Magnetic properties of R ions in RCo_5 compounds (R = Pr, Nd, Sm, Gd, Tb, Dy, Ho, and Er)

Zhao Tie-song, Jin Han-min, Guo Guang-hua, Han Xiu-feng, and Chen Hong Department of Physics, Jilin University, Changchun 130023, Jilin, People's Republic of China (Received 14 May 1990)

The values of the *R*-Co exchange field H_{ex} and the crystalline-electric-field parameters A_n^m at the rare-earth (*R*) site in $R \operatorname{Co}_5 (R = \operatorname{Pr}, \operatorname{Nd}, \operatorname{Sm}, \operatorname{Gd}, \operatorname{Tb}, \operatorname{Dy}, \operatorname{Ho}, \operatorname{and} \operatorname{Er})$ and $\operatorname{Y}_{1-x}\operatorname{Nd}_x\operatorname{Co}_5 (x=0.5, 0.6, 0.8, \operatorname{and} 1.0)$ compounds are evaluated by a comparison of calculations with a series of experiments. The experiments provide the following data: temperature dependence of spontaneous magnetization of the compounds and magnetic moment of the rare-earth ion, magnetization curves along the crystallographic axes, and temperature dependence of the easy direction of magnetization. The anisotropies of the *R*-Co exchange interaction and the magnetic moment of the Co sublattice are taken into account in the calculation. The *R*-Co exchange field H_{ex} decreases monotonically across the rare-earth series from Pr to Er. For PrCo₅, the value of A_2^0 is much smaller than those of the other compounds, which suggests valence fluctuations for the Pr ion. For $\operatorname{Y}_{1-x}\operatorname{Nd}_x\operatorname{Co}_5$ and SmCo₅, the absolute value of A_2^0 decreases with increasing temperature.

I. INTRODUCTION

 $(Sm,Pr)Co_5$ is considered an excellent material for high-coercivity magnet applications. The magnetic properties of RCo_5 (R, a rare earth) compounds have been studied extensively. The compounds with Y, La, Ce, Sm, Gd, and Er constituents have the c axis as the easy axis; those with Nd, Tb, and Dy have the plane normal to the c axis as the easy plane of magnetization below the spin reorientation temperature T_{SR2} , a cone spin configuration between T_{SR1} and T_{SR2} , and finally an easy c axis above T_{SR1} ; the compounds of Pr and Ho have a cone spin configuration below T_{SR1} and an easy c axis above T_{SR1} (Fig. 1).

Tatsumoto et al.,¹ Okamoto et al.,² and Klein et al.³ measured the temperature dependence of the spontaneous magnetization M(T), magnetocrystalline anisotropy (MCA) constants K(T), and the cone angle between the easy direction of magnetization (EDM) and the c axis, $\theta_c(T)$, for a series of RCo₅ compounds. Greedan et al.⁴ showed that the magnetic anisotropy of the R ion in RCo_5 can be explained on the basis of a single-ion model. Bushow et al.⁵ and Sanker et al.⁶ evaluated the values of the exchange field $H_{\rm ex}$ and the crystalline-electric-field (CEF) parameters A_n^m at the Sm site in SmCo₅ by fitting the calculation with experimental data on $K_1(T)$. Er-molenko and collaborators⁷⁻¹⁵ measured M(T), $\theta_c(T)$, and magnetization curves along the crystallographic axes M(H) for a series of RCo_5 and $R_{1-x}R'_xCo_5$ compounds. They analyzed the magnetization curves measured at 4.2 K on the basis of classical two- or three-sublattice models. Asti et al.¹⁶ and Grössinger et al.¹⁷ observed the first-order magnetization process (FOMP) in PrCo₅, and pointed out that the sixth-order MCA energy term is responsible for the FOMP. Kelarev et al., ¹⁸ by means of neutron-diffraction techniques, studied the temperature dependence of the magnetic moment of the R ion, $M_R(T)$, and that of the cone angle between the magnetic

moment and the c axis, $\theta_R(T)$, for the Tb, Dy, and Ho compounds. Decrop et al.¹⁹ measured the M(T), $M_{\rm Co}(T)$, $M_{\rm Ho}(T)$, $\theta_c(T)$, $\theta_{\rm Co}(T)$, and $\theta_{\rm Ho}(T)$ curves for the Ho compound, and explained the experiments on the basis of a single-ion model. Alameda et al.²⁰ found the anisotropy of the magnetization in YCo₅. Ballou et al.^{21,22} showed that the anisotropy of the Gd-Co exchange interaction plays an important role in characterizing the M(H) curve of GdCo₅.

