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We develop a perturbation expansion in the intersite hopping around the atomic limit of the Hub-
bard model. It is valid for arbitrary finite temperatures and interaction strengths. Diagrammatic
rules that determine the grand-canonical potential and the Green's functions are derived. They
reduce the calculation of any finite-order contribution to simple algebra. This opens the way for
series extrapolations from computer-aided high-finite-order evaluations. Discrepancies in earlier
expansions around the atomic limit are clarified. The present expansion scheme involves only con-
nected diagrams with unrestricted lattice sums. This allows one to perform a vertex renormalization
as for the linked-cluster expansion of the Ising model. The renormalized perturbation expansion
can be used to construct self-consistent approximations which are automatically exact in the atomic
limit. In the limit of high lattice dimensions, only fully two-particle reducible embeddings of dia-
grams on the lattice contribute. The single-particle properties of the infinite-dimensional Hubbard
model reduce to those of independent tight-binding fermions hopping between dressed sites.

I. INTRODUCTION

A proper assessment of the correlation effects induced
by strong, short-ranged interactions in Fermi systems is
one of the most acute problems in today's condensed-
matter theory. Even for the simplest models of strongly
interacting fermions, exact solutions exist only in a few
special cases, such as in one spatial dimension, while in
general one is still disputing even the qualitative structure
of the corresponding phase diagrams. The question
about the existence of superconducting phases in lattice
models of electrons with purely repulsive interactions,
which has been intensively discussed in the context of
high-T, superconductivity, ' is only the most spectacular
among many other unsolved problems.

In the case of models with localized (spatially fixed)
spins, such as Ising or Heisenberg models, much insight
has been gained by expansions around the "atomic" limit,
where intersite couplings are switched off. In this ap-
proach one calculates the leading orders of an expansion
for the thermodynamic potential, susceptibilities, etc., in
powers of intersite coupling constants and tries to extra-
polate the results to higher orders. In many situations
this technique yields the most accurate quantitative esti-
mates of critical exponents presently available. In addi-
tion, renormalized series expansions have been used to
construct self-consistent approximations that obey con-
servation laws and fundamental thermodynamic identi-
ties.

In this work we develop a renormalized series expan-
sion for the Hubbard model, a lattice model of locally
interacting itinerant fermions. The Hubbard model is
one of the simplest models in the theory of correlated fer-
mions where it plays a generic role similar to the Heisen-
berg or Ising model in the case of spin systems.

For interacting lattice fermions the method of series
expansions around the atomic limit has not yet been sys-

tematically developed. For the Hubbard model, several
static quantities such as the grand-canonical potential
and some static susceptibilities have been expanded in
powers of t;&, where t;, is the interatomic hopping ampli-
tude (from site j to site i). The expansion has been car-
ried out explicitly up to fourth order for general intra-
atomic interaction strength U (Refs. 8 —10) and up to
ninth order for U = ~."' The results have been used to
study magnetic properties of the Hubbard model such as,
in particular, the critical temperature for the onset of fer-
romagnetism in various lattice structures. However,
different authors obtained different results and, conse-
quently, arrived at contrasting conclusions. The terms
contributing in these earlier expansions have been illus-
trated diagrammatically. There are connected and
disconnected diagrams and their evaluation involves re-
stricted lattice sums where two vertices must not coin-
cide. Clearly, an expansion involving restricted lattice
sums is not suitable for renormalization, because di-
agrammatic insertions interfere.

Hubbard' outlined an unrenormalized diagrammatic
perturbation expansion of Green's functions in powers of
intersite amplitudes for a general multiband lattice mod-
el. In his approach, a direct generalization of the so-
called "linked-cluster expansion" for spin models, only
connected diagrams with unrestricted lattice sums are in-
volved. Unfortunately, Hubbard's theory is obscured by
the many details of the model he discusses, and the ensu-
ing diagrammatic rules are very complicated. In fact,
Hubbard discussed no explicit application of his expan-
sion except for a reformulation of his earlier Green's-
function decoupling approximation. Furthermore, he
did not derive a direct expansion of the grand-canonical
potential Q. Although 0 can in principle be calculated
from the one-particle Green's function, a direct expan-
sion of 0, is often simpler.

It is therefore worthwhile to rederive Hubbard's ex-
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pansion for the special but important case of the single-
band Hubbard model, including a direct expansion of the
grand-canonical potential. This will be done in Sec. II of
the present work, where we derive diagrammatic rules for
the calculation of 0 and of one- and two-particle Green's
functions in powers of t;;, valid for arbitrary interaction
strengths, particle densities, and lattice structures. These
rules reduce the calculation of finite-order contributions
to simple algebra, which can be performed by a computer
program. This opens the way to the method of series ex-
trapolation from high-finite-order calculations. We will
also discuss the drastic simplifications arising in the
strong-coupling limit U —+~. The discrepancies in the
above-mentioned earlier expansions will be clarified.

In. Sec. III we derive the vertex-renormalized version
of the perturbation expansion. This renormalization is
obtained by generalizing the vertex renormalization for
the linked-cluster expansion of the Ising model. The re-
normalized theory provides a basis for the construction
of self-consistent approximations beyond finite-order per-
turbation theory. The criterion of self-consistency has
been ignored in many approximate solutions of fermionic
lattice models, but its importance is now being realized. '

In Sec. IV the perturbation expansion will be applied
to the infinite-dimensional Hubbard model, ' which has
met with great interest recently. ' In this limit only those
embeddings of a diagram on the lattice contribute which
have a fully two-particle reducible topology. As a conse-
quence, the single-particle properties of the infinite-
dimensional Hubbard model can be described in terms of
independent tight-binding electrons hopping between re-
normalized ("dressed") Hubbard atoms. For the half-
filled-band case, a ground-state perturbation expansion in
powers of t;&/U around the Neel state can be obtained by
slightly modifying the finite-temperature theory. A con-
clusion in Sec. V closes the presentation.

where U; is a site-dependent interaction and h; a site-
and spin-dependent external field; the subsequent analysis
is equally valid in this more general case.

The perturbation expansion will be set up at finite tem-
peratures and a grand-canonical ensemble will be used.
We define a grand-canonical Hamiltonian K by

E =TO+Xi,
EO=HO —p g n;

(2a)

(2b)

Ki =H), (2c)

where p is the chemical potential.
For t; =0 ("atomic limit" ) the model is easily solved

because in this case E =TO is just a sum of local opera-
tors, each acting on a four-state "atom. " In the following
the (nonlocal) kinetic energy K, will be treated perturba-
tively by expanding the grand-canonical potential and
dynamical correlation functions (Careen's functions) in
powers of the hopping matrix t;; .

