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Sensitivity of the multiple-scattering speckle pattern to the motion of a single scatterer
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The inAuence of changing the position of a small number of scatterers on the speckle pattern pro-
duced by a disordered system is studied. The sensitivity of the speckle pattern and the total
transmission to changes in the scatterers con6guration is calculated for two- and three-dimensional
systems. For two-dimensional systems the speckle pattern, as well as the total transmission, are
found to be extremely sensitive to displacement of a single scatterer.

Statistical properties of the speckle pattern (the angu-
lar intensity dependence) for transmitted and rejected
waves from disordered systems have recently attracted
much attention. As a result of interference effects, the
speckle pattern, produced by multiple-scattering disor-
dered systems, ' shows a wide variety of interesting phe-
nomena. The ensemble average of the reAected speckle
pattern exhibits an enhanced backseat tering peak.
Correlations and Auctuations of the angular intensity
were studied, revealing interesting effects such as the
locking of the speckle pattern to the incident direction,
known as the memory effect, ' and long-range correla-
tions between angular intensities in different direc-
tions.

The intensity transmission coefficient T(q„qb ) Auctu-
ates rapidly as the incoming-wave vector q, or the
outgoing-wave vector qb is changed, thus creating the be-
havior of the angular intensity known as the speckle pat-
tern. The total transmission T(q, ) is given as a sum of
transmission coefficients:

where u is the scattering strength. For such a system the
mean free path l will be related to the scattering strength
and the number of impurities in the following way: For a
two-dimensional system,

4ko
120 =

7lQ
(4a)

where n is the density of scatterers, and ko =2m/A, . For a
three-dimensional system,

the transmission coefficients to be altered by the same
amount as for changing the whole scatterer configuration
will be determined.

We shall use a simple model which assumes the scatter-
ing potential of a single impurity to be short ranged and
isotropic. The scattering potential of a system of N im-
purities located at positions r&, . . . , r& is given by

T(q. )=g T(q. qb)
qb

4m

nu
(4b)

and the conductance of a system may then be calculated
with use of a Landauer formula,

A typical change in the transmission coefficient due to
moving one scatterer by a distance, 5r, from its original
position r may be defined as

G=g T(q, ) .
qa

(2)
&5iT (q, qb)&= —,'&[T(q, qb) Ti(q, qb)]'&

The conductance of a two-dimensional (2D) mesoscopic
system is known to be very sensitive to the motion of a
single impurity. Even for three-dimensional systems,
the sensitivity of the conductance to the motion of a sin-
gle impurity is much more than expected from a classical
(no interference effects taken into account) calculation.
Based on the fact that the transmission coefficients and
total transmission are more sensitive to a total change in
the scatterer configuration than the conductance, it is
reasonable to expect a similar enhanced sensitivity in the
case of moving a single scatterer.

In this paper we shall present an analytical calculation
of the sensitivity of the transmission coefficients, as well
as the total transmission, to the movement of a single
scatterer for two- and three-dimensional systems. The
fraction of scatterers that should be moved in order for

where Ti (q„qb ) is the transmission coefficient for an
identical scatterer configuration as T(q„qb) except that
one of the scatterers is moved by the distance 5r, and the
angular brackets indicate an ensemble average over
different configurations of scatterers. After subtracting
and adding the averaged transmission coefficient
( T(q„qb ) ), we obtain

&5,T'(q. , qb)) =(»'(q. , qb))
—(5T(q, qb)5Ti(q, qb)) (6)

The first term on the right-hand side of Eq. (6) is the
usual transmission-coefficient fluctuation (5T (q„qb))= ( [ T(q„qb ) —( T(q„qb ) ) ] ), which is equal to
(T(q„qb)) . It is possible to calculate (5,T (q„q„))
by a diagrammatical technique similar to the one applied
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& 51T ( 1 qb ) &2'D & T('qa 'qb ) & C2(ko 5r )

where Cz(x)=1 —Jo(x); Jo(x) is a Bessel function of or-
der 0. For a three-dimensional system, a typical change
1s

&5, T (q„qb) &3D & T(q. , qb) & C3(ko 5r)

where C3(x) =1—[sin(x)/x ] . In the case of weak
scattering, the result for the sensitivity of the speckle pat-
tern for two- and three-dimensional systems should be
multiplied by 0/I X.