The purpose of this work is to evaluate the values of H_{ex} and A_n^m , together with M_{Co} , for a series of RCo_5 (R=Pr, Nd, Sm, Gd, Tb, Dy, Ho, and Er) and $Y_{1-x}Nd_xCo_5$ (x=0.5, 0.6, 0.8, and 1.0) compounds by fitting our calculations with as much experimental data

FIG. 1. Temperature variation of the magnetic structure of the RCo_5 series.

8593

1 01	.									
R	$\frac{2\mu_B H_{\rm ex}}{({\rm K})}$	$\begin{array}{c} A_2^0 \\ (\mathbf{K}) \end{array}$	A ⁰ ₄ (K)	A ⁰ ₆ (K)	A ⁶ (K)	$M_{\rm Co}$ (μ_B /f.u.)	<i>K</i> _{1Co} (K/f.u.)			
Pr	1300	25	-75	250	- 600	7.70	45			
Nd	750	-1020	0	115	150	7.70	45			
Sm	440	-330	-50	0	0	8.33	45			
Gd	290					8.55	45			
ТЬ	265	- 340	-240	0	0	8.75	44			
Dy	235	-425	-50	0	0	8.92	42			
Ho	220	-615	-260	-30	0	9.24	37			
Er	210	-350	-100	0	0	9.86	30			

TABLE I. The fitted values of $2\mu_B H_{ex}$ and A_n^m together with M_{Co} and K_{1Co} in the RCo₅ series at T=0 K.

as available. The anisotropies of the R-Co exchange interaction and the magnetic moment of the Co sublattice are taken into account in the calculation.

II. METHOD OF CALCULATION

The RCo_5 compound has a $CaCu_5$ -type hexagonal structure with space group P6/mmm. The Hamiltonian of the R ion in the compound consists of the spin-orbit coupling interaction, the CEF interaction, the R-Co exchange interaction, and Zeeman energy; that is,

$$\mathcal{H}_{R} = \lambda \mathbf{L} \cdot \mathbf{S} + \mathcal{H}_{\text{CEF}} + 2\mu_{B} \mathbf{S} \cdot H_{\text{ex}} + \mu_{B} (\mathbf{L} + 2\mathbf{S}) \cdot H .$$
(1)

The Hamiltonian of the CEF interaction in the $\langle 1000 \rangle$ coordinate system with the z axis along the [0001] axis is formulated as

$$\mathcal{H}_{\rm CEF} = A_2^0 C_2^0 + A_4^0 C_4^0 + A_6^0 C_6^0 + A_6^6 (C_6^6 + C_6^{-6}) .$$
(2)

Here,

$$C_n^m = \sum_j [4\pi/(2n+1)]^{1/2} Y_n^m(\theta_j, \varphi_j) ,$$

(n = 2,4,6; m = 0, ±6; |m| ≤ n), (3)

where $Y_n^m(\theta, \varphi)$ are the spherical harmonics, and θ_i and

FIG. 2. Magnetization curves along the *a*, *b*, and *c* axes at 4.2 K for the $PrCo_5$ compound. The solid lines represent the calculations. The experimental data are taken from Ermolenko (Ref. 15) (\triangle) and Andoh *et al.* (Ref. 27) (\bigcirc, \bigoplus).

