MAGNETIC ORDERING IN. . . 875

Eigenvectors Eigen values

1 1 1 1
E, C, E, C, —,—,—,—

E C C
3(a+P)

TABLE VI. Eigenvectors and eigenvalues of the coupling
matrix Jo~ for two-sublattice pyrochlores. a, P, and e are
defined in the text.

~2 q 2+q 2+q 2+@2 @2+ 2

~2 (p2+ q)2+ (p2+ @2 @2+m 2

2 q 2+@2+q 2
3 4 5 ~

2 C 2+q)2+g 2

=sinh[2 1n(E)],1 2 1
2

(5.7a)

(5.7b)

(5.7c)

(5.7d)

(5.8)
1 1 1 1

8 C C

1 1 1 1
E C, C) C.

E 8 E,

1 1 1 1

1 1 1 1
~9 ~7~& 7 N 7

E E C E

1 1 1 1

C C C

1 1 1 1

C F E F

1 1 1 1
C. CC. E,

E F C

1/2

3(a —P)

—(a+p)

—(a+P)

—(a+p)

—(a —P)

—(a —P)

—(a —P)

~0 @1 @2+@3@6+@4@7+@5@8

g, =e, e,+e, e3+e4 @8+&5.47,
6 =e e +e @4+43 48+45.46,
53=@1.@8+N2 W5+ @3 N7+ @4 46,
a1 =@1-@3+44.N5,

a2 =@1.@4+@3.4?5,

a3 =@1@5+4?3 W4,

b =@ @6+@7.N8,

b2 =@2-@7+@6.@8,

b =e e8+e, -e7.

(5.9a)

(5.9b)

(5.9c)

(5.9d)

(5.10a)

(5.10b)

(5.10c)

(5.11a)

(5.11b)

(5.11c)

We first minimize with respect to the 5's, a' s, and b's ob-
taining a set of seven conditions on the relative angles of
the normal modes and a greatly simplified form for the
free energy

c. = +

thus

J12
(5.3)

5,=—(M,' —M', ),S
(5.12)

P 1 2 1
E +—

2
=cosh(2ln(E)) .J„2 (5.4)

5; =S(b; —a, ), i=1.. 3 (5.13)

The normalization factor for all eigenvectors is
1/2

J12
2

a, +b, =0, i =1..3

5) f(T, H)=1Mo —2~
P+J,2

(5.14)

' 1/2 ' 1/2
124, +

3

+ g [(5, +2Sa;) +(5; 2Sb,)—
+2(a, +b;) ] (5.6)

41 and %2 can be interpreted as ferromagnetic and fer-
rimagnetic modes of the system, respectively, where the
intrasublattice alignment is ferromagnetic. 43, %4, and
%5 correspond to degenerate modes where the 3 sublat-
tice is aligned ferromagnetically with the 8 sublattice,
with intrasublattice coupling being antiferromagnetic.

7 and %8 have antiferromagnetic intersublattice
and intrasublat tice alignment.

The fourth-order term in the Landau free energy has
the general form

J2
—'(M2+M ) +(5o+SM1) +(6o—SM2)

+ ,'(r, m1+r—2m2+r', @1+r 242)

~ (m2+m2+C2+q)2)2

(5.15)

where

(5.16a)

(5.16b)

(5.16c)

(5.16d)

(5.17a)

(5.17b)

r, =—n(T T,') =nT+a+P—,

r2=n(T T, )=nT+a —P—,
r', =n(T T,')=nT —3(a+—P),
r2 =n( T T, ') =nT —3(a —P), —
T'= —3T'

C C

T2 —3T2
C C
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As in the one-sublattice problem, there are no condi-
tions determining the relative magnitudes of modes 3, 4,
and 5, or modes 6, 7, and 8. Thus when either of m

&
or

m2 are magnetized, the internal two-dimensional degen-
eracy discussed in Sec. I will be present. Which r's are
critical depends on the signs of a and p and also on
whether or not lal & apl. Figure 9 shows which regions
of a,P space stabilize the q=0 modes. One can see that,
for a &0 in a region where lal ) lpl the system is incom-
mensurate or dispersionless. This leaves three essentially
different cases to consider.

