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Random matrices, fractional statistics, and the quantum Hall effect
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The fractional-statistics Laughlin picture of the quantum Hall eft'ect is reformulated as a
random-matrix problem. This reformulation connects two large sets of results, and should lead to
simplifications for both analytical and numerical studies.

Random-matrix models have recently been employed
as theories of strings and quantum gravity. ' The basis
for this connection is the observation that the problem
of diagram enumeration in random-matrix models is
equivalent to that of constructing surfaces by assembling
together Hat elementary polygons. This association
makes it possible easily to construct quantities like corre-
lation functions and to apply powerful combinatorial
methods. It also permits more efficient computer algo-
rithms to be formulated.

Interestingly enough, there is a connection between
random-matrix models and those of the fractional quan-
tum Hall eFect (FQHE). This is not too surprising, since
the FQHE involves topological objects (magnetic-(lux
quanta) in a plane. It has been noticed previously that
electrons in the FQHE behave much hke a Coulomb gas
in a harmonic potential, which in turn is a property of
the eigenvalues of random matrices. ' Similarities be-
tween the S=—

—,
' Heisenberg antiferromagnet and random

matrices have also been observed. In what follows the
connection between random matrices and the
(fractional-statistics) Laughlin model of the FQHE will
be made explicit by a direct construction.

A central feature of Laughlin's picture of the FQHE is
a set of wave functions of N electrons in a magnetic field
8, each located at plane coordinates z =x +iy, with

j =0, 1, . . . , N —1. These wave functions describe circu-
lar droplets of an incompressible quantum Quid. In the
symmetric gauge A= —,'BXr these wave functions are
(apart from a normalization constant):

lm ) —P (zo, . . . , z~, )

N —1

=(h~) exp —
—,
' g ~z, ~

j=0

where 6N is the Vandermonde determinant

(z —z )
0&j(k +N —1

and m =2p + 1 is an odd integer [distances are measured
in terms of the magnetic length (A'cleB)'~ ]. The wave
function ~m ) is antisymmetric in each pair of coordi-
nates. When one z is rotated about another by 0, the
wave function changes by exp(im 0), and so there are m
Aux quanta per electron. If all of the z are rotat-
ed by exp(i 0), the wave function changes by

exp[i% (X —1)m 0/2].
To connect Laughlin's picture to the theory of random

matrices, consider the electrons as objects of indefinite
position described by a coordinate matrix Q i, of rank N
whose eigenvalues are the complex coordinates z . (Since
Q has complex eigenvalues, it is, in particular, not Hermi-
tian). Choose the matrices Q according to a probability
distribution P(Q)p(dQ), where p(dQ) is the linear mea-
sure

and

1 (dQ)= H dQJt dQJt
0~ j, k ~N —1

(3a)

P (Q) —=exp[ —So(Q)],
So(Q)= —,

' Tr(Q Q) .

(3b)

N —1

X, ' = ( 2sr ) Q [(j + 1 )!] .
j=0

(4)

Of course, P, =(1~1) is just the square of the m =1
Laughlin wave function. Note in particular that the Fer-
mi statistics of electrons are automatically accounted for
by the well-known "repulsion" of eigenvalues of a ran-
dom matrix.

More is needed, however, to complete the full Laughlin
picture for general m. The major obstacle is the above-
mentioned eigenvalue repulsion, which has the practical
consequence in the random-matrix model Eq. (3) that
powers of z- greater than N —1 are not allowed. In other
words, each coordinate taken separately has at most an-
gular momentum N —1. It is necessary to add up to an
additional 2p (N —1) units of angular momentum to each
of the fermionic degrees of freedom in the system

Thus Q varies over all complex matrices C. Except in
regions of lower dimensionality which are irrelevant to
the probability distribution, the eigenvalues are distinct.
Define the matrix E =diag(zo, . . . , z& i) and let X be
the N X N matrix whose columns are the eigenvectors of
Q (i.e., essentially the electron wave functions). Then X is
nonsingular and Q =XEX . The distribution P, of ei-
genvalues of Q is then obtained by integrating over all
complex matrices X, and is given by