 φ_j are the polar angles of the position vector of the *j*th 4*f* electron. It is assumed that the *R* ion is triply ionized, and that A_n^m is independent of temperature unless otherwise mentioned. The *R*-*R* exchange interaction, which is much weaker than the *R*-Co exchange interaction, is neglected. Both $H_{\rm ex}$ and $M_{\rm Co}$ are anisotropic, and are represented as²⁰⁻²²

$$H_{\rm ex}(\theta_{\rm Co}, T) = H_{\rm ex}(T) [1 - p'(T) \sin^2 \theta_{\rm Co}] , \qquad (4)$$

$$M_{\rm Co}(\theta_{\rm Co}, T) = M_{\rm Co}(T) [1 - p(T) \sin^2 \theta_{\rm Co}] , \qquad (5)$$

with p'(0)=0.020 (Refs. 21 and 22) and p(0)=0.037.²⁰ $H_{\rm ex}(T)$ is assumed to be proportional and antiparallel to $M_{\rm Co}(T)$, and the values of $M_{\rm Co}(T/T_C)/M_{\rm Co}(0)$ (T_C , the Curie temperature) and p(T) are taken to be those of YCo₅.^{10,20,23} The relation p'(T)/p'(0)=p(T)/p(0) is used in the calculation. The matrix elements of Eq. (1)

FIG. 3. Magnetization curves along the *a*, *b*, and *c* axes at 4.2 K for $Y_{1-x}Nd_xCo_5$ (x=0.5, 0.6, 0.8, and 1.0) compounds. The solid lines represent the calculations. The experimental data (Φ, \bigcirc) are taken from Ermolenko (Refs. 9 and 11).

FIG. 4. Magnetization curve perpendicular to the c axis for the Sm, Gd, and Er compounds, and that parallel to the c axis for the Tb and Dy compounds at 4.2 K. The solid lines represent the calculations. The experimental data (\oplus) are taken from Ermolenko *et al.* (Refs. 8–10, 12, and 14).

are calculated by using the irreducible-tensor-operator technique.²⁴ For a given applied field H and a direction of H_{ex} , the eigenvalues E_n and eigenfunctions $|n\rangle$ $[n=1,2,\ldots,\sum_J (2J+1)]$ are obtained by diagonalizing the $\sum_J (2J+1) \times \sum_J (2J+1)$ matrix of Eq. (1). The diagonalization is carried out within the subspace of the

ground J multiplet for the heavy R ions, within the subspace consisting of the ground and the first excited J multiplets for the Pr and Nd ions with $\lambda = 610$ and 536 K, respectively, and within the subspace consisting of the ground and the two lowest excited J multiplets for the Sm ion with $\lambda = 410$ K.²⁵ The free energy for the $Y_{1-x}R_xCo_{5+y}$ system is given by

$$F(H, H_{ex}, T) = -xk_B T \ln Z + K_{1Co}(T)\sin^2\theta_{Co}$$
$$-M_{Co}(\theta_{Co}, T) \cdot H , \qquad (6)$$

where

$$Z = \sum_{n} \exp(-E_n / k_B T) , \qquad (7)$$

and K_{1Co} is the MCA constant of the Co sublattice. $K_{1CO}(T/T_C)/K_{1CO}(0)$ is taken as that of YCo₅.²⁰ $K_{1CO}(0)$ varies linearly with y, and its value for y=0 and 3.5 is that of YCo₅ (Ref. 20) and Y₂Co₁₇,²⁶ respectively. The equilibrium direction of H_{ex} is determined from minimization of the free energy. The magnetic moment of the R ion is given by

$$M_R(T) = \sum_n \mu_n \exp(-E_n / k_B T) / Z , \qquad (8)$$

where

$$\boldsymbol{\mu}_n = -\boldsymbol{\mu}_B \langle n | (\mathbf{L} + 2\mathbf{S}) | n \rangle . \tag{9}$$

The magnetic moment of the $Y_{1-x}R_x Co_{5+y}$ system is

$$M(T) = x M_R(T) + M_{Co}(\theta_{Co}, T)$$
 (10)

III. RESULTS AND DISCUSSION

The fitted values of $2\mu_B H_{ex}$ and A_n^m , together with M_{Co} and K_{1Co} for each RCo_5 compound at T=0 K, are listed in Table I. Figures 2-7 and Table II present the