Case 1: lal & lPl, P)0. Modes Ni and mz order
spontaneously. The order of the T, 's is determined by u,

0.2

0&T,'&T,' for p&a& ——, (5.18a)
0..0 I I ~ I t I I

0.0 0.5 1.0 1.5

0 & T' & T for ——& a ) —p .C C (5.18b)

Case 2: lal & lpl, p&0. Modes 42 and m, order
spontaneously. The order of the T, 's is determined by a,

FIG. 10. Unusual temperature dependence of the uniform
magnetization [calculated numerically from (2.10)] of a two-
sublattice system with exchange parameters J, = —1, J,=

—,',
and J» = —1, corresponding to case 2 in Sec. V B.

0&T,'&T,' for —p&a& —, (5.19a)

(5.19b)

Case 3: lal ) lpga, a) 1. Modes @, and N2 order spon-
taneously. The order of the T, 's is determined by the
sign of P,

0& T,'& T, ' for p&0,
0 & T,' & T,' for p & 0 .

(5.20a)

(5.20b)

10.0

(o,o,o) (o,o, o)

0.0—

—5.0

—10.0—10.0 —5.0 5,0 10.0

FIG. 9. Similar to Fig. 8 except parametrized in terms of o.'

and P [defined in (5.1) and (5.2)] with l J,2 l

= 1.

In general, then, all these systems will have two transi-
tion temperatures, and thus rather complex behavior can
be expected from magnetization and susceptibility mea-
surements. As an example we have calculated the
thermal evolution of the uniform magnetization at zero
field by solving the mean-field equations (2.10) numerical-
ly. Figure 10 shows the results for J, = —1, J2= —,', and

J&z= —1, which corresponds to case 2 with T, ') T,'. It
is interesting to note that the numerical solutions of the
mean-field equations (2.10) also show that the value of E

(which determines the relative magnetizations of the A
and 8 sublattices) deviates very slightly from the value
given in (5.3) and is temperature dependant.

CONCLUSIONS

The prevailing theme throughout this work has been
the unusually high degree of degeneracy in the ordered
phases of pyrochlores. These degeneracies are of two
sorts, the first being the internal two-dimensional degen-
eracy with respect to the relative orientations of the sub-
lattices for q=0 systems. In the Landau theory this de-
generacy was revealed in the indeterminacy of the rela-
tive magnitudes of the three ordering modes @&, @z, and
4 3 This sort of degeneracy is also present in type-I fcc
antiferromagnets' but not in triangular systems at zero
field. Mean-field analysis of the classical XY model on a
triangular lattice and classical dipoles on a honeycomb
lattice ' also show a one-dimensional internal degeneracy
with respect to the relative orientations of the ordering
sublattices.

The other type of degeneracy is the complete q in-
dependence of two of the eigenvalues of the coupling ma-
trix for the NN one sublattice model. This means that
for every possible q in the zone, there are two modes with
the same free-energy independent of q (within the MF ap-
proximation). This degeneracy is macroscopic, and no
long-range order is predicted within the MF approxima-
tion. For three-dimensional systems such dispersionless
modes over the whole zone are so far unique to the
corner-sharing tetrahedral lattice. No such degeneracy
occurs for stacked triangular lattice systems. It is in-
teresting to note that Rastelli and Tassi have found that
the so-called "rhombohedral antiferromagnet" is degen-
erate along certain lines in q space, which they call "de-
generation lines. " A similar sort of degeneracy occurs in
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the fcc Ising antiferromagnet with NN interactions.
Further neighbor interactions in the pyrochlore system
will in general select the q =0 or incommensurate phases.
The same sort of degeneracies arise in the two-sublattice
(both A and B are magnetic) pyrochlore systems. In par-
ticular, over a large region of coupling parameter space,
the system is dispersionless along the (0, q, q ) direction.

The results for the Kagome and square lattice with
crossings are also of interest since a q-independent mode
is also present in these systems, and recent experimental
work (neutron scattering, magnetic susceptibility,
and heat capacity ) on the stacked kagome lattice sys-
tern SrCr8Ga4O» show spin-glass-like behavior. Another
realization of the Kagome lattice is He adsorbed on
graphite where the He nuclear moments are coupled an-
tiferromagnetic with isotropic symmetry Heat-capacity
measurements show a cusplike peak; however, the en-
tropy 1oss down to low temperatures is only half the ex-
pected value. Elser has recent1y provided an explana-
tion for this in which three-quarters of the spins form a
singlet spin liquid and the other quarter are free.