From Eq. (8) one concludes that moving one scatterer
per cross-sectional length L will completely change the
speckle pattern for a two-dimensional slab. The physical
reason for this extreme sensitivity of the speckle pattern
is that for a two-dimensional slab a photon trajectory
through the system has a finite probability of passing
through any scatterer in an L XL section of the slab.
Therefore, any change in the position of one of the
scatterers will change the phases of all the trajectories
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FIG. 1. (a) Typical Feynman diagram for the calculation of
(5,T (q„qb)&. The diamond vertex is given in Eq. (5). (b)
Typical Feynman diagram for the calculation of (5,T'(q, ) ).
(c) Ladder propagator. (d) Hikami vertex (see Ref. 11).

by Feng, Lee, and Stone to calculate the conductance
sensitivity to the motion of one single impurity. The dis-
placement of one scatterer by a distance 5r is described
by the "diamond" vertex. For a three-dimensional sys-
tem in momentum space, the diamond vertex is given by

V(p)= Re(l —e'I' '),4m

IQ

where I is the mean free path and Q is the volume. For
two-dimensional systems the constant 4~/l should be re-
placed by 4ko/l. After inserting the diamond vertex ran-
domly in the diagrams used to calculate &5T (q„qb ) &

and retaining only ones to the lowest order in 0 ', it
remains to evaluate diagrams of the type shown in Fig.
1(a). We calculate the typical change in the transmission
coefficient due to moving a scatterer by 5r for a slab
geometry of thickness L and a cross-sectional area A.
Assuming 3 &&L ', where D is the dimension of the
system, and strong scattering (i.e., 0/l N —1), we ob-
tain, for a two-dimensional system

passing through it, causing the speckle pattern to change
significantly. Even for a three-dimensional system, the
change of the speckle pattern due to moving a single
scatterer is much larger than expected from a classical
calculation. The usual classical argument would assume
that the change in the speckle pattern would be propor-
tional to NL ', where Xz is the number of scatterers in a
L volume of the slab. On the other hand, when taking
into account multiple-scattering interference effects, we
obtain the result given in Eq. (9), where the sensitivity of
the speckle pattern is proportional to NL

'

The change of the total transmission due to moving a
scatterer by a distance 5r may be defined in a similar way
to the change of the speckle pattern,

& 5, T'(q, ) &
=

& 5T'(q. ) &
—

& 5T(q. )5T, (q, ) &, (10)

where & 5T (q, ) & is the usual total transmission Auctua-
tion, which, for a 2D slab, is proportional to'
(1/kol)(L/A)& T(q„qb)& and which for a 3D slab is
proportional to ' [ I /(kol ) ](lL /3 ) & T(q, ) & .

The change in the total transmission due to the move-
ment of a single scatterer is calculated by randomly in-
serting the diamond vertex into the usual diagram used to
calculate &5T (q )&. After calculating diagrams of the
type shown in Fig. 1(b), we obtain, for a two-dimensional
system, '2

&5,T'(q. )&, =&T(q, )&'N, C,(k, 5.),
kol

and, for the three-dimensional case,
2

&5IT2(q, )&,D=&T(q, )& N, z C, (ko5r),
(kol )

where the numerical constants are %2 =32~ and
N3=2 n. /5. In the case of weak scattering, the result
for the sensitivity of the speckle pattern for two- and
three-dimensional systems should be multiplied by
(n/lDN)'.

The total transmission sensitivity is reduced, compared
with the speckle pattern sensitivity, by a factor of
(kcl )', where D is the dimension of the system. For a
three-dimensional system, the total transmission sensitivi-
ty is further reduced by a factor proportional to NL
as compared with the speckle-pattern sensitivity which is
proportional to Nl ' . A reduced sensitivity of the total
transmission, compared with the sensitivity of the speckle
pattern, is expected because the total transmission is the
result of summation over different speckle patterns.

The sensitivity of the speckle pattern to changing the
position of m scatterers in the sample & 5 T (q„qb ) & or
the total transmission sensitivity &5 T (q, )& to chang-
ing the position of m scatterers in the sample may be
defined in a similar way to the definitions for moving one
scatterer given in Eqs. (6) and (10). In this case it is con-
venient to use an alternative approach based on the work
of Altshuler and Spivak. In this approach a pole o, /I
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is inserted into the ladder propagator wherever the prop-
agator appears in between two lines belonging to two
different scatterer configurations in the calculation of
(6T(q„qt, )6T (q„qb ) ) or (6T(q, )6T (q, ) ). ctD is
defined as et&=(4/N)mC for a two-dimensional system
and a3=(3/N)mC for a three-dimensional system. C is
some kind of average over CD(ko 6r ) A. s long as
aD (((l /I. ), we obtain the same results as for
(6&T (q, , qb)) and (6&T (q, )) multiplied by m, the
number of scatterers moved. In the saturation limit o,'D

&&(l/1. )~, we obtain (6 T (q„qb))=(6T (q„qb))
and (6 T2(q, ) ) = (6T (q, ) ) . Thus by altering the po-
sition of more than 3 /I, scatterers for the two-
dimensional case, or more than 3/lL scatterers for the
three-dimensional case, the scatterer configuration may
be considered as a new unrelated configuration.

In conclusion, we have presented an analytical calcula-
tion of the infIuence of changing the positions of a finite
fraction of scatterers on the angular intensity transmis-
sion coefficients and on the total transmission. The re-
sults suggest that those changes, in particular for two-
dimensional systems, are significant. An estimate of the
number of scatterers that should be moved in order to ob-
tain a configuration which may be considered an unrelat-
ed configuration was obtained.
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