FIG. 5. Temperature dependence of θ_c for the Pr, $Y_{1-x}Nd_x$ (x=0.5, 0.6, 0.8, and 1.0), Tb, Dy, and Ho compounds, and those of θ_{H_0} and θ_{C_0} for the Ho compound. The solid lines represent the calculations. The experimental data are taken from Ermolenko *et al.* (Refs. 9, 11–15) for $R=Pr(\bigoplus)$, $Y_{1-x}Nd_x(\bigcirc)$, Tb($\bigoplus)$ Dy($\bigoplus)$, and Ho(\bigcirc), from Klein *et al.* (Ref. 3) for $R=Nd(\bigoplus)$, from Tsushima *et al.* (Ref. 28) for $R=Dy(\bigcirc)$, and from Decrop *et al.* (Ref. 19) for $R=Ho(\Box, \bigoplus)$.

FIG. 6 Temperature dependence of the spontaneous magnetization for the Pr, Nd, Sm, Gd, Tb, and Dy compounds. The solid lines represent the calculations. The experimental data are taken from Klein *et al.* (Ref. 3) for $R = \Pr(\blacktriangle)$ and $Sm(\bigcirc)$, from Ermolenko *et al.* (Refs. 10-12) for $R = Nd(\Box)$, $Gd(\blacksquare)$, and Tb(\bigcirc), and from Tsushima *et al.* (Ref. 28) for $R = Dy(\triangle)$.

FIG. 7. Temperature dependence of the magnetic moment of the *R* ion in the Tb, Dy, Ho, and Er compounds. The solid lines represent the calculations. The experimental data are taken from Kelarev *et al.* (Ref. 18) for $R=Tb(\bigcirc)$, $Dy(\bigcirc)$, and $Ho(\Box)$, from Decrop *et al.* (Ref. 19) for $R=Ho(\bigcirc)$, and from Ermolenko *et al.* (Ref. 14) for $R=Er(\blacksquare)$.

R	$T_{ m SR1}^{ m calc}$	$T_{ m SR2}^{ m calc}$	$T_{ m Srl}^{ m expt}$	$T_{ m SR2}^{ m expt}$	Reference
Pr	106		102		3
			107		16
			100		29
Nd	282	237	282	236	3
			280	230	11
			280	241	29
Tb	412	394	412	396	12
			414	396	18
			409	400	29
Dy	361	310	355	300	14
			367	325	28
			362	316	29
Но	183		175		13
			181		18
			190		29

TABLE II. The calculated and experimental values of the spin reorientation temperatures T_{SR1} (K) and T_{SR2} (K) in the Pr,

Nd Th Dy and Ho compounds

comparison of the calculations with experiment. Figures 2 and 3 show the M(H) curves along the *a*, *b*, and *c* axes at T=4.2 K for PrCo₅ and $Y_{1-x}Nd_xCo_5$ (x=0.5, 0.6, 0.8, and 1.0) compounds. Figure 4 shows the M(H)curve perpendicular to the c axis for the Sm, Gd, and Er compounds and parallel to the c axis for the Tb and Dy compounds at T=4.2 K. Figure 5 shows the temperature dependence of θ_c for the Pr, $Y_{1-x}Nd_x$ (x=0.5, 0.6, 0.8, and 1.0), Tb, Dy, and Ho compounds, and those of θ_{Ho} and θ_{Co} for the Ho compound. Table II presents the spin reorientation temperatures of the Pr, Nd, Tb, Dy, and Ho compounds. M(T) curves for the Pr, Nd, Sm, Gd, Tb, and Dy compounds are plotted in Fig. 6; and the $M_R(T)/M_R(0)$ curves for the Tb, Dy, Ho, and Er compounds, in Fig. 7. Further comparisons of the calculations with experiment and some discussions are given below.

