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Several cluster Monte Carlo methods were developed recently and proved to be very efficient in

accelerating simulations of various models. We present a general cluster method for Monte Carlo
simulations that unifies many of the previously developed algorithms. Our general scheme satisfies

the detailed-balance condition, and may therefore serve as a framework for developing new cluster
acceleration techniques.

I. INTRODUCTION

The rapid development of cluster Monte Carlo simula-
tion techniques in the last few years' ' has attracted
considerable attention. It is generally believed that such
methods may solve problems of slowing down that arise
when standard Monte Carlo procedures (e.g., the
Metropolis algorithm" ) are used. Cluster acceleration
techniques are particularly important when standard pro-
cedures are prohibitively inefficient, as is the case, for ex-
ample, near critical points and in models with frustration
at low temperatures.

The pioneering work of Swendsen and Wang' (SW) on
acceleration of simulations of ferromagnetic Potts models
gave the first hints on the extraordinary efficiency that
one may achieve using cluster algorithms. Their algo-
rithm turns out to be very effective even near critical
points, where standard simulations suffer from critical
slowing down. For example, the dynamic critical ex-
ponent they obtain is zsw =0.35 for the two-dimensional
Ising model and zsw=0. 75 for the three-dimensional
case, while z =2 when the Metropolis algorithm is used.
Heermann and Burkitt' claim that the actual exponent
of the SW algorithm is even smaller, and that in the two-
dimensional case the divergence of autocorrelation times
with the correlation length is only logarithmic (z =0).

The success of the SW procedure may be understood if
one considers the reasons for critical slowing down in
standard single-spin-Rip simulations. Since near criticali-
ty the correlation length becomes very large,
configurations with large correlated clusters of spins are
probable. In order to induce transitions among such
probable configurations that have large-scale differences,
one has to perform coherent moves of large blocks of
spins. Obviously, standard simulation techniques that
fiip single spins incoherently, tend to be very slow in such
situations. To overcome this problem SW replace the
original Potts system by one of decoupled, probabilisti-
cally determined clusters, each representing a block of
Potts spins. In ferromagnetic Potts models these clusters
turn out to be large enough to induce large-scale moves,
but still smaller than the whole system, so that the pro-
posed moves are nontrivial.

Other authors, encouraged by the success of the SW

procedure, tried to generalize it. Success of such general-
izations is by no means guaranteed. Naive generaliza-
tions may fail for two reasons. First, the clusters one
generates may be too large; when nearly all spins belong
to the same cluster, the resulting large-scale moves are
trivial. Secondly, some of the generalizations introduce
interactions between clusters. Simulations of the result-
ing system of interacting clusters turn out to be difficult
in some cases, and suffer from slowing down. Keeping in
mind that both of these problems have to be avoided, let
us brieAy mention several directions in which generaliza-
tions were attempted.

Kandel et al. applied multigrid ideas to reduce the
dynamic critical exponent of the SW procedure even fur-
ther. They replaced the original system by a hierarchy of
systems of interacting clusters. The first (finest) of these
systems was the original one, while the last
(coarsest) was the SW system of noninteracting clusters.
Intermediate systems consisted of clusters smaller than
those of SW, but with a ferromagnetic Potts interaction
between clusters. Kandel et al. showed that by investing
more work on coarser systems than on finer ones, critical
slowing down was, apparently, eliminated.

Other researchers tried to devise cluster algorithms for
systems with continuous degrees of freedom. Nieder-
mayer developed a scheme that may be used for such
models, and so did Edwards and Sokal. Both ideas fail
when applied to the XY model. These algorithms are un-
able to simultaneously avoid the two problems mentioned
above. Edwards and Sokal arrive at a model of interact-
ing clusters with a Hamiltonian that is dificult to simu-
late. Niedermayer has parameters in his algorithm which
can be tuned in order to minimize relaxation times. In a
certain range of this parameter space he can avoid the
problem of strong interactions between clusters, but then
almost all the lattice ends up in a single cluster. By
changing the parameters he may avoid the latter prob-
lem, but then the interactions between clusters get
stronger and the simulation suffers from slowing down.

It is clear from the above discussion that naive applica-
tion of cluster updating schemes in Monte Carlo simula-
tions is not always efficient. One has to understand the
essential large-scale physics, which is responsible for the
slowing down of standard techniques, in order to devise
an effective cluster algorithm. The definition of clusters
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within such an algorithm should reAect the true physical
correlations between degrees of freedom. For example, in
order to accelerate simulations of the ferromagnetic XY
model, one has to relax large-scale vortex and spin-wave
excitations. Therefore, a cluster algorithm that tends to
"freeze" all the spins around a vortex core into one clus-
ter will not improve efficiency. Wolff devised a cluster
algorithm for ferromagnetic O(n) models that meets the
above criterion. His algorithm breaks vortex and spin-
wave excitations into several clusters and improves the
efficiency of simulations by orders of magnitude. He suc-
ceeded in reducing critical slowing down significantly
(and perhaps even eliminating it completely for the two-
dimensional XFmodel). Brower and Tamayo invented a
similar method to reduce critical slowing down in the P
theory. Their method breaks large-scale kinks into
several clusters, thus taking into account the appropriate
large-scale physics of the model.