A. Grand-canonical potential

The grand-canonical potential is given by

n= —T ln tre

where T is the temperature and p= liT. The perturba-
tion expansion is obtained from the interaction represen-
tation'

Q=AO —T ln($)o,
where Qo is the grand-canonical potential corresponding
to Eo and

II. PERTURBATION EXPANSION

In this section we derive the unrenormalized perturba-
tion expansion for the Hubbard model,

' ) =«Ipo . I

po =exp( —pKO ) /tr exp( pEo)—
H =Ho+Hi,

where

(la)
is the unperturbed ensemble average; the operator 4 is
given by

Ho= U g n;&n;~ (lb)

is a local interaction of strength U and a kinetic-energy
part,

(lc)

where '7 denotes the (imaginary-) time-ordering operator
and

Ho=+ U;n;&n;(+g h; n; (ld)

describes intersite hopping transitions, i.e., t;; is the ma-
trix element for a hopping process from a site j to a site i.
The operator ct (c; ) creates (annihilates) a fermion with
spin a on a site i and n; =c; c; is the local number
operator for spin-cr fermions. Instead of HD (lb), one
may also consider the generalization

Kor y
—Kor

c,'.(r)=e ' c,'e
Kor Kor

c; (r)=e 'c; e

(6a)

(6b)

are the creation and annihilation operators in
(imaginary-time) interaction representation. Expanding
the exponential in (5), one obtains for the nth-order con-
tribution to ($)0:
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(
—1)"
n! t, . t, g f d7, dr„(V[c., (r, )c; (r, ). . .c., (~„)c; (r„)])o .

&n &&
' '

~n 1 n

The ensemble average (. . . )0 appearing in (7) is just the n-particle Green s function of the unperturbed system

G„(j&r,crt, . . . , j„r„o„ij'&r', o't, . . . ,j'„r'„cr„')=& V[c, , (r', )c; (r, ). . .c, , (r'„)c; (r„)]&0jIa, g&a& j ~ n g„a„n

evaluated at ~; =~,', 0.; =o,'. To condense the notation, we abbreviate j„~„o,by 1, j'„o'„~', by 1', etc.
The Green's function G„(1, . . . , n ~1', . . . , n') can be written as a sum of products of cumulants (connected Green's

functions) C, where each term of the sum corresponds to a partition of (1, . . . , n, 1', . . . , n') in subsets containing
equal numbers of primed and unprimed variables, ' e.g.,

G ( 1 i
1 ) =C( (111'),

G2(1,2i 1',2') =C~(1,2i 1', 2')+ C, ( 1
i
1')C, (2i 2') —C, ( 1 i

2')C, (2i 1') .

(9a)

(9b)

The sign attached to a product is determined by the parity of the permutation of the primed variables with respect to
the unprimed variables.

The cumulants can also be obtained by calculating functional derivatives of the generating functional

(-0 f4', t) =)n(&exp —x 1 d~(g(" (~)c) (r)+c;,(r)g) (~)) )o
J, CT

(10)

with respect to the Grassmann fields g, g*

C (1, . . . , m ~1', . . . , m')= 5
5$'(1)

5 5
g*(m) g(m')

Co0 [4 )k]

The ensemble average ( . )0 in (10) factorizes into in-
dependent local averages (one for each site j) because Ko
is a sum of local operators. Hence, Co [g*,g] is a sum of
local functionals

[4 4] XC '[4 4;] (12)

where Co; [g&, g;i is obtained from (10) by omitting the
lattice sum. As a consequence of (12), the unperturbed
cumulants C are local (site diagonal), i.e., they vanish if
not all site variables in (1, . . . , m i

1', . . . , m') are equal.
The mth-order cumulants at j will henceforth be denoted

0 IC;(s„.. . , s is, , . . . , s ),
where s;=(r;,cr;) and s,.'=(r,' , cr,

' )collect tim. e a. nd spin
variables.

The explicit calculation of Q becomes much clearer
when the terms of the expansion are represented diagram-
matically. ' A cumulant

0 i IC &(s&, . . . , s is&, . . . , s )

is represented by a 2m-valent point vertex (labeled by j)
which is attached to m entering lines (labeled by
s', , . . . , s' ) and m leaving lines (labeled by s„.. . , s ); a
directed line running from a vertex j to a vertex i corre-
sponds to a hopping matrix element t;.. In Fig. 1 the dia-
grams yielding the leading-order contributions to Q are
shown (disconnected diagrams do not contribute to 0;
see below).

In nth order there are n!/g(D) different partitions
(contributing to the cumulant decomposition of G„) lead-
ing to the same diagram D. The symmetry factor g(D) is

de6ned as the number of distinct permutations of labeled
lines and vertices which do not alter the topological
structure of the diagram D. For example, an nth-order
polygon (diagrams 2a —4a in Fig. 1) is generated by parti-
tions of the form C, (1~!P1')C~ (2~P2'). . .C, (niPn'),
where P is a permutation. Clearly, there are (n —1)!dis-
tinct proper partitions. On the other hand, the symmetry
factor g of an nth-order (directed) polygon is n, i.e.,
n!/g =(n —1)!,as expected. Cancelling the factor 1/n!
emerging from the expansion of the exponential [see (7)],
each diagram D acquires simply a prefactor 1/g (D).

The sign associated with a diagram is determined by
the following procedure. ' Imagine each entering line at
a vertex to be paired with an arbitrary line leaving this
vertex (see Fig. 2). In this way the diagram is divided
into a set of loops. The time-spin arguments of a cumu-
lant

n 3

(=4

FIG. 1. Diagrams contributing to 0 for the leading orders
n =2, 3,4.
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(b)

FIG. 2. Fixing the number of loops by line pairing in a dia-
gram: (a) diagram, (b) separated loops.

FICx. 3. Diagram contributing to 0,2.

C )(si, . . . , s ~sI, . . . , g )

associated with a vertex must be arranged such that s,
and s,

' label paired lines (for all i). Then the overall sign
of a diagram is simply (

—1)f, where f is the number of
t

loops. This rule is easily verified for partitions of

G„(l, . . . , n
~

1', , n')

without permutations, i.e., for partitions of the form

Co, (1, . . . , m, ~l', . . . , m', )C' Im)+l, , m)+m2I(m)+1)', . (m)+m2)'j

the general validity follows from the simple observation
that each transmutation of arguments, e.g. , 1~m&+1,
changes the number of loops of the corresponding dia-
gram by one. Note that the factor (

—1)" from (7) has al-
ready been included in our sign rule.

Clearly, the contribution of a disconnected diagram is
just the product of the contributions of its connected
components. This is because the lattice sums in (7) are
unrestricted, i.e., diA'erent vertices are allowed to be on
the same lattice site. Hence the linked-cluster theorem '

applies, i.e., ln(A')o is given by the sum of all connected
diagrams.

We are now in a position to state the diagrammatic
rule for the calculation of A.

Rule 1': Grand-canonical potential Q.
(a) Draw all topologically distinct connected diagrams

D composed of directed lines and point vertices in such a
way that at each vertex the number of entering lines
equals the number of leaving lines.

(b) Label each line with an (imaginary) time and a spin
variable; label each vertex with a lattice vector.

(c) Each line running from a vertex i to a vertex j
yields a factor t;; each vertex j with m entering lines (la-
beled by sI, . . . , s' ) and m leaving lines (labeled by
s, , . . . , s ) yields a factor

(d) Determine the sign of each diagram (plus/minus for
an even/odd number of loops).