For the Pr compound, the cone angle θ_c at T=4.2 K is calculated to be 23.8°, which is in agreement with the experimental value of $21^{\circ}-25^{\circ}$.^{27,15,30} Our calculations also reproduce well the FOMP along the *a* axis at a critical field $H_{er} = 150$ kOe (Refs. 16 and 17) (see Fig. 2). At the critical field, the free energy of the domain with the magnetization along the *a* axis becomes smaller than that of the domain that persisted below the critical field, and the former domain nucleates and grows through the domain-wall movement which characterizes the FOMP. The sixth-order CEF terms play a critical role in reproducing the FOMP. It can be seen from Table I that A_2^0 of the Pr ion has a positive sign and is much smaller than those of the other R ions. An anomalous decrease in A_2^0 has been also found in $Pr_2Fe_{14}B$.³¹ It is suggested that the valence of the Pr ion fluctuates. The fact that the lattice constant, a, in the RCo_5 series drops anomalously for PrCo₅, as well as for CeCo₅, would support this interpretation. 32

For $Y_{1-x}Nd_xCo_5$ (x=0.5, 0.6, 0.8, and 1.0) compounds, our calculations have shown that it would be im-

possible to reproduce the experimental M(T), M(H), and $\theta_c(T)$ curves if the parameter A_2^0 were independent of temperature. In fact, the M(T) curve is determined dominantly by the strength of the exchange field $H_{\rm ex}$, and is affected slightly by the parameter A_2^0 . The $\theta_c(T)$ curve is characterized mainly by the parameters H_{ex} and A_2^0 . The higher-order CEF parameters affect the $\theta_c(T)$ curve in a minor way. Similarly, A_2^0 is the most important parameter in characterizing the main feature of the M(H)curve. Using the value $2\mu_B H_{ex} = 750$ K, determined by fitting the M(T) curve, the parameter A_2^0 should be assigned values of about -600 or -1000 K in order to reproduce the main characteristics of the $\theta_c(T)$ or M(H)curves for NdCo₅. By allowing A_2^0 to vary with temperature, the temperature dependence of the parameter A_2^0 is deduced from the $\theta_c(T)$ curve for each compound as shown in Fig. 8. It should be noted that $-A_2^0(T)$, which is deduced from the fairly complicated $\theta_c(T)$ curve, decreases simply with increasing temperature. However, the rate of decrease is too fast and difficult to explain. One possible explanation is that the assumption of the Nd ion being triply ionized in the calculation is too crude. The valence of the Nd ion could fluctuate to some extent, which is also supported by the anomalous behavior in the lattice constant of NdCo₅.³²

For the Sm compound, the temperature dependence of the parameter A_2^0 is also deduced by fitting the experimental data on K_1 at various temperatures. The values of $-A_2^0$ should decrease to 290 and 240 K at T=300 and 475 K, respectively. A similar temperature dependence of A_2^0 was also found in $Pr_2Co_{14}B$ and $Nd_2Co_{14}B$; $Nd_2Co_{14}B$ (Ref. 33). The variation to such an extent in the electric-field gradients V_{zz} , which is proportional to the parameter A_2^0 , has been observed in a ¹⁵⁵Gd Mössbauer measurement on $Gd_2Fe_{14}B$.³⁴ The origin of this temperature dependence of A_2^0 is not yet understood. The magnetic moments of the Sm ion are calculated to be $0.35\mu_B$ and $0.05\mu_B$ at T=4.2 and 300 K, respectively, which are comparable to the experimental values of 0.38 μ_B and 0.04 μ_B .³⁵ The fitted values $2\mu_B H_{ex} = 440$ K and $A_2^0 = -330$ K are roughly consistent with those estimated by Bushow *et al.*⁵ ($2\mu_B H_{ex} = 400$ K and $A_2^0 = -360$ K), Sanker *et al.*⁶ ($2\mu_B H_{ex} = 480$ K and $A_2^0 = -420$ K), and Givord *et al.*³⁵ ($2\mu_B H_{ex} = 350$ K and $A_2^0 = -200$ K).