So far we have mentioned cluster algorithms that suc-
cessfully treat important large-scale excitations of the
system. In some models, however, the low-temperature
physics is further complicated by the fact that the ground
state is highly degenerate. Single-spin-Hip algorithms
may be nonergodic at T=O and extremely slow at low
temperatures. Such degenerate ground states occur, for
example, in antiferromagnetic Potts models. Wang,
Swendsen, and Kotecky invented a technique that sam-
ples all ground states of these models very efficiently even
at low temperatures. Their method allows for accurate
determination of zero-temperature entropies with modest
amounts of computer time.

Highly degenerate ground states are encountered also
in models with frustration. In some of these models (e.g. ,
spin glasses) the nature of important excitations is ex-
tremely complicated as well, and severe slowing down is
observed when standard simulation techniques are ap-
plied at low temperatures. The cluster algorithms that
were mentioned above are unable to identify important
large-scale degrees of freedom in frustrated systems, and
do not accelerate the simulations. ' The general question
of efficient cluster algorithms for frustrated systems is an
open problem, but some success was achieved for particu-
lar models. SW developed their "replica" Monte Carlo
algorithm for Ising spin glasses and demonstrated its
efficiency in the two-dimensional case. Although their
method may not be as useful in the three-dimensional
case and for other models with competing interactions, it
is certainly a step forward towards acceleration of simu-
lations of frustrated systems. Kandel, Ben-Av, and
Domany found an extremely efficient cluster algorithm
for the fully frustrated Ising model on the square lattice.
Their algorithm does not suffer from noticeable slowing
down even at T =0.

Another open question is that of simulations of lattice
gauge models. So far only the simplest gauge model can
be simulated efhciently with a cluster algorithm. We
refer here to the work of Ben-Av et al. ' who invented a
cluster technique to simulate the three-dimensional Z2
gauge model. They reduced critical slowing down
significantly (z=0.73 as compared with z )2 for stan-
dard simulation techniques).

Since as we have seen above, for each physical system
we have to develop a new cluster algorithm that takes
into account the appropriate large-scale physics, it is
desirable to have a general scheme that will serve as a
framework for devising new cluster algorithms. In this
work we propose such a general scheme which unifies
many previously developed cluster algorithms. A de-
tailed description of the method is given in Sec. II, where
we also give several important examples. In Sec. III we
show that our scheme is a legitimate Monte Carlo pro-
cedure (i.e., satisfies the detailed balance condition). Er-
godicity cannot be proven in general and has to be shown
in each specific application explicitly. Finally, we demon-
strate in Sec. III that many previously developed cluster
algorithms' ' can be viewed as particular cases of our
general scheme.

II. DESCRIPTION OF THE PROCEDURE

Consider a model Hamiltonian & that can be written
as a sum of the form

(2.1)

gP, '(u) =1 (2.2)

for any term l and configuration u. Having generated
[ i(l) ), a particular assignment of an i to each 1, we con-
struct a new Hamiltonian,

(2.3)

where (for any u) we have

V,'( u ) = Vi( u )
——ln[P, '( u ) ]+C,

' . (2.4)

The free parameters C are configuration independent; P
is the inverse temperature.

The second step consists of a simulation of the model,
which takes the system to a new configuration u '

~ To do
this, we may use any procedure whose transition proba-
bilities, T~;~ (u ~u ) satisfy the detailed balance condition
with respect to the new Hamiltonian, i.e.,

For example, one can write the nearest-neighbor Ising
Hamiltonian on the square lattice as a sum of single-bond
energies, or as a sum over elementary plaquettes, l, with
each V& consisting of four bonds. The aim of our Monte
Carlo scheme is to generate a move from any initial point
u in configuration space to another configuration, u',
which involves some large-scale changes.

The first step of our general Monte Carlo procedure is
to make independent decisions on each of the terms, V&,

of the Hamiltonian. To each V& we assign one of n possi-
ble integers i. The decision which assigns an integer i to a
V& is stochastic, and may depend on the configuration of
the system, u. That is, the probability of assigning i to l
is written as P =P (u). These i =1,2, . . . , n possibilities
represent generalizations of the freeze-delete operations
which are used in many cluster algorithms. Their proba-
bilities are normalized, i.e.,
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—p&I,.
I

( u )—
e I I T(,.I(u —+u')=e I I T(,.)(u' —+u ) . (2.5)

These two steps define a cycle of the procedure; after
completing the cycle we restore the original Hamiltonian
and repeat the cycle, starting from the new configuration
u'. Equation (2.4) is most important since it ensures that
transitions generated by (2.5) satisfy the detailed balance
condition with respect to the original & (see below).

In order to develop an intuitive understanding of the
general procedure outlined above it is useful to investi-
gate some of the possible modified interactions and their
respective probabilities. To do this let us examine Eq.
(2.4) more closely. Note first that the constants C; do not
depend on the configuration, and are therefore redun-
dant. The reason for including them in expression (2.4) is
purely aesthetic. They enable us to eliminate terms of the
modified energies that have complex dependence on tem-
perature and on coupling constants, but do not depend on
the configuration.

