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Measurements of photon-echo decays in dilute ruby (Crz03 concentration of 0.018 at. %) in mag-
netic fields up to 29.5 kG are reported. Echoes from the A z( ——' )+ E,E( ——') and

A2( —
2
)~ E,E( —

~ ) transitions have dephasing times (T2) that are directly proportional to the

ratio of the magnetic field (B) to the temperature (T), for the range 2. 5 & B/T & 20 kG/K. A tran-
sition in the decay from exponential to nonexponential behavior for B!T)10 kG/K is observed.
Decay times for the A&( —~)~ E,E( —2) echo are roughly a factor of 3 longer than for the

A2( —
z ) E,E( ——') echo. We attribute the lengthening of T2 with increasing B/T to the

suppression of Cr-Cr spin Aip-Hops as the population of the upper A, levels decreases.

INTRODUCTION

The photon echo has proven to be a powerful tool in
understanding dynamic processes in materials. Ruby was
the first material in which photon echoes were pro-
duced. ' The early experiments on ruby established the
necessity of a magnetic-field component along the c axis
in order to observe photon echoes, but there remains a
confusion on the magnetic-field dependence of the decay
of the photon echo. In early work using a pulsed ruby
laser that produced 15-nsec pulses with about 200-kW
peak power, no magnetic-field dependence from 1.5 to 6
kG was reported, except for an anomaly in the decay
time at the ground-state level crossing at 2.06 kG. Subse-
quently, Liao and Hartmann reported the echo decays in
ruby to be dependent on magnetic fields up to 5 kG using
1-W, 20-, and 80-nsec-wide pulses obtained by gating a
single-frequency cw ruby laser. However, the field depen-
dence of their decay rates began to level off at the higher
fields.

In this paper we investigate the decay of photon echoes
in ruby for B )6 kG. Our purpose is to clarify an under-
standing of the photon-echo decay field dependence by
extending measurements to magnetic fields much higher
than those previously studied. We used a single-
frequency-gated cw laser to study the photon-echo decay
as a function of an on-axis magnetic field up to nearly 30
kG. Photon-echo decays were measured for the

A2( 2)~ E,E( —
—,') a—nd the A2( —,' )~ E,E( —2)—

transitions referred to as the —
—,
' echo and —

—,
' echo, re-

spectively. As we shall show, decay times increase
dramatically as the field is raised. We believe that the in-
crease in the decay times is related to depopulation of the

Az( —
—,') level. The long decay times provide increased

sensitivity to effects not seen before. Whereas, previous-
ly ' photon-echo decays in ruby were thought to be in-
dependent of temperature below 4 K, we have observed
the first temperature-dependent decays at these tempera-
tures. The temperature dependence arises in the same
manner as the field dependence because it also controls
the population of the A2( —

—,') level.

EXPERIMENT AND RESULTS

A 0.018 at. %%uorub ycrysta 1 wa splace d ina nelec-
tromagnet with its c axis oriented along the magnetic
field. An argon-ion laser pumped a tunable, single-
frequency (1 MHz), cw dye laser where the output power
at the ruby wavelength was about 10—15 mW. The cr po-
larized light was focused on the sample with a 4-in lens.
Two acousto-optic modulators gated the cw beam. The
first was gated on twice providing two pulses about 0.5-p
sec wide with a variable delay. The second was gated off
at the end of the two-pulse sequence to provide additional
rejection of laser leakage during detection of the echo.
On the output side of the crystal was a Pockels cell, gated
on during the echo, that was used to protect the pho-
tomultiplier tube during the preparation pulses. Echo in-
tensities were measured as a function of the delay time
between the two pulses.

Photon-echo decays were measured at 2.0 K as a func-
tion of magnetic field for both the —

—,
' and —

—,
' echoes.

At the highest magnetic field (29.5 kG), the decays were
also measured at 1.5 K. We only studied transitions from
the A~( —

—,') level (lowest in energy) and the "A2( —
—,')

(first excited Zeeman sublevel) since, at the high magnetic
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FIG. 3. Photon-echo decay times T2f (the final decay time)
and T„(the initial decay time) for both the —

~
and —

—,
' echoes

in 0.018 at. % ruby vs 8/T.