(e) Determine the symmetry factor g (D) for each dia-
gram, i.e., the number of distinct permutations of (la-
beled) vertices and lines which do not alter the topologi-
cal structure of the diagram.

(f) For each diagram D, multiply the hopping matrix
elements and cumulants obtained in (c), integrate each
time variable from 0 to P, and sum each spin variable and
sum each lattice vector over the whole lattice; multiply-
ing the result by the sign and dividing by the symmetry
factor of D, one obtains a quantity w (D), which we refer
to as the "weight" of B.

The grand-canonical potential 0, is then given by
0=00—T gw(D), (13)

where the sum extends over all connected diagrams.
Clearly, the nth-order contribution 0, is obtained

from those diagrams which contain exactly n lines. We
note that, since t;; =0, there are no diagrams where a sin-

gle line forms a loop.
As an example, we calculate the second-order contribu-

tion B2. There is only one diagram contributing in this
order (quadratic in the hopping matrix), which we label
as shown in Fig. 3. The diagram has one loop (the pair-
ing of lines at the vertices is unique in this case) and its

symmetry factor is 2. Hence,

p~(D)= —
—,
' & X «&«zt;;t, ;C);(&)~)l&~~~)Ci;(&2~pl&)~)),

0
1,J 0 l, F2

where C, is the atomic one-particle Green s function which, for FIO, (ld), is given by

O
—U,-(~—~') —(h, —P)(7.—7') , O O

—(h, —P)(7.—~')
C &;(rcr ~r'o') =5,8(r' —r).(p; +pd;e ' e ' —5 8(r —r')(p, ;+p; )e

(14)
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Here, p,;,p;,p;,pd; are the local densities of empty, singly occupied (spin o or —tT), and doubly occupied sites, re-
spectively (calculated in the atomic limit). Inserting (15) in (13) and (14), one obtains, for site-independent U; = U and

h; =h
4 oo oo+2 p g t,'; N(p'. +p' .)(—p»:+pd ) + (p—'.p' .—pe—pd ) ) (16)

The evaluation of diagrams is often simplified by using the frequency representation of the cumulants

r 0 I I

m
'

1 1» ' ' m m 1 1« ' ' '
» m m

I (CdlV1+ ~111 ~ oe ' ' ' '
Cm;(a»lO 1«. . . «COmOm IC»»', O, ». . . «~mOm)

I I
~m ~&». ~m

(17)

where a», , ra,
' are fermionic Matsubara frequencies [co, =TTT(2n, +1), co,'=mT(2n, '+I), where n, , n,

' are integers]. The
inverse transformation is

lucio» . . «m m)

=P f drl . .d. r dr', . . .dr' e
0

I I

Crn j(Pl& 1« ' ' «rrn Wm I%1&1« ' ' «urn Orn )

Inserting (17) for the vertices of a diagram, one can easily
carry out the time integrals [see Rule 1(f)]. This yields a
Fourier-transformed version of Rule 1 where lines are la-
beled by Matsubara frequencies (instead of time vari-
ables), cumulants are inserted in frequency representa-
tion, and finally Matsubara sums (instead of time in-
tegrals) are carried out. There is frequency conservation
at the vertices since

Cmj(a»1Oi». . . » ~m~m l~lOi«. . . «a»miry )

the calculation of lattice constants, such as the free multi-
plicity. "

As an example, we outline the calculation of the
fourth-order grand-canonical potential 04 for next-
neighbor hopping on a d-dimensional hypercubic lattice.
In this case the diagrams D4„D4b, and D4, in Fig. 1 con-
tribute. The symmetry factors are 4, 2, and 8, respective-
ly, and the free multiplicities are 2d(6d —3), (2d), and
2d, respectively. Using Rule 1, one obtains the following
contributions to A:

cr»+''+$0''$40.
1 m 1 le

In the absence of site-dependent external fields and for,
constant Ui = U, the atomic cumulants C &(. . . ) do not
depend on j, i.e., we may drop the site index, writing
C (. . . ). In this case the vertices of a diagram are site
independent while the lines are (always) time indepen-
dent, i.e., space and time dependences factorize. One
may define a temporal weight w, (D) of a diagram by in-
serting a factor 1 for each line, summing only spin and
time variables (no site variables), and attaching the sign
given by the number of loops. The spatial weight w, (D) is
obtained by inserting factors 1 for the vertices, summing
the site indices (not spin and time), and dividing by the
symmetry factor. Clearly, the total weight w(D) is then
given by the product w, (D)w, (D). Note that w, (D) is in-
dependent of Ko (in particular, it is independent of U and
p) while w, (D) is independent of the lattice structure.

The calculation of the lattice sums for a diagram be-
comes particularly simple in the case of pure next-
neighbor hopping, i.e., for t;; = —t if i, j are next neigh-
bors on the lattice and t;; =0, otherwise. In this case the
lattice sum amounts to calculating the free multiplicity
m (D) of the diagram, i.e., the number of distinct ways
(per site) in which the vertex-labeled diagram can be em-
bedded in the lattice with each vertex assigned to a site of
the lattice and each line lying along a next-neighbor
bond. Diferent vertices may coincide on the same lattice
site. There are efficient "computerizable" algorithms for

04,= LT (6d ——3)t —g [cl(rl lrl )]
r&

04b=LT(2d )t g C1(rl lrl )C2(rl, r2lrl, r~)

X C', (r, lr, ),
4II4, =LT t g c—2(rl r3lr3 rl+r3 r&)

4 r, , r2, r3

XC2(r2 rl+r3 r2lrl r3) (20)

where the variables r, include both spin and frequency
variables; spin and frequency conservation at the vertices
has already been built in; L is the number of lattice sites.
The lines at the two-particle vertices in D4b, D4, have
been paired such that two loops result. The atomic one-
particle cumulant in frequency representation reads

0+ 0 0+
oC 11 cr»CT

~
ACT

ia»+p —h; ico+p, —h; —U;

(21)

The expression for the atomic two-particle cumulant is
too lengthy to be presented here. Its calculation and the
evaluation of the Matsubara sum in (20) is, however,
straightforward. The correct result for Q4 has already
been derived by Kubo, who used a diA'erent technique.
We note that the fourth-order grand-canonical potential
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of the Hubbard model has already been investigated by
several other authors, all arriving at different re-
sults. ' ' In Ref. 10 the error is due to an unwarranted
application of the linked-cluster theorem. In Refs. 9 and
12 the minus signs ensuing from permutations of fer-
mions have not been taken into account.

For U = ~ the spin and charge degrees of freedom in
the partition function of the one-dimensional Hubbard
model with next-neighbor hopping are known to
separate. ' Hence, the partition function (in the presence
of a homogeneous magnetic field h) can be written as

(22)
k

where ck = —2t cosk is the one-dimensional tight-binding
band structure and the k product extends over the Bril-
louin zone. This yields

=o —LT, , /, » p'. + p'. +p'. e "" .—&m(1 —x )'

(23)

We checked our (and Kubo's) result for 0& by expanding
0 (23) in powers of t and comparing coefficients.