As a first and important example, consider a term
VI(u) of the Hamiltonian that can take m distinct energy
values E;, i = 1,2, . . . , m. Let us define m of the n possi-
bilities to modify the interaction term. Let the probabili-
ty to change the interaction according to the ith possibili-
ty be

Vd(u )=0 (2.9)

of the Ising model when the Hamiltonian is viewed as a
sum of single-bond energies. If a bond that connects two
spins is frozen, the relative orientation of the spins cannot
change during the ensuing simulation, and they can be
viewed as a cluster of spins. We therefore see that the
freezing operation allows us to define clusters in the
modified system. It is this fact that permits us to view
our scheme as a generalized cluster algorithm. Freezing
operations define clusters in the general case as well; de-
grees of freedom that interact via a frozen interaction are
considered to be in the same cluster.

Freezing operations generate clusters, but they do not
determine the interactions between clusters. These in-
teractions are determined by those modifications of the
Hamiltonian which are not freezing operations [such as
the i =m +1, . . . , n yet undefined modifications in our
example (2.6)]. To demonstrate this, we now show how a
noninteracting system can be generated by supplementing
freezing by an operation that eliminates completely the
interaction between clusters. This new type of
modification of the Hamiltonian is termed a deletion
operation. It replaces the interaction V&( u) by the
modified interaction

p; if V&(u)=E;
P'u =

0 otherwise,

and let us choose the constants

C,'= —1n(p;) E, . —1 (2.7)

for any configuration u. As opposed to the freezing case,
here the probability to delete a term of the Hamiltonian
is not arbitrary. Its dependence on the configuration is
completely determined by Eq. (2.4):

p[v (u)+c']
(2.10)

The inodified interaction now takes the form [see Eq.
(2.4)]

0 if Vi(u )=E;
V,'(u )= (2.8)otherwise .

As explained above the second step of our procedure con-
sists of Monte Carlo simulations that satisfy the detailed
balance condition with respect to &, the modified Hamil-
tonian. Say for a particular interaction term, l&, the ini-
tial configuration was such that V& (u)=Ei, and indeed

i =1 was assigned (with probability p, ) to l, . Then the
—l

modified interaction, Vi (u), assigns infinite energy to
any u for which V& WE&. Hence no such u can be ob-

1

tained in the simulation that uses & as its Hamiltonian.
Thus, the ensuing simulations obviously conserve or
freeze the energy of any term of the Hamiltonian that was
modified according to one of the possibilities
i =1,2, . . . , m. We therefore call such a modification of
the Hamiltonian a freezing operation. If the term Vi of
the original Hamiltonian is frozen, all moves that con-
serve its energy are allowed in the ensuing simulations
and occur with equal probabilities, but those moves that
change its energy are forbidden. Note that the only re-
striction on the parameters p, of Eq. (2.6) are O~p; ~ l.
Thus any term of the Hamiltonian can always be frozen
with arbitrary probability without violating the detailed
balance condition.

The freezing operation becomes very simple in the case

The constant Cd must be chosen so that the relation
Pd ( u ) ~ 1 is satisfied for any configuration u. The
deletion operation is simpler than freezing in the sense
that it describes a single possibilty to modify the interac-
tion, whereas the freezing operation consists of m distinct
such possibilities.

If, for example, the term considered is a bond of a
ferromagnetic Ising Hamiltonian, i.e., l~( jk) and
Vi(u) = —JS Sk, the deletion probability (2.10) takes the
form

(2.11)

Thus an unsatisfied bond can be deleted with probability
Pd =1 (if C = —J is chosen), whereas the probability to
delete a satisfied bond is smaller: I'd ~ e

Assume now that the new Hamiltonian & is generated
by a procedure that uses only freezing and deletion
operations. According to the definition of these opera-
tions, only frozen interactions that restrict the phase
space appear in &. In the ensuing simulation all the
configurations that satisfy these restrictions should ap-
pear with the same probability. Since, by definition, re-
strictions occur only within clusters, the configuration of
each cluster may be chosen independently, and the
modified model is therefore a system of noninteracting
clusters.

Freezing and deletion operations turn out to be impor-
tant, and are used very frequently in cluster algorithms
(see Sec. IV). Equation (2.4) is, however, much more gen-
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eral, and allows for many other modifications of the
Hamiltonian. Some other possibilities will be demon-
strated in Sec. IV, but the generality of the procedure is
certainly not exhausted by existing cluster algorithms.

III. PROOF QF DETAILED BALANCE

In this section we prove that our algorithm is a legiti-
mate Monte Carlo procedure that takes the system to
equilibrium (defined by the Hamiltonian &) in the long
time limit. In particular, we show that our general
scheme satisfies the detailed balance condition. In princi-
ple, we have to supplement this condition by a proof of
ergodicity, which unfortunately cannot be shown in gen-
eral; it has to be proven anew for each application of the
general scheme. Nevertheless, this situation does not
limit usage of the method, since one can always incorpo-
rate in any simulation scheme additional sweeps, per-
formed with a procedure that is known to be ergodic
(e.g. , Metropolis sweeps in finite-temperature simula-
tions). One may think that the performance of the whole
algorithm will be destroyed due to slowing down of the
procedure used for these additional sweeps. This, howev-
er, need not be the case, as demonstrated by the examples
of the P cluster algorithm and the algorithm used by
Kandel, Ben-Av, and Domany to simulate the fully frus-
trated Ising model on the square lattice.