For the Gd compound, the values of K_1 at T=300 and 500 K are calculated to be 31.6 and 33.3 K/f.u., respectively, which are in good agreement with 31.4 and 33.3 K/f.u. from experiment.⁷ If p' is assumed to be independent of temperature, i.e.,

$$p'(500 \text{ K}) = p'(0 \text{ K}) = 0.020$$
,

instead of

$$p'(500 \text{ K}) = p'(0 \text{ K})p(500 \text{ K})/p(0 \text{ K}) = 0.030$$
,

the value of K_1 at T=500 K would be calculated to be less than 30.0 K/f.u.

For the heavy-rare-earth compounds, the experimental M(H), $\theta_c(T)$, M(T), and $M_R(T)$ curves shown in Figs. 4–7 can be reproduced well by assuming that A_2^0 is independent of temperature. For the Ho compound, the open circles and squares in Fig. 5 are two independent experimental results for the $\theta_c(T)$ curve as reported by different authors. According to Ermolenko *et al.*,¹³ the value of cone angle θ_c , measured in an applied field, depends strongly on the strength of the field. For instance, the value of θ_c at T=4.2 K is 65° for H=9 kOe (Fig. 5, the open circles), and it is about 82° by extrapolation to H=0 kOe. The calculated value of θ_c at 4.2 K is 80.4°. The fitted values of $2\mu_B H_{ex}$ and A_n^m (Table I) are consistent with those reported by Decrop *et al.*¹⁹ ($2\mu_B H_{ex} = 200$ K, $A_2^0 = -620$ K, $A_4^0 = -340$ K, and $A_6^0 = -50$ K), although the anisotropies of H_{ex} and M_{Co} had not been taken into account in their work.

Figure 9 shows the variation of the exchange field $2\mu_B H_{ex}$ at T=0 K across the RCo_5 series. The value of $2\mu_B H_{ex}$ decreases monotonically from Pr to Er. A simi-

FIG. 8. Temperature dependence of the second-order CEF parameter A_2^0 in Y_{1-x} Nd_xCo₅ [$X = 0.5(\bigcirc), 0.6(\bigcirc), 0.8(\bigcirc)$, and $1.0(\bigcirc)$] compounds.

FIG. 9. Variation of the exchange field $2\mu_B H_{ex}$ at T=0 K across the RCo_5 series.

lar behavior has been found in RNi_5 , $R_2Fe_{14}B$, and some other rare-earth transition-metal compounds.^{36,37} Such a variation in the exchange field has been attributed by Belorizky *et al.*³⁷ to the change of the difference between the orbital radii of the 5*d* and 4*f* electrons across a given compound series.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China and partly by Magnetism Laboratory, Institute of Physics, Chinese Academy of Sciences, Beijing, China.