B. Green's functions

The one-particle thermal Green's function is given by

contributions of its connected components. Hence, the
linked-cluster theorem applies, ' which in this case states
that the disconnected diagrams appearing in the numera-
tor of (26) are cancelled by the denominator ( 4')o of (26).
Thus, we end up with the following rules for the calcula-
tion of the one-particle Green's function:

Rule 2: One par-ticle Green's function G "(r,r').
(a) Draw all topologically distinct connected diagrams

D composed of point vertices, directed "internal" lines
(connecting two vertices), and two "external lines" (one
entering and one leaving a vertex) such that at each ver-
tex the number of entering lines equals the number of
leaving lines (see Fig. 4).

(b) Label each line with a time and a spin variable, the
entering external line is labeled by ~', o.; the leaving one
by ~, o. . Label each vertex with a lattice vector, the ver-
tex with the entering external line is labelled by j, the
one with the leaving line by j (the external vertices may
coincide: in this case j=j').

(c)—(e) Same as in Rule 1.
(f) Same as for Rule 1, except that now only the time

and spin variables on internal lines and the site labels of
internal vertices are summed, while the labels of external
lines and vertices are kept fixed. The one-particle
Green's function is finally given by the sum of the
weights w (D) of all diagrams D:

(27)

G;;.(r, r')= trIpV —[c; (r)c; (r')]],
where

p =exp( /3K) Itr exp—( —PK)

is the statistical operator for K and

( ) eKr t —K~
jo. = jo

c; (r)—:e 'c; e

(24)

(25a)

(25b)

The Fourier transform G '(co) of G '(r, r') is obtained
by using the Fourier-transformed version of Rule 2,

n-0

n 1

are the creation and annihilation operators in Heisenberg
representation with respect to K.

The perturbation expansion of G;„,(r, r') is closely
analogous to that of 0 and we will therefore sketch its
derivation rather briefly. The perturbation expansion is
generated from the interaction representation

G...'(., )= —(&["...(.)".,''. ( ')+]),/«), , (26)

where S is given by (5). The numerator of (26) can be ex-
panded in powers of the hopping matrix where the
coeScients are expressible in terms of atomic cumulants
C . Each term can be represented by a diagram by asso-
ciating vertices with the cumulants and lines with the
hopping matrices. The diagrams differ from those for 0
in that they are rooted, i.e., there are one or two external
vertices, which have fixed site indices and some fixed time
and spin indices (the other vertices will be referred to as
internal vertices) The appearance .of external vertices is
due to the operators c; ( ), c;r(r') in (26), which have
fixed site, time, and spin variables.

The rules for the sign and the symmetry factor of a dia-
gram are the same as those for Q. The contribution of a
disconnected diagram is again just the product of the

n 2

n R

n a I

FIG. 4. Diagrams contributing to the one-particle Green's
function 6 for next-neighbor hopping on a hypercubic lattice
(up to fourth order).
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FIG. 5. Diagram contributing to 6'. —'1 1

where internal lines carry dummy (Matsubara) frequency
variables which are summed while both external lines
carry the fixed frequency co. For translational invariance
and next-neighbor hopping, the evaluation of the lattice
sum for a diagram D again (as for 0) reduces to the cal-
culation of the free multiplicity m (D).

To illustrate Rule 2, we calculate the first-order (in t;, )

contribution 6' to the one-particle Green's function.
The only first-order diagram is shown in Fig. 5. There
are no loops and the symmetry factor is 1. Following (the
Fourier-transformed version ofl Rule 2, one obtains

G'
jj (co) =t&& C&&(cocr coo )C&&.(cocr ~cocr ), (28)

where C
&

is the atomic one-particle cumulant as given by
(21).

As a second example, we evaluate the second-order di-
agram D2b shown in Fig. 6. Pairing the internal lines at

li) g
~Sl

0 ~ J
la) g

FIG. 6. Diagram contributing to 6'.

(29)

The generalization of Rule 2 to many-particle Green's
functions is straightforward. The n-particle Green's
function

the two-particle vertex, one obtains one loop; the symme-
try factor is 1. Hence, Rule 2 yields

G '(co)= —5" g t" t g Cz (r, r, ~r, r& )C&. (r& ~r&) .

G„(1, . . . , n ~1', . . . , n')=( V'[c, , (~', )c, (r, ). . .c, , (r'„)c; (v„)])

can be written in terms of cumulants (connected Green's
functions) C (1, . . . , m ~1', . . . , m'). In particular,

G2(1, 2~ 1',2') =C2(1,2~ 1',2')+ C, (1
~

1')C, (2~2')

—C)(112')C)(2I1'), (31)
where C, =G, =G is the one-particle Green's function.
From Gz (or C2) all two-particle correlation functions
can be calculated. The m-particle cumulant is obtained
by applying

Rule 3: m-particle cumulant

C (1, . . . , m~1', . . . , m') .

C. Special case U = 00

In many systems the local interaction U is much larger
than any other energy scale. Therefore, several works
have focused on the strong interaction limit U~~ of
the Hubbard model.

In the limit U~~ all states with doubly occupied
sites are suppressed. In the remaining subspace of the
Hilbert space there are only three possible states on each
site: empty, spin up, or spin down. The interaction Hp,
(lb), of the Hubbard model is zero in this subspace.

Same as Rule 2 except that now there are m entering
and m leaving external lines carrying fixed time and spin
variables and fixing the site variables of those vertices
which are connected to external lines. Apart from the
internal time, spin, and lattice sums, the evaluation of a
diagram contributing to C (1, . . . , m ~1', . . . , I') in-
volves a sum over all permutations of the external vari-
ables (1, . . . , I ) and (1', . . . , m'), respectively. The sign
of a diagram is again determined by line pairing (see
above), which now separates the diagram in loops and in
chains connecting the lth entering external line with the
Pith external leaving line (for l =1, . . . , m ) where P is a
permutation. The sign is ( —1) op, where f is the number
of loops and e~ is the sign of P.

The diagrams contributing in leading order to the
two-particle cumulant C2 are shown in Fig. 7.

n=0

FIG. 7. Diagrams contributing to the two-particle cumulant
C2 for the leading orders n =0, 1,2.
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Hence, the atomic cumulants become much simpler for
U= oo:

0 IC;(s„.. . , s is, , . . . , s )

P(T) 7[+ ' ' ' +7 7 )

gm(si». . . S ISi». . . Sn&)

(32)

where y depends only on the spins and on the time or-
der of the time variables.

In a diagram, a factor exp(pr, ) resulting from a vertex
where a line (with a time label r; ) is leaving is cancelled
by a factor exp( —pr; ) which is due to the vertex where
this line ends. Only the exponentials corresponding to
external lines remain. Thus, for a given time order, the
product of cumulants in a diagram is independent of the
internal time variables. Hence, the time integration
within the region defined by a certain time order yields
just the volume of that region.