We turn now to prove the detailed-balance relation

1
PV)(u) —PV)(u') i(!)(T);)(u~u')= Qe ' ', T), )(u'~u) .

P (i) (.u )

(3.4)

Now substitute (3.4) and (3.3) into (3.2); the factor
g(P, '(i) (u) cancels and we obtain

PV((u) —/3'(u')T(u~u')=g +e P;(i)(u') T);)(u'~u) .
Ii I I

(3.5)

But from (2.1) and (3.3) we see that

i " p i " pl ( i) pB(u) —p&(u')p( Ii ] ~ui)
1

Substituting this into Eq. (3.5) we find

T(u~u')=eP '"' P '")QT(, )(u'~u)P(Ii]~u') .
Ii I

(3.6)

By (3.2), however, we have

gT(;) (u'~u )P ( Ii ] ~u') = T(u'~u),
Ii I

and hence (3.6) has the form

e P '"'T(u u')=e P '" 'T(u' u) (3.1) T(u u')=eP '"' P '" 'T(u'~u),

for any two configurations u and u', where T(u~u') is
the transition probability per unit time from the state u

to the state u'. In the second step of our procedure we
perform siinulations that satisfy condition (3.1) with
respect to a modified Hamiltonian &, and not with
respect to & [see Eq. (2.5)]. However, the modified Ham-
iltonian is chosen in a probabilistic manner, and we have
to show that when the probability to reach each modified
Hamiltonian is taken into account, the transition rates
satisfy the detailed balance condition with respect to the
original Hamiltonian &. To that end we write the transi-
tion rates in the form

T(u ~u') =QT), )(u ~ u) (PIi ] ~u ), (3.2)

To prove (3.1) we first express T), )
( u ~u ') in terms of

T(; (
( u ' ~ u) using Eq. (2.5):

/3&I, . I(u) —p&I,. I(u')—T(;~(u~u')=e (' ' T(;)(u'~u) .

This can be rewritten Lsee Eqs. (2.3) and (2.4)] as

where the sum is over all possible modification assign-
ments ti(l) J. Here P( ti ] ~u) is the (conditional) probabil-
ity to obtain assignment Ii] for given configuration u,
and T(,. )

(u ~u ) are transition probabilities that satisfy
the detailed balance condition with respect to the
modified Hamiltonian &(,). The decisions that led to
Ii(l)] were taken independently for each interaction term
I, and hence one has

(3.3)

which proves that detailed balance is indeed satisfied by
our two-step procedure.

IV. EXAMPLES

We turn now to show that our general procedure
unifies many previously developed cluster algorithms,
starting with the SW algorithm' for ferromagnetic Potts
models. Our second example is the Niedermayer general-
ization, while in the third part of the section we examine
the cluster scheme proposed by Edwards and Sokal.
Next we show that Wolff's algorithm for O(n) models
and the (l) cluster algorithm can also be viewed as par-
ticular cases of our method. Lastly, we examine the more
complicated case of the recently developed algorithm for
the fully frustrated Ising model on the square lattice. In
each case we find the appropriate modified energies V,'(u)
(see above for definition), the probabilities P;(u), and the
constants C .

A. The Swendsen-Wang algorithm

We restrict ourselves here to the case of the Ising mod-
el, but generalization for other Potts models is straight-
forward. According to the prescription of our general
procedure we should first write the Hamiltonian as a sum
of the form (2.1). This is done most naturally in the case
of the nearest-neighbor ferromagnetic Ising model by
writing the Hamiltonian as a sum of single-bond energies;
each nearest-neighbor pair plays the role of a V&, and

(4.1)
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—PJ(s.sk + i)
Pd =e (4.2)

while the probability to freeze the bond is P~=1 —Pd.
Therefore all unsatisfied bonds are deleted with probabili-
ty Pd =1, while some of the satisfied bonds are frozen,
giving rise to clusters of aligned spins. The fact that only
freezing and deletion operations are used here implies
that frozen clusters do not interact (see Sec. II). A possi-
ble outcome of the SW procedure is depicted in Fig. 1.
Frozen bonds are denoted by double lines, and deleted
bonds are not marked. Note that all unsatisfied bonds
are deleted, while some of the satisfied ones are frozen.

As we have shown (see Sec. II), an operation with the
probability (4.2) when used in (2.4) indeed yields deletion.
We have also shown that freezing operations with arbi-
trary probabilities are consistent with Eq. (2.4). There-
fore our proof of detailed balance holds for the SW pro-
cedure, provided the new configuration is obtained by
means of a Monte Carlo simulation that satisfies the
detailed-balance condition with respect to the modified
Hamiltonian. But since this is a Hamiltonian of nonin-
teracting clusters, the "simulation" is realized by Aipping
each cluster with probability —,', as done by SW.