- ¹E. Tatsumoto, T. Okamoto, H. Fujii, and C. Inoue, J. Phys. (Paris) Colloq. **32**, C1-550 (1971).
- ²T. Okamoto, H. Fujii, C. Inoue, and E. Tatsumoto, J. Phys. Soc. Jpn. **34**, 835 (1973).
- ³H. P. Klein, A. Menth, and R. S. Perkins, Physica 80B, 153 (1975).
- ⁴J. E. Greedan and V. U. S. Rao, J. Solid State Chem. 6, 387 (1973).
- ⁵K. H. J. Buschow, A. M. van Diepen, and H. W. de Wijn, Solid State Commun. **15**, 903 (1974).
- ⁶S. G. Sankar, V. U. S. Rao, E. Segal, W. E. Wallace, W. G. D. Frederick, and H. J. Garrett, Phys. Rev. B **11**, 435 (1975).
- ⁷A. S. Ermolenko, IEEE Trans. Magn. MAG-12, 992 (1976).
- ⁸A. S. Ermolenko and A. F. Rozhda, IEEE Trans. Magn. MAG-14, 676 (1978).
- ⁹A. S. Ermolenko, IEEE Trans. Magn. MAG-15, 1765 (1979).
- ¹⁰A. S. Ermolenko, Phys. Met. Metall. **50(4)**, 57 (1980).
- ¹¹A. S. Ermolenko, Phys. Met. Metall. 50(5), 53 (1980).
- ¹²A. S. Ermolenko and Ye. V. Rozenfeld, Phys. Met. Metall. 48(3), 44 (1980).
- ¹³A. S. Ermolenko and A. F. Rozhda, Phys. Met. Metall. 54(4), 64 (1982).
- ¹⁴A. S. Ermolenko and A. F. Rozhda, Phys. Met. Metall. 55(2), 53 (1983).
- ¹⁵A. S. Ermolenko, Phys. Met. Metall. **55(3)**, 74 (1983).
- ¹⁶G. Asti, F. Bolzoni, F. Leccabue, R. Panizzieri, L. Pareti, and S. Rinaldi, J. Magn. Magn. Mater. **15-18**, 561 (1980).
- ¹⁷R. Grössinger, R. Krewenka, K. S. V. Narasimhan, and M. Sagawa, J. Magn. Magn. Mater. 51, 160 (1985).
- ¹⁸V. V. Kelarev, V. V. Chuev, A. N. Pirogov, and S. K. Sidorov, Phys. Status Solidi A 79, 57 (1983).
- ¹⁹B. Decrop, J. Deportes, and R. Lemaire, J. Less-Common Met. 94, 199 (1983).
- ²⁰J. M. Alameda, D. Givord, R. Lemaire, and Q. Lu, J. Appl. Phys. **52**, 2079 (1981).

- ²¹R. Ballou, J. Deportes, B. Gorges, R. Lemaire, and J. C. Ousset, J. Magn. Magn. Mater. **54-57**, 465 (1986).
- ²²R. Ballou, J. Deportes, and R. Lemaire, J. Magn. Magn. Mater. **70**, 306 (1987).
- ²³D. Givord, J. Laforest, R. Lemaire, and Q. Lu, J. Magn. Magn. Mater. **31-34**, 191 (1983).
- ²⁴B. G. Wybourne, Spectroscopic Properties of Rare Earths (Interscience, New York, 1965).
- ²⁵S. Hufner, Optical Spectra of Transparent Rare-Earth Compounds (Academic, London, 1978), p. 34.
- ²⁶B. Matthaei, J. J. M. Franse, S. Sinnema, and R. J. Radwansiki, J. Phys. (Paris) Colloq. **49**, C8-533 (1988).
- ²⁷Y. Andoh, H. Fujii, H. Fujiwara, and T. Okamoto, J. Phys. Soc. Jpn. **51**, 435 (1982).
- ²⁸T. Tsushima and M. Ohokoshi, J. Magn. Magn. Mater. **31-34**, 197 (1983).
- ²⁹P. A. Algarabel, A. del Moral, M. R. Ibarra, and J. I. Arnaudas, J. Phys. Chem. Solids **49**, 213 (1988).
- ³⁰A. del Moral, P. A. Algarabel, and M. R. Ibarra, J. Magn. Magn. Mater. **69**, 285 (1987).
- ³¹J. P. Gavigan, H. S. Li, J. M. D. Coey, J. M. Cadogan, and D. Givord, J. Phys. (Paris) Colloq. 49, C8-557 (1988).
- ³²W. A. J. J. Velge and K. H. J. Buschow, J. Appl. Phys. 39, 1717 (1968).
- ³³Yan Yu, Zhao Tiesong, and Jin Hanmin, J. Phys. Condens. Matter 3, 194 (1991).
- ³⁴G. Czjzek, H.-J. Bornemann, and H. S. Li, J. Magn. Magn. Mater. 80, 23 (1989).
- ³⁵D. Givord, J. Laforest, J. Schweizer, and F. Tasset, J. Appl. Phys. 50, 2008 (1979).
- ³⁶E. Belorizky, J. P. Gavigan, D. Givord, and H. S. Li, Europhys. Lett. 5, 349 (1988).
- ³⁷E. Belorizky, M. A. Fremy, J. P. Gavigan, D. Givord, and H. S. Li, J. Appl. Phys. **61**, 3971 (1987).