As an example, we consider the calculation of the
grand-canonical potential 0 as described by Rule 1.
Each time integration in an nth-order diagram over the
region defined by a certain time order yields a factor

~ ~ ~

pdr, . . .d r„B(rp„rp2. . .rp„) =P"In!, (33)

where P is an arbitrary permutation of (1, , n ) and

B(+Pl +P2 ' ' +P

for ~pi)'Tp2). ~ - )7p and 0 otherwise. Hence, the time
integration in a diagram reduces to a sum over all possi-
ble time orders, i.e., over all permutations of (1, , n):

FIG. 8. The self-fields SI and S2.

T, i.e., either for very narrow bands or for extremely high
temperatures.

One way to go beyond perturbation theory is to extra-
polate finite-order contributions to infinite order by ap-
plying appropriate extrapolation techniques such as Pade
approximants or ratio methods. Series extrapolation
methods have been successfully applied to models with
localized spins, while for correlated lattice fermions this
approach has so far not been exhausted. Clearly, a
sufticiently large number of orders must be evaluated to
allow for a reliable extrapolation. For this a "computer-
izable" algorithm is indispensable and this is exactly what
the above diagrammatic rules provide.

Nonperturbative approximations can be obtained by
summing an infinite subclass of diagrams. The selection
of diagrams may be guided by physical intuition or, more
safely, by a small parameter (different from the expansion
parameter). A naive choice of diagrams usually leads to
approximations which violate conservation laws, sum
rules, etc. The vertex renormalization described in Sec.
III will provide a basis for the construction of self-
consistent approximations.

p
d'T]&i ~ ~ y d7 ~ o ~ ~

0 „,X.
P

(34) III. VERTEX RENQRMALIZATIQN

The evaluation of a diagram has therefore been reduced
to the calculation of finite sums, which can be performed
by a simple computer program.

To further cross check our method and the results for
A obtained by Kubo and Tada, " we have calculated Q
for U = ~ up to sixth order in the hopping matrix t (for
next-neighbor hopping) on a d-dimensional hypercubic
lattice. The results agree with those of Kubo and Tada
(published for d = 1,2, 3). For d = 1 they also agree with
the corresponding nth-order contributions obtained by
expanding the exact 0 (23) in powers of t.

D. Discussioa

The perturbation theory developed so far enables one
to calculate the leading corrections to the atomic limit of
the Hubbard model in a particularly transparent manner.
A glance at the number of incorrect results obtained ear-
lier ' ' suSces to convince oneself of the usefulness of
uniquely defined diagrammatic rules describing the calcu-
lation of an nth-order contribution. The rules also pro-
vide an illustrative real-space picture of the dynamics of
fermions in the Hubbard model in terms of time-ordered
lattice walks. Clearly, a perturbation expansion ter-
minated at some finite order is applicable only when the
hopping matrix t;; is small compared to the temperature

The purpose of the vertex renormalization is to absorb
all possible local insertions at a bare vertex into a renor-
malized vertex, thus yielding an expansion of Green's
functions in terms of diagrams in which all local inser-
tions are removed. The vertex renormalization described
here is closely analogous to that known for the linked-
cluster expansion of the Ising model.

To classify the various types of insertions at a vertex,
we define an n-particle self field-

5. Inj(si» ~ sn» s& n ) &

as a sum over all connected n-particle insertions at j as
indicated for S& and S2 in Fig. 8. The external vertex of
a self-field diagram (the one without a dot in Fig. 8) bears
no cumulant and the lines incident at this vertex have
fixed time and spin variables (namely,s„,s„,s', , . . . , s„'). An insertion is "connected" if it

FICi. 9. Definition of the renormalized atomic two-particle
cumulant C&.
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FIG. 10. C2 in terms of the self-fields.

the Green's-function diagrams (see Rules 2 and 3).
To remove local insertions from the diagrammatic per-

turbation expansion, we define a renormalized m-particle
cumulant

cannot be decomposed in disconnected parts by just
separating the lines fixed to the external vertex. Apart
from the special treatment of the external vertex, the
evaluation of a self-field diagram proceeds exactly as for

as the sum of all possible insertions that can be attached
to an m-particle vertex. This is illustrated in Fig. 9 (for
m =2). Clearly, C can be expressed in terms of self-
fields and bare vertices, as described diagrammatically in
Fig. 10 (for m =2). Algebraically, we obtain

C;(s is ') =C, (s is ')+ g Ids, ds ', C +„;(s,s, is ', s ', )S„;(s,is ', )

ni

+ —, g Ids, ds ', dszds zC +„+„;(s,s„s2is,s '„s z)S„&(si is i)S„;(szis 2)+ ' '

n&n2

(35)

Here several time and/or spin variables have been col-
lected in vectors, e.g. , s=(s„.. . , s ); their dimension is
defined by the context. The infinite sum (35) can be
rewritten in a compact form by making use of the gen-
erating functional Co; Ig, (*I defined by (10) and (12).
Defining bare cumulants in the presence of Grassmann
fields

grams. It should be noted that for the renormalization
procedure to work it is crucial to start from a diagram-
matic expansion which involves unrestricted lattice sums.

To express the grand-canonical potential 0 in terms of
renormalized cumulants, we define a functional N I C ] by

@ICI = sum over all closed diagrams

with renormalized vertices C

where

gm

g'*(s )

5((s ')

one obtains

C;(sis ')

6
g'(s, )

6
g(s' )

6
g*(s )

6
5$(s', )

(36)

(37a)

(37b)

—g g jds„ds '„S„;(s„is '„)C„;(s„is„'), (41)

without local insertions .
The rules governing the evaluation of N are the same as
those for Q (Rule 1), except that now only diagrams
without local insertions are involved and vertices corre-
spond to renormalized cumulants instead of bare ones.
Note that N is different from 0 since the former over-
counts unrenormalized diagrams. However, 0 and N are
related by the equation

0=&++ Co„

=exp g f ds„ds '„S„&(s„is '„)
5" 5"

5(*(s„) 5((s '„)

X C; I(s is ');g, g*) i~ ~g, (38)

In this way the renormalized cumulants C become func-
tionals of the self-fields S„Sz, . . . , from (38) one obtains
the useful identity

5C;(sis ')/5S„;(s„is '„)=C +„„(s,s„is ', s '„) . (39)

The one-particle Green's function G = C& and the many-
particle Green's functions can now be written as a sum
over all diagrams without local insertions where renor-
malized cumulants C are inserted for the vertices. The
leading terms contributing to G are shown in Fig. 11. It
is easy to convince onself that the signs and symmetry
factors involved in the evaluation of diagrams (see Rules
2 and 3) are treated correctly by the above resummation,
i.e., there is no undercounting or overcounting of dia-

S„;(s„is '„)=5@/5C„;(s„is '„) . (42)

This identity follows directly from the diagrammatic

G = W ' W-I ' CCS

FICx. 11. Renormalized expansion for the one-particle
Green's function.

n=i j

which is proved in the Appendix.
Clearly, the self-fields S„can also be expanded in terms

of diagrams with renormalized vertices C . As for the
Green's functions, there is no overcounting problem in
this case. Hence, given the functional C ISI, (38), local
insertions are completely removed from the perturbation
expansion. The self-fields can also be obtained by func-
tionally differentiating N I C ):
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rules for 4 and S„.
The vertex renormalization described in this section

enables one to set up self-consistent approximations
beyond finite-order perturbation theory. This will be
the subject of a subsequent publication.