B. The Niedermayer generalization

The next step is to modify each term of the Hamiltonian
in a probabilistic manner in order to create a system of
noninteracting clusters. As was explained in Sec. II,
freezing operations must be supplemented by deletion
operations in order to eliminate the interactions between
clusters. SW use expression (2.11) with C = —J for the
deletion probability of the bond that connects the spins
Sj and Sk, which becomes

single-spin-flip Metropolis rule and the SW cluster algo-
rithm, in order to control cluster sizes. Let us first con-
sider the simple case of the Ising model, leaving the dis-
cussion of Niedermayer's more general idea for a later
stage. Since cluster sizes are determined by the freezing
probability P&, we may be able to reduce the average
cluster size by choosing smaller values for PI. The com-
pelentary operation is not deletion anymore, but is still
determined by Eq. (2.4). Thus Niedermayer's proposal is
to freeze the bond between the spins Sj and Sk with prob-
ability

P 0 otherwise,

if JSjSk &Eo
(4.3)

with Eo as a free parameter. The complementary opera-
tion is performed with probability P p p

1 PI and the
modified energy, which is deduced from Eq. (2.4), de-
pends on the constant Eo. If Eo & —J the condition
JS Sk) Eo is always satisfied, and the complementary

~

k
—P( JS~ Sk Eo

operation has probability P„=e ' . Substi-
tution into (2.4) yields V(SJ,Sk ) =const, independent of
S,Sk,' therefore the complementary operation is still
deletion. On the other hand, if Eo J no freezing opera-
tions occur (the complementary operation has P„=1),
and we end up with single spin "clusters" interacting via
the original Ising interaction with the coupling constant
J. When, however, Eo is chosen to be in the range
—J ~ Eo & J, only aligned spins can be frozen, but the
probability to freeze can be reduced by increasing Eo.
We now note that when Eo is in this range, the probabili-
ty PJ", (u) to choose the complementary operation for a
particular bond jk is given by

r

In many cases (e.g., models with frustration) the clus-
ters generated by the SW algorithm are too large.
Niedermayer proposed a way to interpolate between the

0 'f
k

pjk
1 ifSWS (4.4)

Substituting this into (2.4) and choosing
=

—,'(Eo —J), we find that

V„(S,Sk)= JS Sk, J=—,
'—(J+F-o),

jk
+comp

(4.5)

FIG. 1. Demonstration of the SW procedure. The + signs
represent a particular configuration u of the spins. The figure
describes a possible outcome of the freeze-delete decisions.
Double lines denote frozen bonds, while deleted bonds are not
marked. The original system is replaced by one of noninteract-
ing clusters.

and hence the complementary operation weakens the
bond rather than deleting it.

It is clear Ifrom Eq. (4.3)] that Niedermayer can reduce
the average cluster size by choosing appropriate values
for the constant Eo, but he has to pay a price. The
noninteracting SW clusters are replaced by clusters that
interact via a modified Ising coupling. The strength of
the bond between two clusters can be found in the follow-
ing way. Since only satisfied bonds may be frozen ac-
cording to the algorithm, each cluster consists of spins
which are either all + or all —.Therefore, one can asso-
ciate a "coarse" Ising degree of freedom with each cluster
that was generated by the frozen interaction. There is a
one-to-one correspondence between configurations of the
system of coarse Ising spins and configurations of the
original system, which are allowed by the modified Ham-
iltonian (ie. , have finite modified energies). To find the
effective bonds of the coarse system, consider any two
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clusters. Let us denote these two coarse spins by S and

SI, . Any bond that connects two of the original spins,
that belong one to S and the other to S&, has been weak-
ened by the procedure that generates the clusters. Its
general strength J was replaced by J [see Eq. (4.5)].
Therefore, the strength of the bond between S and S& is.V I,J, where JV-k is the number of nearest-neighbor pairs
of original spins, such that one of the spins of each pair
belongs to S~ and the other to Sk. To illustrate this point
consider Fig. 2. Figure 2(a) presents one possible out-
come of the probabilistic decisions made on bonds ac-
cording to Niedermayer s prescription with —J &Eo & J.
Some of the bonds are frozen and are denoted by double
lines, while others are weakened and are denoted by zig-
zag lines. In Fig. 2(b), clusters, generated by frozen
bonds, are replaced by coarse Ising spins that interact via
two-body interactions. Bonds of the coarse system are
denoted by heavy lines. Numerals A k near the lines
denote strengths of coarse bonds in units of the modified
coupling J.

More generally, Niedermayer proposes to freeze the in-
teraction term Vi(u) with probability Pf [ Vi(u)] while
performing a complementary operation with probability
1 P—f [ Vi(u)]. The modified interaction, V„z(u), gen-
erated after the complementary operation was carried out
is given by Eq. (2.4). As was emphasized earlier, the
simulation of the resulting system of interacting clusters
may suffer from slowing down, and therefore the freezing
probability has to be chosen in a clever way to avoid this.
Moreover, in the general case the moves allowed by the
freezing operation may become dificult to perform. In
the case of the Ising model each cluster has only two
states, since the relative orientation of spins within a clus-
ter cannot be changed. In the general case, however, the
number of configurations of a cluster with a fixed original
internal energy may be very large, and the problem of
choosing one of them at random may become nontrivial.

