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Phase diagram of superconducting —normal-metal superlattices
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The transition temperatures and the perpendicular upper critical fields of superconducting-
normal-metal superlattices are calculated by solving exactly the Usadel equations. For thin
films our results differ substantially from previous approximate results.

There have been several attempts to account for the
critical temperatures and fields of superconducting prox-
imity systems. One approach, first proposed by de
Gennes and Guyon2 and recently generalized by Taka-
hashi and Tachiki, and Auvil and co-workers starts
from a linearized integral self-consistency equation for
the "pair potential" A(r). An alternative way of treat-
ing such systems was given by Biagi et a/. who used Us-
adel's dirty-limit quasiclassical theory to calculate for
all temperatures the perpendicular upper critical fields
H, z~ of superlattices made of superconducting (S) and
normal (N) layers. These authors used a simple method
to solve the coupled system of linearized Usadel's equa-
tions in both metals. However, the solutions obtained
satisfy the boundary conditions only approximately. As
a result their method works well only for thick layers. VVe

solve the Usadel equations exactly for any layer thickness;
in particular, we give correct thin-layers-limit expressions
for T, and H, g~.

Consider an infinite stack of alternating S and N lay-
ers, parallel to the x-y plane, with thicknesses dp and
d~, respectively. The coordinates are chosen so that
z = 0 defines the middle of an S layer. Near the
second-order phase transition we take a uniform mag-
netic field H = IIz throughout the sample, with the
gauge A = (0, Hz, 0).

The linearized Usadel equations for the averaged
Gorkov's Green's function, F (r), for each metal sepa-
rately are

&'F„(r) = A (i.) —&~~~I"„(i),

for S, and

foi N. Here

2~iHz

is the gauge —invariant gradient, D5 ~ are the diffusion
coefficients, hto = 7rklsT(21 + 1), 1 = 0, +1,k2, . . . , and
the coupling constant

As = vrkIiTg )
)

The summations are cut o8' at to~ —k~OD/h, OD be-
ing the Debye temperature and T,p the bulk transition
temperature of the S metal. For OD )& T,g

1.1340D l
T,s )

For the K metal we set AN = 0 (T,N = 0), implying
~N(.)

The function F (r) is subject to standard boundary
conditions5 7 at S Ninterfaces:-

(4)

where, for the specular scattering, rl = oN/os, with os N
being the normal conductivities.

In what follows we assume the separation of variables

I".' (r) = f(* y)g.'"(z)
since one expects that in the plane perpendicular to the
external field (z-y plane) an Abrikosov vortex lattice is
formed, as in an infinite bulk superconductor. Hence,
f(z, y) is metal and u independent.

For N, from Eqs. (5) and (3), one obtains

d gPu(z) 2 N( )z

Bz f D 27riHzl
, +~ + ~ I f( y)

=
l qN —

D f(z, y),
2(to f

N
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where the separation constant qN has been introduced.
Exactly as in a bulk superconductor, the requirement
that f(z, y) is finite in the whole z-y plane implies

2~H, 2~

The system of Eqs. (2) and (10) is solved by expanding
functions F (r) and A (r) in Fourier series with respect
to z coordinate, i.e. ,

Fs(r) = ) Fs(Q ) cos(Q z), (12)

which is the lowest eigenvalue of Eq. (7), giving the high-
est H = H, 2~.

We look for the ground-state solution, which is periodic
in z direction with the period dp + dN and is symmetric
with respect to the middle of each film. This gives the
following solution for Eq. (6):

N Cfg + 2N
yc (z) = C~ cosh tIiv —Izl

for ( Izl ( div + . (9)
~s "s
2

For S, combining Eqs. (5), (7), and (8) with Eq. (1)
we get

where

F'(Q )=d
ds/2

Gs/2
dz cos(Q z)F„(r)

) + (Q )I &I~I+
z (Q' +

is the Fourier amplitude that depends on z and y, and
Q~ = 27cm/ds, with the similar expressions for As(r)
and As(Q ). Putting these expansions into Eq. (10),
and applying boundary conditions (ll), we obtain

s

Similarly, from Eq. (2), one obtains

(14)

Using Eqs. (4) and (9), the boundary conditions for
Fs(r) in Eqs. (2) and (10) become

cIFs/Oz
pS trJ

wads/2

where

A (Q ) =vrk~TAs) F (Q ) (15)

Now we solve Eq. (14) analytically for the amplitudes
F (Q„,) and from Eq. (15) we obtain an infinite sys-
tem of homogeneous linear equations for the amplitudes
&'(Q ):

gN ~N
ggN tanh

2

and qiv is obtained from Eq. (8). wllere

) X Z'(Q .) =0 (16)

( 1)m+m
+~kaT) s ) .. I.~l~

I
+ (~Ds/2) (Q' + 2~H ~~/C'o)] 7 I~

I
+ (~Ds/2) (Q.', + 2~II.2i/+o)] (ds/Ii os q. + ~.)