IV. LIMIT OF HIGH LATTICE DIMENSION

Recently, the limit of high spatial dimension d~ao
has been introduced as a new promising starting point for
a better understanding of correlated lattice fermions. '

To obtain nontrivial infinite-dimensional models, the pa-
rameters of the nonlocal parts of the Hamiltonian must
be properly scaled to compensate (but not overcompen-
sate) for the increase in the number of neighbors on the
lattice in high dimensions. For example, the next-
neighbor hopping amplitude t must be scaled as

t =t*/(2d)', t* fixed (43)

A. Classification of contributions by powers of 1/d

The contributions-obtained from a perturbation expan-
sion pound the atomic limit can be classified by powers
of the inverse dimension 1/d. To be explicit, we restrict
the discussion to the case of next-neighbor hopping on a
simple hypercubic lattice; generalizations are straightfor-
ward. The evaluation of a diagram contributing to the
perturbation expansion involves lattice sums which
amount to counting the number of possible embeddings
of the diagram on the lattice. Each embedding has a cer-
tain topology defined by the number of sites "occupied"
by the vertices and by the way these sites are connected
by the lines of the diagram. In general, the topology of a

to keep the kinetic energy finite in d ~ ~ dimensions. '

The limit d ~ ~ has been studied for several fermionic
lattice models by various approaches, ' such as perturba-
tion theory with respect to the interaction, ' ' variation-
al methods, ' ' and path integral techniques. Exact
solutions have been obtained only for a simplified version
of the Hubbard model, where only one of the two spin
species can hop. The overall conclusions to be drawn
from these investigations are

(i) Fermionic lattice models in d~ ~ share many as-
pects with the corresponding finite-dimensional
models —in particular, the dynamical correlations sur-
vive in high dimensions; many quantities agree even
quantitatively in d =3 and d = ~.

(ii) There are drastic simplifications in d~ oo which
enable one to perform approximate calculations which
are prohibitively difficult in finite dimensions, such as, for
example, self-consistent perturbation expansions.

(iii) Exact solutions of fermionic lattice models are
hard to obtain even in d ~ ao dimensions; standard
mean-field theories (with static mean fields) are not exact
in this limit.

We will now investigate the perturbation expansion
around the atomic limit of the Hubbard model in d ~~
dimensions. The hopping expansion yields a particularly
suggestive real-space picture of the dynamics of lattice
fermions in high dimensions.

FIG. 12. Topology contributing to 0 in d = ~ dimensions.

diagram differs from the topologies of its possible embed-
dings since different vertices may coincide on one lattice
site. In the following the term "topology" refers to the
topology of an embedding.

We begin by considering the expansion of the grand-
canonical potential 0, where only closed diagrams
(without external vertices) are involved (see Rule 1 in Sec.
II). In this case only fully two-particle reducible topolo-
gies, i.e., topologies constructed by linking polygons (see
Fig. 12), survive in the limit d ~~. This can be seen as
follows. A p-gon (having p lines) can extend in up to p/2
different spatial dimensions; an embedding consisting of
m polygons having p &, . . . ,p lines, respectively, can ex-
tend in maximally p/2, p =p&+ +p, spatial dimen-
sions, which can be chosen arbitrarily from the d dimen-
sions available on the underlying lattice. For d ~p/2
there are

p/2

different choices, which is of order d~ for d ))p/2.
Hence, the number of embeddings of a polygon cluster
with p lines is of order d for large d. Since each line
corresponds to a hopping amplitude t=t*/(2d)'~2, the
contribution of such a topology is of order 1.

It is easy to see that topologies which are not fully
two-particle reducible are suppressed by some power of
1/d as d —+ oo. A typical example is given in Fig. 13(a):
Each line yields a factor t" /(2d )' whereas the number
of embeddings with this topology is only Zd (the number
of next neighbors on a d-dimensional hypercubic lattice).
Hence, this topology is of order 1/d. The topology
shown in Fig. 13(b) is of order (1/d) because it contains
eight lines while the number of its possible embeddings is
of order d for high d.

In d ~ ~, many diagrams vanish all together because
none of their embeddings have a fully two-particle reduc-

(b)

FIG. 13. Topologies of order (a) 1/d and (b) 1/d'.
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Ek;„=g t, ;G i, (r, r+0) (45)

from the Green's function, one has to sum over many
off-diagonal elements of G. For example, each term of
the sum corresponding to next neighbors j and j' is of or-
der (1/d'~ ) =1/d (one factor is due to G, the other to
the hopping matrix in (45)]. Since there are 2d next
neighbors j of j, their summed contribution to Ek;„
remains finite as d —+ ~.

The topologies contributing to the two-particle cumu-

ible topology. This is the case, in particular, for the dia-
gram and topology shown in Fig. 13(a). An important
dynamical process described by this diagram is the spin
exchange where two initially singly occupied sites with
different spins exchange their spins (by two hopping pro-
cesses) and then restore the initial situation (by two other
hopping processes). The intermediate spin-exchanged
state has zero excitation energy, since the number of dou-
bly occupied sites remains unchanged. This spin-
exchange process is the reason why the ground state of
the half-filled Hubbard model for a small but finite hop-
ping amplitude is not the Neel state in finite dimensions.
In the limit d —+ ~, however, this process is suppressed
and the Neel state becomes the exact ground state for
small hopping amplitude.

The topologies contributing to the Green's functions in
high dimensions are also exactly the fully two-particle re-
ducible ones. For the one-particle Green's function
G». (r, r') these topologies are chains (running from j' to
j) which may be decorated by local insertions of polygon
clusters (see Fig. 14). The contribution of each such to-
pology is proportional to d "' '~ where s ( j,j') is the
number of next-neighbor steps separating the fixed sites j
and j' on the lattice. This is easily shown by starting
with chains with exactly s(j, j ) lines and by studying the
effect of adding further links and local polygon insertions.
Topologies containing two-particle irreducible parts are
suppressed by some integer power of 1/d with respect to
the fully reducible ones.

The above discussion implies that

G;„(rr') d ""' ' as d

This result does not mean that the off-diagonal elements
of G can be neglected in d ~~, as is shown by the fol-
lowing example. To calculate the kinetic energy

FIG. 15. A typical topology contributing to C2 in d= ~ di-
mensions.

lants C2 in d —+~ dimensions are particle-particle or
particle-hole bubble chains which split into two chains at
each of their ends; any vertex may be decorated by po-
lygon insertions. A generic example is given in Fig. 15.
As in the case of G, the off-diagonal elements of C2 are
suppressed by some power of 1/d in d —+ ~ dimensions,
but partial sums of them (e.g., over all next neighbors)
may be finite and can be compared with corresponding
results obtained for d (~.