FIG. 1. Photon-echo decays for the —
2

echo. Echo intensi-

ty (I) in arbitrary units is shown vs pulse separation (~) in psec.
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fields and low temperatures at which we worked, these
were the only levels significantly populated. Figure 1

shows the measured echo intensities as a function of pulse
separation for the —

—,
' echo. At the highest field (29.5

kG) and lowest temperature (1.5 K), the decay is nonex-
ponential. As the field is lowered and the temperature is
raised the decays become shorter and exhibit more single
exponential behavior. Figure 2 shows corresponding data
for the —

—,
' echo. Decay times at the same fields and tem-

peratures are about a factor of 3 longer than those in Fig.
1. The decay curves for the —

—,
' echo, like those for the

—
—,
-' echo, are nonexponential at high fields and low tem-

peratures and become shorter and single exponential as
the field is lowered.

For a single exponential decay, T2 can be determined
by fitting the data to a function of the form,

—
(,4~/T) )I Ioe

where I is the measured intensity and ~ the separation be-
tween the pulses. For nonexponential decays we have fit
the intensities to a sum of two terms, each of the form of
Eq. (1), with decay times designated T2, (the initial deca.y
time) and T2I (the final decay time). Table I lists T2; and

T2f for the nonexponential decays at 29.5 kG. In
parentheses next to T2; is a quantity I which is the ap-
proximate length of time T2; dominates the decay. Since
I. shortens as the temperature is raised it seems appropri-
ate to list the decay times for the single exponential de-
cays under the T2f heading. The effect on the Tz's of
lowering the temperature is similar to the effect of raising
the field. Figure 3 is a plot of the T2's in Table I as a
function of the ratio of the magnetic field to the tempera-
ture (8/T). There is a remarkable linear variation of Tz&

1 0

TABLE I. Optical dephasing times for the —
—,
' and

echoes at each field and temperature studied. Nonexponential
decays are described by times T„(initial decay time) and T2f
(final decay time). L is the time that the initial decay persists.
Purely exponential decays are described under the T2& heading.
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FIG. 2. Photon-echo decays for the —
2

echo. Echo intensi-

ty (I) in arbitrary units is shown vs pulse separation (~) in psec.
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8.6
6.0
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echo
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with B/T. The best-fit lines to the Tz& results are shown
in Fig. 3. The slopes are 1.3 psecXK/kG for the —

—,
'

echo and 0.05 psec X K/kG for the —
—,
' echo. The linear

dependence of Tz& on B /T is especially clear for the —
—,
'

echo where all five points fall on a line.
The values of T2 in 0.018 at. % ruby at 29.5 kG are

much larger than those previously reported for 0.0034
at. % ruby at 3.8 kG and T =2.2 K, where T2( —

—,
'

) =6.9
@sec and Tz( —

—,')=10.3 p,sec. The present results in

more concentrated ruby indicate that, by raising the B/T
ratio for the 0.0034 at. %%uosampl e, a furthe r increas e inT2
would have occurred, suggesting that Cr-Cr interactions
are still important in the 0.0034 at. % sample at 3.8 kG,
as recently noted by Szabo et al.

DISCUSSIQN

We consider as possible dephasing mechanisms (1)
Cr interactions with the lattice phonons (T& processes),
(2) interactions within the Cr spin system (Cr-Cr spin
diff'usion), and (3) Cr + interactions with the neighboring
Al nuclear spins (Cr-Al superhyperfine interactions).

Phonon-induced processes can occur in both the excit-
ed and ground states. Two types of processes can con-
tribute in the excited state: single phonon-assisted transi-
tions within the Zeeman levels of the doublet and Orbach
processes. However, in the present case, single phonon-
assisted transitions with the doublet are forbidden since
they require a component of the external magnetic field
perpendicular to the c axis. Orbach processes are not
effective below 2 K since the small number of resonant
29-cm ' phonons present results in relaxation times that
are of order sec. For the ground state at fields of 20—30
kG, spin-lattice-relaxation times, which scale inversely
with the cube of the difference between the energy levels,
are expected to be about 1 sec. ' '" Thus, for B (30 kG,
ground-state single phonon relaxation does not
significantly contribute to the direct part of the dephas-
ing. Indirect contributions to the dephasing resulting
from single phonon-induced spin Aips of neighboring
unexcited Cr ions may occur but estimates of their
magnitude suggest that they are not of major importance.

The dependence of the Tz's on B/T suggests that in
0.018 at. % ruby, Cr + spin dynamics controls the de-
phasing. For the —

—,
' transition, both direct and indirect

contributions to optical dephasing arising from spin
diffusion should depend on B/T since this parameter
controls the relative population of the ground-state spin
sublevels. Mutual spin Aips between Cr + ions are
governed by the selection rules: AM, =0 for a pair, and
Am, =+1 for each spin. Therefore, a spin fIip on a Cr +

ion with ——', spin requires a neighboring ion with

m, = —
—,'. Since the —

—,
' spin population falls as B/T in-

creases, the overall spin-Aip rate is reduced resulting in
an increase in T2. An increase in T2 has also been re-
ported by Szabo and Heber' for 0.05 at. % ruby when
the —

—,
' spin population was reduced by optical pumping.