(17)

+OO
1 "s 2lw

I
27cH, gcoth

j +~l~l+ (&Ds/2) (Q' + 2~II.2~/eo) r Ds+2I~I/Ds + 2~II.2i/ec ( 2 Ds @o

The condition for a nontrivial solution of the system

detA = 0 (19)

gives II,2~ for a given T. The transition temperature T,
is obtained by putting H, 2~ ——0. Note that, although

the matrix A is infinite, for tl1e calculation of the deter-
minant in Eq. (19) it is sufFicient to take a finite num-
ber of elements around Aoo since A ~ 6 when

I)I ~ +00.
In Figs. 1 and 2 the curves for T, and H, 2~ both from

our and the approximate (Ref. 5) calculation are shown.
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FIG. 1. Reduced transition temperature t, = T,/T, s vs
d~/$rv for ds/d~ = 2, lI = 1, (s/(lv = 1, and e~/T, s =
200. Exact solution —solid curve, A00 ——0 approximation—
dotted curve, and the solution from Ref. 5 —dashed curve.

For convenience, all results are expressed in terms of the
quantities t, h, O~/T, s, ds/(s, d~/(lv, Q/(Iv, and g,
where

T 27res H, 2g6,2g ——

cS 0

Aoo ——0 (2o)

After some purely algebraic transformations this gives a
transcendental equation for H, qz(T) in the thin layers
limit:

It is seen that the results of Biagi ef al. are qualitatively
the same as the exact ones. However, the quantitative
discrepancy is large for thin layers. The reason for this is
that with the ansatz F (r) = 4 (r)/[ha+ nTy(&)] used
in Ref. 5 to solve Eq. (1) [y(t) defined by Eq. (2) of Ref. 5],
one cannot satisfy the boundary conditions, Eq. (4), for
all cu. The ansatz is strictly valid only for an infinite su-

p er conductor, or for vacuum-superconductor inter faces.
One of the consequences of the ansatz is that Fs(r) be-
comes an eigenfunction of the operator II2. As we have
shown in this paper, such an approach, used in numerous
previous papers, 2 is not valid in general and in fact fails
for short-period superlattices. In addition, our solution
comprises the parameter O~/T, s, which is absent in the
previous calculations.

In the calculation of T, and H, 2~(T), for almost any
choice of parameters, it is suKcient to take only a 3 x 3
matrix with m, I,' = —1, 0, 1. Moreover, as can be seen
from Figs. 1 and 2, if only the Aoo element is taken,
one obtains excellent agreement with the exact results
for t, hin layers (not only in the saturation region but for
slightly thicker layers as well).

In the thin layers limit (ds, d~ —+ 0), the matrix A in
Eq. (16) becomes diagonal, with all diagonal elements ex-
cept App tending to 1. Then, the condition (19) becomes
simply

hDss=
2xkgy T,s )

h D~
27rka Tcs )

g
Cooper

ln (21)

0.30 I I I I I Ill I I I I I I III I I I I I I III I I I I I I II

Here

1+~((~/(s)'
h c2J )

0.25 de/(Iv g(s
ds/(s (lv

0.20
CO

I

CV

0.1 5

4 is the digamma function, and t, &" is the well-known
Cooper's result for the critical temperature in the thin
layers limit:

0.1 0
(22)
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Note that Eq. (21) was also obtained by the de Gennes
correlation function method.

Equation (21) can be solved analytically at zero tern-
perature giving a very simple expression for h, z~(0):

FIG. 2. Reduced perpendicular upper critical field
6,2~(O) at zero temperature vs d~/(Iv. The notation of the
curves and the parameters are the same as in Fig. l.
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As can be seen, there is a strong power-law dependence
on e~/T, s, in contrast with the result of Biagi et al.

To summarize, we have developed a method for the
calculation of T, and H, ~~ of superconductor —normal-
metal superlattices, valid for any superlattice period. In
the thin-layers limit we have obtained simple Cooper-like
results for H,2~.
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