B. Dressed-atom picture

X C;„'(cocricoo )+ (46)

where C', is given by the bare atomic one-particle cumu-
lant C, plus all local decorations. From (46) one obtains
a Dyson-type equation relating G and C', :

G;, (co) =5,; C',~j(cocT icoo. )

+g C;;(coo ~coc7)t„, G, ,'(co) . (47)

We have just shown that in high dimensions the con-
tributing hopping processes are such that the "track" left
by the hopping fermions on the lattice is fully two-
particle reducible. This result does not hinge upon the
particular properties of the linked-cluster expansion: It is
valid for any expansion in powers of the hopping matrix.
The tracks contributing to the one-particle Green's func-
tion have been shown to be chains (with hopping matrix
elements as links) which may be decorated by local inser-
tions of polygon clusters. Hence, G has the form (in fre-
quency representation)

G;, (co) =5,) C;; (coo icoo. )

+C;) (coo ~coc7)ti, Ci„(coo ~coo. )

+g C
~q

(cocr ~coo )t jj C ~) (coo
~
cocr )t j j

FICz. 14. A typical topology contributing to 6 in d = ~ di-
mensions.

The chain structure (46) of G has an interesting impli-
cation: the single-particle properties of locally interact-
ing tight-binding fermions in high dimensions are the
same as those of i'ndependent tight-binding fermions hop-
ping between "dressed" atoms with a certain internal
structure characterized by an effective atomic Green's
function C& . By comparing (47) with the usual Dyson
equation G =Go+ GONG, where X is the self-energy and
Go =(i cop+,

—t) ' the one-particle Green's function for
U =0 (t is the hopping matrix), one finds that X is a local
(site-diagonal) function given by
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(48)

The result that the self-energy is local in d = ~ has al-
ready been obtained earlier within perturbation theory
with respect to the Hubbard interaction U. Since the
same result has now been obtained within perturbation
theory around the atomic limit, it is highly plausible that
the exact self-energy also becomes local in the limit
d~OOq

C. Half-filled band at zero temperature

For the special case of a half-filled band (n t+n& =1)
in d = ~ dimensions it is possible to perform a ground-
state perturbation expansion around the atomic limit. In
general, this is prohibited by the (infinite-dimensional) de-
generacy of the ground state of Ho (lb); degenerate per-
turbation theory around Ho involves exact solutions of
effective Hamiltonians, which are not much simpler than
the Hubbard model itself. For the half-filled-band case
the effective Hamiltonian ensuing from degenerate per-
turbation theory is the Heisenberg model

The explicit evaluation of the perturbation expansion
around the atomic limit involves the calculation of corre-
lation functions for the ground state of HJ. ' This is not
possible in general. In high dimensions, however, the
ground state of the Heisenberg Hamiltonian HJ is given
exactly by the mean-field result. On a hypercubic lat-
tice the mean-field ground state of H& is the Neel state
(provided that next-neighbor hopping is the dominant
hopping amplitude in t;; ). Hence, the Neel state is the
exact ground state for the half-filled Hubbard model with
infinitesimally small t; / U and higher orders (in t;& IU)
can be calculated by expanding around the Neel state.

The diagrammatic rules for the evaluation of the
ground-state energy and the Green's functions can be ob-
tained from the finite-temperature rules (rules 1, 2, and 3
in Sec. II) by (i) taking the limit T~O, (ii) analytically
continuing the imaginary times r to real times t, and (iii)
inserting the Neel state cumulants for C . Thus, Rules
1, 2, and 3 in Sec. II are only slightly modified: the lines
are now labeled by real-time variables (instead of
imaginary-time variables) which are integrated from —~
to ~ (instead of from 0 to /3); the vertices correspond to
cumulants

HJ=g J;;5; S„. ,
I,J

(49) C (itioi, . . . , t 0' ~tIoi, . . . t cT )

where J;.=4t; /U. The degeneracy is lifted by Hz (the
ground state of HJ is unique up to global symmetries).

I

which are calculated from the atomic zero-temperature
Green's functions

6„;(t,o„.. . , t„o„.~tIO'„. . . , t„'O'„)=(—i)"(NO~V[c; (ti ). . .c; (t„)c . , (t„'). . .c . , (t', )]%0)

by using the cumulant decomposition of G„(see Sec. II).
Here ~C&o) is the Neel state

jEB
(51)

i5, (et' —t) if j is on X

(53)

if jisonX
where X is the sublattice occupied by a o. spin in the
Neel state

~ @0), i.e., X
&

= 2, Xi =B.
The frequency representation of C

&
reads

/(co —iT)) if j is on X
Cii(coo ~cocr') = '

/(co —U+iTi) if j is on X

(54)

where q is an infinitesimally small positive number en-

created by filling the 3 sublattice with up spins and the 8
sublattice with down spins. The time dependence of the
operators in (50) is given by

iBpt —iHpt
c; (t)=e 'c; e (52a)

iHpt y
—iA'pt

c; (t)=e 'c; e (52b)

In this way the atomic one-particle cumulant is obtained
as

l

forcing convergence of the Fourier transformations. The
atomic two-particle cumulant is nonzero only if o.

]
= —o.

2

and 0
&

= 0'2' in this case it is given by

C2. (COi+Cc), 0', CO2 CO, CT ~COi, 0, COi, O')0

1 1 1 1—1

co] +co I Yj c02 co U+1 7/ co] l x/ cop U+ l'g

U'2

co& cu2+m —i g
for jonX (55)

on a hypercubic lattice. The results are exact (to a cer-
tain order in t /U) only in d ~ oo dimensions, but they
may be used as in approximation for three-dimensional
itinerant antiferromagnets in the strong-correlation re-
gime ( U » t).

For j on X one has co&~coi and co~—co in (55). Note
that the first four factors on the right-hand side (r.h. s) of
(55) are just the one-particle cumulants C, of the two
entering and the two leaving particles, respectively.

We conclude this section by listing the results which
have been obtained by explicit evaluation of diagrams up
to a certain order. All time and frequency integrals are
elementary, i.e., each diagram can be calculated analyti-
cally. All quantities are calculated for next-neighbor
hopping with an amplitude



LINKED-CLUSTER EXPANSION AROUND THE ATOMIC LIMIT . ~ . 8561

The one-particle zero-temperature Green's function is
defined by

G,; (t, t')= —i(VD~V[c'; (t)c t (t')]~%0), (56)

can be calculated from the Green's function. The nth-
order contributions P";& are (for n =0, 1,2, 3)

0
Paij =~ij~io. & (58a)

i
Upj (58b)

2P;) p;, ( —5; +5; ),1J (58c)

3P; ~

t3

U
( —2p;;+4p;p; ), (58d)

where p;"& is the number of diA'erent lattice walks leading
from i to j after n next-neighbor steps (p;; = 1 if i, j are
next neighbors, 0 otherwise; p;;=2d; p j=6d —3 if i, j
are next neighbors, etc.). For the sublattice magnetiza-
tion

(59)

one obtains

m = 1 2(t *IU)~+ O((—t */U)4) . (60)

The ground-state energy E has been calculated up to fifth
order in t*/U. It is given by

E/L = t*2/U+t*4/U—3+O(t*6/U5), (61)

where L is the number of lattice sites. It is interesting to
note that the antiferromagnetic Hartree-Fock solution
yields

E/L = t *'IU+2t *'I—U'+ O(t *'IU'),
while the antiferromagnetic Gutzwiller wave function
yields

E/L = t* /U+t* IU +O(—t* IU )

(Ref. 33), which is exact up to order t* /U

V. CONCLUSIONS

A finite-temperature perturbation expansion around
the atomic limit of the Hubbard model has been
developed. The unrenormalized expansion has been for-
mulated in terms of simple diagrammatic rules for the
calculation of the grand-canonical potential 0, and of n-
particle Green's functions G„ in powers of the hopping
amplitude. Discrepancies in earlier expansions
around the atomic limit have been clarified in favor of

where ~%0) is the exact ground state of the Hubbard
model H (la) —(lc), and c,c are creation and annihilation
operators in Heisenberg representation with respect to H.
The Green's function has been calculated up to third or-
der in t*/U. The results are listed in Appendix B.