However, for the —
—,
' transition, the direct contribution

to optical dephasing should increase with B/T since it
becomes easier for a —

—,
' spin to find a —

—,
' spin neighbor.

Both our data and the data of Szabo and Heber' also
show an increase of T2 for the —

—,
' echo as the population

of the A2( —
—,') sublevel is transferred to the —

—,
' spin

state. This would suggest that for the —
—,
' spin sublevel,

indirect contributions play the major role in dephasing
which is in agreement with the recent results of Szabo
et al.

The conclusion that indirect spin-Aip processes be-
tween the Cr + ions entirely controls the dephasing for
both the —

—,
' and ——', echoes is not completely satisfacto-

ry. The indirect contribution to the dephasing arising
from Cr + mutual spin Hips for the two transitions
should produce a dephasing rate which scales as the opti-
cal magnetic splitting factor. ' Therefore, the ratio
Tz( —

—,')/Tz( —
—,') should be 7.6. However, in this work

T2f ( ~ ) / T2f ( ——', ) is approximately 3 from B / T = 10 to
20 kG/K. All previous reports of this ratio have been no
greater than 3. ' We conclude that, although Cr spin
diffusion must play an important role in optical dephas-
ing because of the dependence of T2 on the Cr + spin-
state populations, it does not seem possible to explain the
dephasing rates entirely in terms of an indirect contribu-
tion from Cr + mutual spin Aips.

Finally, the effects of the Al nuclear spin dynamics on
the Cr + ions must be considered. In ruby, interactions
between Cr + ions and neighboring Al spins are very
strong but dephasing of the Cr + ions is inhibited by a
"frozen-core" effect. '' The Cr + ions with their strong
magnetic moments detune the resonances of the neigh-
boring Al spins from one another reducing their rate of
mutual spin Aips. The Cr ions effectively surround
themselves with a large core of Al spins that have a spin-
Aip rate that is generally reduced in comparison to the
rate for the bulk Al spins. In the presence of only Cr-Al
interactions and excluding frozen-core effects, the ratio
T2( —

—,
' )/T2( ——', ) would still be 7.6. The expected e8'ect

of the frozen core is to reduce T2( —
—,')/T2( ——', ) to

7.6/v'3=4. 4, a ratio closer to, although still larger
than, the observed ratios.

The fact that T2( —
—,')/T2( —

—,') is less than 7.6 for
0.0034, 0.018, and O.OS at. %%uorub ysuggest s tha t the
frozen core affects the dephasing in each of these cases.
At the same time, the dependence of the dephasing rates
on the Cr + spin-state populations suggests that Cr-Cr
spin diffusion also inAuences the dephasing. The two de-
phasing mechanisms, Cr + spin dynamics and Cr-Al
superphyperfine interactions may not be independent of
each other since Cr-Cr indirect spin Aips probably
inAuence the dynamics of the core.

However, there should be a high-field low-
concentration limit where Cr-Cr interactions are com-
pletely suppressed and dephasing results only from
superhyperfine interactions between the Cr + electron
and Al nuclear spins. The frozen core is not entirely
without dynamics of its own. On a sufticiently long-time
scale, superhyperfine interactions between the Cr + elec-
tron spins and Al nuclear spins will result in Al spin-Aips
inside the core. In this limit decays are expected to be
highly nonexponential since a correlation exists between
the Al spin-Oip rate and the Cr-Al interaction strength.
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The Aipping of nearby Al spins, which occurs occasional-
ly, would result in large frequency shifts for the Cr
ions. The broadening in time of the Cr + spectral distri-
bution would result in accelerating nonexponential decay
rates. The onset of nonexponential decays at the higher
ratios of 8/T may indicate the observation of Cr-Al
superhyperfine interactions which become more evident
as the Cr-Cr interactions are suppressed.

To summarize, for 0.018 at. %%uorub y, T2continue s to
increase with B/T up to fields of 30 kG at 1.5 K. This
indicates the continued dominate role of Cr-Cr mutual
spin Aips in optical dephasing. However, nonexponential
echo decay, which appears at the highest value of B/T,
suggests that Al spin dynamics, with its associated frozen

core, is becoming competitive with Cr spin dynamics as
the latter becomes less effective because of depopulation
of the upper ground-state spin sublevels. Experiments in
more dilute ruby or at larger values of B/T should even-
tually lead to the limit of superhyperfine dominated opti-
cal dephasing.
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