C. The Edwards-Sokal generalization

We turn now to discuss the generalization of Edwards
and Sokal, which is conceptually different from the exam-
ples considered above. So far we have discussed algo-
rithms with a finite number of possibilities to modify each
term of the Hamiltonian. The variable i that we used to
differentiate between the possibilities to modify the in-
teractions was thus discrete and took the values
i =1,2, . . . , n. We may however choose to work with a
continuum of possibilities, in which case we change nota-
tion and replace the discrete variable i by the continuous
variable x. The probability P ( u) is replaced by
P (x, u )dx, and the normalization condition takes the
form J P'(x, u)dx =1 for any term l and configuration u.
The constants C,

' become functions of x as well, and
the new Hamiltonian can be written as gf'(„((u )

=pi V (x (l), u ). Condition (2.4) is replaced by

V '(x, u) = V, (u) ——ln[P'(x, u)]+C'(x) . (4.6)

2 +

Edwards and Sokal" shift the energy scale so that
V&(u) ~ 0 for any configuration u. They also confine x to
the interval [0,1]. Within the framework of our scheme
their procedure is equivalent to choosing C'(x)=0 for
any x, and for given configuration u choosing the
modification index x stochastically according to the prob-
ability density

P'(x, u)= '

pv/(u) . —pv/(u)
e ' if 0~x ~e

—pv, (u)
0 if e ' &x~1. (4.7)

FIG. 2, Demonstration of Niederrnayer's procedure. (a) A
possible outcome of the algorithm. Double lines denote frozen
bonds, while weakened bonds are denoted by zigzag lines. The
original system is replaced by one of interacting clusters. (b)
Each c1uster of frozen spins is replaced by a coarse Ising spin.
The coarse spins j and k interact via a ferromagnetic interaction
with a modified coupling constant A;t, J (see text). Modified
bonds are denoted by heavy lines with numerals near them to
indicate their strengths in units of J.

Note that the normalization condition is satisfied by (4.7).—pv((u)
In effect, values of x in the range O~x ~e ' are
selected with equal probability for each l. According to
(4.6) their modified interaction takes the form

V'(x, u)= '
0 if O~x ~e

—pv, (u)
oo if e ' &x 1. (4.g)

Thus the original system is replaced by a system with
constraints, restricting the available configuration space.
Some of the configurations have infinite energy and are



43 GENERAL CLUSTER MONTE CARLO DYNAMICS 8545

therefore forbidden, while all other configurations have
zero energy and appear with equal probability. Such a
modified system may be viewed as a model with a degen-
erate ground state at zero temperature.

Edwards and Sokal consider the ferromagnetic XY
model as an example. Their algorithm replaces the XY
Hamiltonian,

&=—J g (S, St, —1)

= —J g [cos(0, —0„)—1], (4.9)
(j,k)

by a model where the difference of phases between
nearest-neighbor spins takes values in a restricted range.
This range is determined probabilistically and indepen-
dently for each nearest-neighbor bond. The modified en-

ergy of a bond is infinite if the phase difference is outside
the chosen range, or zero if the phase difference is within
the range. In this particular case, Eq. (4.7) for the proba-
bility PJ"(x;0,9k) to modify the energy of the bond con-
necting the spins S- and Sk, according to the possibility
denoted by the index x H [0, 1] takes the form

Pi"(x;9,, 9k)=P(x,k, 9, —0~)= '

—PJ[cos(0& —
0& ) — ] . PJ[cos(0. —0A. )

—1]
e

PJ[cos(0.—0A, ) —1]
0 ife (xk+1. (4.10)

The modified energy (4.8) can now be expressed as

0 if l0, —0i, ~ b, (x t, )
I

f l0, —0„l)~(x,„), (4.1 1)

where the allowed range of the phase difference 6 is given
by

1
arccos 1+ lnxJ

b, x =
otherwise.

if x)e
(4.12)

The resulting modified Hamiltonian (4.11) assigns to each
bond an interaction V, which either vanishes or takes an
infinite value, if the angle difference exceeds a (bond-
dependent) threshold. This can be viewed as a zero-
temperature step model with bond disorder. Simulations
of this model are far from trivial and suffer from slowing
down. This is an example of the general case, mentioned
in the Introduction, where it may be difficult to simulate
the model defined by the modified Hamiltonian. In some
cases, however, there may be a way to perform eS.cient
simulations of the resulting model. Only then can such a
generalization be useful.

D. The O(n) and P cluster algorithms

We turn now to a different approach, which does
succeed in accelerating simulations of the XY model-
Wolff's algorithm for ferromagnetic O(n) models. This
method has some similarities to the SW algorithm for
Potts models, but differs from the latter technique in two
aspects. First, rather than flipping blocks of spins, Wolff
proposes to refllect clusters of spins with respect to a ran-
domly chosen hyperplane in spin space. Secondly, Wolff
builds one cluster at a time and rejects all of its spins
rather than dividing the whole system into clusters and
rejecting each cluster with probability —,. This second as-

pect may be implemented in the SW algorithm for Potts
models as well, and the resulting single-cluster algorithm
turns out to be more efficient than the original SW

scheme. ' Here we do not deal with single-cluster algo-
rithms although they, as well, may be represented as par-
ticular cases of our procedure. For the sake of simplicity
we consider a many-cluster version of Wolff's algorithm
for O(n) models.