The one-particle density matrix

(57)

works by Kubo and Kubo and Tada" by calculating
finite-order contributions to the grand-canonical poten-
tial and by comparing with a corresponding exact result
in one dimension.

The diagrammatic rules reduce the calculation of
finite-order contributions to 0 or G„ to simple algebra,
which becomes, however, increasingly cumbersome for
higher orders. Fortunately, any step of the rules can be
carried out exactly by a computer program (even the time
integrals and/or frequency sums, because they are all of
the same type). Hence, one will be able to go to relatively
high orders, such that the method of series extrapolation,
which has been very successful for spin models, can be
applied.

In contrast to previous approaches, the expansion dis-
cussed in this paper involves only connected diagrams
with unrestricted lattice sums. This made possible a ver-
tex renormalization analogous to the renormalization
known for the linked-cluster expansion of the Ising mod-
el. The renormalized perturbation expansion provides a
basis for the construction of self-consistent approxima-
tions, where Green's functions are obtained by function-
ally diA'erentiating a generating functional 4 with respect
to external, time-dependent fields. In contrast to the
well-known self-consistent expansions around the nonin-
teracting Fermi sea, in our approach the atomic limit is
automatically treated exactly. To describe the nonin-
teracting limit U~O exactly, too, it is sufhcient to in-
clude all diagrams consisting exclusively of one-particle
vertices, because higher-order vertices vanish for U~O.
In particular, for the one-particle Green's function these
are just the chain diagrams.

The hopping expansion is particularly suitable for
visualizing the peculiarities of special lattice structures.
It was shown that for a high-dimensional (d ~ oo ) lattice
only fully two-particle reducible embeddings of diagrams
contribute. As a consequence, the single-particle proper-
ties of locally interacting fermions in d ~ ~ dimensions
were seen to reduce to those of independent tight-binding
fermions hopping between dressed atoms. The self-
energy was shown to be local in d ~ ~ dimensions [this
property had so far been derived only within perturbation
theory with respect to U (Ref. 25)].

The technique developed in this work can be easily
generalized for any lattice model of the form
H =H0+H&, where H0 is a sum of local operators and
H& is a sum of arbitrary two-fermion operators. Thereby,
the diagrammatic rules remain essentially unchanged. A
generalization of H0 (e.g. , to a many-orbital atom) afFects

only the atomic cumulants C (corresponding to the ver-
tices of a diagram). A generalized H& (including inter-
band transitions, spin-dependent hopping amplitudes,
etc. ) leads to generalized hopping matrices t,„~ (corre-
sponding to the lines of a diagram), where ct, P are band
or spin indices.
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APPENDIX A: RELATION BETWEEN 0 AND N

Equation (41) relating 0 and N is easily proven by in-
troducing time- and spin-dependent hopping matrix ele-
ments t;~(s', s ). The S matrix (5) involved in the interac-
tion representation (4) of fl is then generalized to

PeV=V exp — d~d~' g g tj.,(r'o';ro )c; (.~')c; (~)
0 I0) C7 J)J

(A 1)

Clearly, the only modification in the diagrammatic rules caused by this generalization is that the lines become time-and
spin-dependent functions t;.;(s;s). Comparing the interaction representation for 0 (4), with the one for 6 (26), one
finds that

=6;;.(s is'),6Q

5t;, s';s

where 6» (sis ) is the exact one-particle Green s function in the presence of the generalized hopping matrices.
We now show that the functional derivative of the r.h.s. of (41) with respect to t, „(s',s) also .yields 6j'(s is' ). The

functional 0 (defined by its expansion) depends on t explicitly (via the lines) and implicitly (via the renormalized ver-
tices). Hence, we obtain

5N

5t, ;(s', s)
54 5C (s is' )

5C„;(s„is „' ) 5ti i(s';s)

5C„;(s„is „' )=6;; (sis')+ g g f ds„ds'„S„;(s„is'„)
n=1 i 33

(A3)

where the last step follows from the fact that functional derivation of 0 with respect to the hopping matrix (for fixedC, m = 1,2, . . . ) corresponds to breaking lines in the diagrams (first term) and from (42) (second term). The renormal-
ized zero-particle cumulant Co, defined by (38), depends on t '&(s', s) only via the self-fields. Hence,

5Co; 5CO; 5S„;(s„is '„)
dS~ CPS n

5S„;(s„is „' )f ds„ds '„C„;(s„is '„) (A4)

where in the last step the identity (39) has been applied. Using (A3) and (A4), we find that the functional derivative of
the rhs of (41) with respect to t; „(s',s ) yields indeed the exact Green's function 6;; (s s'). Since (41) is trivially satisfied
for t;; (s', s) =0 (in this case Q =Go, @=0,S„=O, C„=C„), the equality for the derivatives implies that (41) holds for
arbitrary t;.; (s', s) and, in particular, for the "static" hopping matrix

t;; (s', s) =5 .5(r 7')t;, —

Q.E.D.

APPENDIX B: GROUND-STATE GREEN'S FUNCTION FOR THE HALF-FILLED
STRONGLY COUPLED HUBBARD MODEL IN d = ao DIMENSION

For the ground state of the half-filled Hubbard model on an infinite-dimensional lattice with next-neighbor hopping
(amplitude —t), the leading corrections to the atomic Green s function (Neel-state Greens function) are given by

6'.'(co) = tp"—1 1
(B1)

62 G2a+ 62b (B2)

where
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G "(co)=t p
1 1

2b p 2 j~
2(co i—g )

63=g»+ 63b+ G3~

j, —a

co —U+i g

1 1——+
U co —U+i q

where

G3a ( )= —t
1 1" (co iri) —(co —U+iq)

G3b" (co) = —t3p2 '"5 —+1 1 1 1 +5'
U co i ri—(~—iq) co —U+i ri

1 1 1+
U Co

—U+ig (co —U+tq)~ Cll i7—)

Here 5; =1 if j belongs to X [the sublattice filled with cr spins in ~4o) (51)] and 5& =0 otherwise; p&& is the number of
possible n-step lattice walks from j to j'.
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