N —1

P, (zo, . . . , z~, )=K, ~A~~ exp —
—,
' g ~zi

I=O
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[2p+ 1 =m, as in Eq. (1)].
Define a set of matrices FI J, I,J =0, 1, . . . , % —1

FrJ=Tr(Q +
)

and their Fourier transform
N —1

Fz z =—g exp[2mi(IE +JI.)/X)Fr r .
I,J=O

(5b)

FK,L ~+@+1,L+1

Thus if a term

(6b)

Sr (p) =
O~I, J,K +X—1

4r(+')rJ(F ')rx Pre

is added to the action So, a rotation by 2~/Xp reduces to
a cyclic permutation of the {gI and [ 1'�],thus accounting
for the Pauli principle. These Grassmann variables are
taken as spinless as it is assumed that the magnetic field
freezes out the spin degrees of freedom. The interaction
term Eq. (7) thus couples up to max[(I +J)p]
=2p (X—1 ) units of angular momentum to fermionic de-

grees of freedom, as required.
When the integration over the 2X Grassmann coordi-

nates [$,1lj] is performed, the result is

D D exp —S~ p = DetF (&)

The right-hand side of Eq. (8) can be expressed simply as
follows:

lDetF = lDetFl

= lDet Tr(Q +
)l

= lDet Tr(E +
)I

N —1= Det„g zr+r
i=O

= l(Det;rz, )(Detrrz )l

Thus the eigenvalues of complex matrices Q chosen with
weight exp [—So —SF(p) ] D Q D gp(dQ ) are distributed
according to

l~~l" 'exp —
—,
' g lz, l' =&2p+ll2p+», (10)

which is perforce the absolute square of the Laughlin
wave function for m =2p+1. Note that the construc-

Both F and F depend only on the eigenvalues of Q, and
are totally symmetric in them. Thus under a rotation
z ~ exp(i8)z by 8=2m /X,

Fr & ~exp[2vn(I +I)/N)Fr &,

2 N —1

Det(g 1 —Q) = ff (q —z. ) (12)

in the overall probability distribution, just as in the
Laughlin model. Of course, it is possible to continue the
hierarchy by taking the g to be dynamic variables equal
to the eigenvalues of a new matrix.

In conclusion, therefore, a random-matrix version of
the Laughlin model of the FQHE has been formulated,
thus demonstrating that fractional statistics can occur in
random-matrix models. Such a formulation may lead to
new insights and connections with existing models, as
well as the possibility of speeding direct computations.
For instance, the random-matrix formulation is very
similar to a lattice field theory, for which numerical tech-
niques are readily available. '
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tion Eq. (6) with spinless fermions ensures that
m =2p+1 is an odd integer. Had fermions of spin s
been used, the result would have been m =2p ( 2s + 1 ) + 1.
The allowed ualues of m thus depend upon the number of
the fermionic degrees of freedom to which the magnetic
fteld couples. This restriction may have implications for
the allowed values of m in the FQHE.

It is interesting to interpret. the above discussion in
terms of random-matrix surface models. The fermionic
action SF(p) generates diagrams with vertices which have

up to 2p(X —1) legs. Each leg corresponds to a unit of
angular momentum. Thus in some sense the random-
matrix approach is equivalent to counting the number of
ways a surface can be covered by various polygons, with
each covering weighted by the Pauli principle manifest in
the Grassmann algebra. This might be a reAection of the
underlying "string-theoretic" nature of the interaction of
magnetic vortices and electrons.

In order to complete the analogy with the Laughlin
model, the effects of quasihole excitations are now con-
sidered. In the original droplet wave functions lm ),
there are m Aux quanta per electron. Quasiholes are
two-dimensiona1 bubbles in the Auid which act like Aux
tubes with a single unit of Aux. Each quasihole removes
1/m of an electron charge, and thus displays "fractional
statistics. "

The effect of a quasihole excitation at complex coordi-
nate q can be included in Sr(p) by replacing the [PI in
Eq. (7) with

N —1

Pr g (norr Qrr)A—
J=O

and similarly for the [ P]. This leads to an additional fac-
tor of
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