As in the SW procedure we may write the ferromagnet-
ic nearest-neighbor O(n) Hamiltonian as a sum of bond
energies

A= —Jgs, st, .
(,k)

(4.13)

Now we choose a random direction s in spin space, and
express each O(n) spin as a sum of two vectors parallel

and perpendicular to the unit vector s:

s~~=(s, .s)s, s,'=s, —s~~ . (4.14)

Next, we write the Hamiltonian as a sum of two terms

&=&o+&i, (4.15a)

with

and

Jjko JO k
(I,j)

o, =sgn(S, s), J,„=JIS, I IS,ll

(4.15b)

(4.15c)

Wolff proposes moves that refiect O(n) spins with respect
to a hyperplane perpendicular to the unit vector s. Such
moves change the signs of the Ising spins o. , but leave
the couplings J k and the first part of the Hamiltonian &o
invariant. Since the new couplings J k are ferromagnetic
we can use the SW algorithm for ferromagnetic Potts
models to generate clusters of o spins in order to
effectively simulate the &, system. Note that since such
a procedure does not change &o and satisfies the detailed
balance condition with respect to &„ it also satisfies de-
tailed balance with respect to the original Hamiltonian
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The description in terms of our general scheme is
therefore similar to the description of the SW procedure,
with the slight modification that in the present case the
probabilities P (u) and the constants C depend explicitly
on l through the inhomogeneous couplings J k. A new
random vector s has to be chosen each sweep. Thus, in
each sweep we apply the SW algorithm to a different Is-
ing model.

The essential ingredients for the success of Wolff's al-
gorithm is the type of global move that he has chosen.
Our general procedure does not give hints on how to
choose correct global moves that will take into account
the large-scale physics of a given model. However, once
the move is chosen, our method tells us how to maintain
detailed balance, which may be a nontrivial issue in com-
plicated cases such as frustrated systems (see below).

The P cluster algorithm can be described in a similar
manner. Each field P can be expressed as a product of
its sign o. and its magnitude. If we consider moves that
change the signs but leave the magnitudes unchanged, we
may describe the dynamics in terms of a Hamiltonian of a
ferromagnetic Ising model. The rest of the description in
terms of the general procedure is the same as for O(n)
models. In the P case, however, cluster sweeps have to
be supplemented by simulations that change also the
magnitudes of the fields, in order to ensure ergodicity.

E. The fully frustrated Ising model on the square lattice

In all the examples we encountered so far the Hamil-
tonian was expressed as a sum of single-bond energies.
Next, each bond was treated independently using infor-
mation on the values of the two spins that it connects.
Such a strategy is not always successful. For example, in
models with competing ferromagnetic and antiferromag-
netic nearest-neighbor interactions one has to consider
information on more than two spins in order to deter-
mine the relative orientation of two neighboring spins in
a ground state. Indeed when the SW algorithm is applied
to such models at low temperatures it freezes the whole
lattice into a single cluster allowing only trivial moves.

Kandel, Ben-Av, and Domany showed that this prob-
lem may be overcome if one uses more general partitions
of the Hamiltonian. They considered the fully frustrated
nearest-neighbor Ising model on the square lattice with
periodic boundary conditions. In this model each ele-
mentary plaquette has an odd number of antiferromag-
netic bonds, so that at most three bonds of the plaquette
may be satisfied simultaneously. Kandel, Ben-Av, and
Domany checkerboard-partitioned the lattice, and ran-
domly chose one of the two possible sets of plaquettes.
Then they expressed the Hamiltonian as a sum of pla-
quette energies, where the sum is over all plaquettes that
belong to the chosen set. When the Hamiltonian is ex-
pressed in this form each bond belongs to exactly one of
the chosen plaquettes. Each plaquette may be in one of
16 possible spin configurations (since there are four spins
at its corners), but its energy can take only two values be-
cause all the bonds were given the same strength

~
J~. If

three bonds of a plaquette are satisfied and one is not, the
energy of the plaquette is E~ = —2~ J~, while if three of

I=2
~ ~ o

I
—3

i=4
~ ~

i=5 i=6

FIG. 3. Illustration of the seven possible modifications of
plaquette energies. Double lines denote frozen bonds and delet-
ed bonds are not marked. The first possibility, i =1, corre-
sponds to deletion of all four bonds, while the six possibilities,
i =2, 3, . . . , 7, correspond to freezing two of the bonds and
deletion of the two remaining ones.

the four bonds are unsatisfied the energy takes the value
E =2~ J~. We will now specify the possible modifications
of plaquette energies and show that the scheme used by
Kandel, Ben-Av, and Domany fits into our general
framework. In fact Kandel, Ben-Av, and Domany used
the general scheme described in the present work to ex-
tend a physically desirable T=O cluster algorithm to
finite T, thus ensuring that their procedure satisfies the
detailed balance condition.

We find it convenient to describe the modified interac-
tions in terms of deletion and freezing operations on
bonds as defined in Sec. II. If we apply the SW rules to
each of the four bonds of a plaquette independently, there
will be 16 possible modified interactions. For a number
of reasons Kandel, Ben-Av, and Domany are interested
in generating a modification scheme that keeps only n =7
of these possibilities. They allow for the deletion of all
four bonds (one possibility, i = 1) or for the deletion of
two bonds and freezing of the two remaining ones (six
possibilities, i =2, 3, . . . , 7). Figure 3 illustrates the
seven possibilities. Frozen bonds are denoted by double
lines, while deleted bonds are not marked. Modification
i =2, for example, corresponds to freezing two horizontal
bonds and deleting the two vertical ones, etc. Having de-
cided on the desired modified interactions, one has to
design, or "engineer, " conditional probabilities P (u) that
will indeed produce them when used in Eq. (2.4).