One might expect that thermal fluctuations will reduce
the degree of degeneracy in these systems. In fact
through low-temperature expansions Larson and Hen-
ley' have shown that thermal fluctuations will select col-
linear ordered states in fcc antiferromagnets. Work is
under way on the effects of thermal fluctuations in the py-
rochlore system.

The mean-field calculations presented here are certain-
ly consistent with (1) the observed long-range order in
FeF3, (2) the lack of long-range order in many other py-
rochlores, and (3) some aspects of the unusual magnetiza-
tion curves observed in Nd2Mo2O7, Sm2Mo207, and
Gd2Mo207 ~ The question remains as to whether the
dispersionless modes are responsible for the spin-glass-
like behavior observed in the chemically ordered com-
pounds, Y2Mo207 (Refs. 9 and 10) and Tb2Moz07. " It is
plausible that the liquidlike magnetic neutron scattering,
observed in Tb2Mo207, is a result of the presence of many
degenerate modes with di6'erent q's along (O, q, q). Other
spin-glass-like properties, such as susceptibility cusps and
sample history dependence cannot really be described
within the mean-field approximation. They require a
more sophisticated treatment. Low-temperature ( = 1 K)
neutron-diffraction experiments for many of the pyro-
chlore compounds would be interesting, particularly if
some of the incommensurate phases predicted here could
be observed. Many members of the R zMn207 and
R z Mo207 have not yet been investigated by neutron-
diffraction or low-field susceptibility. Many of these com-
pounds might be expected to show spin-glass-like proper-
ties or unusual magnetic structures. Heat-capacity data
would also provide information on entropy loss due to
short-range ordering and the nature of long-range order
phase transitions when present.

From the evidence presented it is clear that the
corner-sharing tetrahedral lattice is much more frustrat-
ed than the well-known stacked triangular lattice antifer-
romagnets. It is important to determine whether or not
the spin-glass-like properties observed in these com-
pounds are due to the frustration alone. It is generally

believed that a spin glass must have some sort of chemi-
cal disorder; however, this does not seem to be the case in
the pyrochlore compounds. ' Answers to these questions
may give some added insight into the role that frustration
plays in the spin-glass problem.
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APPENDIX A

Here we write out the matrix elements of the Jq" ma-
trix, including the first four coordination shells of neigh-
bors. Since the lattice is centro-symmetric J' is real and
symmetric,

J 1 1 —J22 —J33 —J44 —4J gq q q q 3

where Q is defined in Eq. (4.2),

Jq =Jq' =2J,cos(q„)

+2Jz[cos(2q —q„)+cos(2q,—q„)]
+4J~cos(2q —2q, )cos(q ),

J J 2Jicos(q»)

+2Jz[cos(2q, —
q» )+cos(2q„—q» )]

+4Juncos( 2q, —2q„)cos(q» ),
J,"=J,"=2J, cos(q, )

+2Jz [cos(2q —q, ) +cos(2q» —q, ) ]

+4J~cos( 2q„—2q» )cos( q, ),
J23 =J' =2J,cos(q, —

q» )

+2J2 [cos( q, +q ) +cos( 2q, —
q

—
q» ) ]

+4J~cos(q —
q )cos(2q, ),

J2 =J =2Jcos(q, —
q )

+2J2 [cos(q, +q„)cos(2q»
—q, —q„)]

+4J4cos(q, —q, )cos(2q» ),
J3 =J~ =2J,cos(q —q, )

+2J2[cos(q +q, )+cos(2q —
q»

—q, )]

+4J4cos(q —q, )cos(2q ) .

APPENDIX B

In order to prove that (4.16) is exact to all orders in

(m ~+@24) note that at q=0 we need only conside«he



J. N. REIMERS, A. J. BERLINSKY, AND A.-C. SHI 43

(B') = ,' g—4;=—,'(m +44), a=1,2, 3,4. (81)

free energy in one unit cell. From the eigenvectors in
Table V, (2.18), and conditions (4.11) one can show that

with equilibrium conditions

nT T 5' I=0,
(m +4 )'

From (2.8) we can write down the free energy of one unit
ceH

f(T,H)= —
—,
' g J(') 8'.8 +H g 8' —T g $(B'),

a, b

(82)

3nT, —48j3—,S' +4=20,T
(m '+ @2)'"

where

(85)

(86)

= —2~@4— T,m—'+ —,'(3nT, 48j 3—)@4
n

—4TS P(m '+ e', )'"],

Finally when m %0, conditions (84) and (85) give

H
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