We now show that the procedure of Kandel, Ben-Av,
and Dom any produces the modified interactions ap-
propriate for the seven modifications described in Fig. 3.
This is done in two steps: First, we define the probabili-
ties P (u) for all configurations u, and then use Eq. (2.4)
to show that the modified interactions correspond to
deletion and freezing operations as described above. Un-
fortunately, we have to use the terms freezing and
deletion in the first step before actually proving that these
are indeed the appropriate terms for the relevant
modified interactions. This is done in order to avoid
complications in terminology and cumbersome descrip-
tions.
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As in previously described algorithms, the decision on
the modified interaction depends on the configuration. In
their algorithm Kandel, Ben-Av, and Domany require
that only satisfied bonds may be frozen; unsatisfied bonds
are always deleted. To satisfy this requirement, they
choose P,'(u) =0 if modification i freezes a bond which is
unsatisfied in configuration u. Consider, for example,
modification i =2 which freezes the two horizontal
bonds. Assume also that a, a horizontal bond of pla-
quette l, is unsatisfied in configuration u. If we start a cy-
cle from configuration u, the bond o.'cannot be frozen,
and therefore modification i =2 of the energy of pla-
quette l is forbidden; i.e., P2(u ) =0.

Next, we have to define the probabilities P (u) which
do not vanish in the scheme of Kandel, Ben-Av, and
Dom. any. Since the number of frozen bonds in a pla-
quette must be even, the freezing rule described above
implies that none of the bonds of a plaquette with three
unsatisfied bonds can be frozen. Hence, if only one of the
bonds of plaquette l is satisfied in configuration u, we
have P~(u)=1. On the other hand, if in configuration u

our plaquette l has three satisfied bonds, the decision on
it has four possible outcomes. First, we may choose i =1
with probability

P'(u)=e (4.16a)

In the three remaining cases two of the three satisfied
bonds are frozen, while the third one and the unsatisfied
bond are, as we will show, deleted. Kandel, Ben-Av, and
Domany choose to delete the unsatisfied bond and the
satisfied bond parallel to it (while freezing the other two
bonds) with probability

( I
—2/3I J )2

Lastly, with probability

p'= I —p P'(u)=2e —0 (1—e Pl I)

(4.16b)

(4.16c)

they randomly choose one of the two satisfied bonds
which are perpendicular to the unsatisfied bond. This
bond and the unsatisfied bond are deleted while the other
two are frozen. The probabilities of all other possible
modifications of the interaction vanish since they are in-
compatible with the rule that only satisfied bonds may be
frozen.

Now let us use Eq. (2.4) to calculate the modified ener-
gies V,'( u), and show that modification i = 1 indeed
deletes all four bonds of a plaquette, while modifications
i =2, 3, . . . , 7 freeze two bonds and delete the two
remaining ones. Consider first modification i = 1. If
three of the bonds of plaquette l are unsatisfied in
configuration u, we have V&(u )=2~ J~ and Vi(u )=1, and
therefore

(4.17)

If, on the other hand, only one of the bonds of plaquette l
is unsatisfied, we have to use Eq. (4.16a) together with
Vi(u)= —2~J~. Relation (4.16a) was so chosen that Eq.
(4.17) for V', holds in this case as well. Thus the interac-
tion obtained when modification i =1 is chosen is in-

dependent of the configuration u, as is the "interaction"
obtained by deleting all bonds. We may now choose

V,'(u )= —2 J ——lnp+C (4.19)

with either p =p or p =
—,'p' depending on i. As in the

case i =1 it is convenient to choose the constants C so
that the modified energies vanish:

(4.20)

This shows that for any i ~2 the modified energy V,'(u)
can take two possible values: Either V,'(u )= ~ (when a
bond frozen in i is not satisfied in u), or V, (u )=0. In
other words, all configurations consistent with the freez-
ing scheme i have the same energy, as indeed should be
the case when bonds are frozen or deleted. Note that our
conclusion holds for any value of p. The particular
choice (4.16b) made by Kandel, Ben-Av, and Domany en-
sures that the clusters generated by the procedure are
never too large. They showed that at least two large clus-
ters are created even at T=O and therefore the lattice
never freezes into a single cluster.

Finally, let us mention that Kandel, Ben-Av, and
Domany use only freezing and deletion operations, and
therefore (see Sec. II) their procedure defines a modified
system of noninteracting clusters, which is trivial to
simulate. To ensure ergodicity they supplement their al-
gorithm by Metropolis sweeps.

V. SUMMARY

We have devised a general scheme for Monte Carlo
simulations which encompasses many recently developed,
seemingly unrelated cluster Monte Carlo techniques as
special cases. In addition to this aesthetically pleasing
unifying aspect, our scheme is also of practical relevance.
As we have indicated in Sec. IV, there are two important
steps in devising efficient cluster Monte Carlo algorithms.
First, one has to identify the relevant large-scale moves,
and choose the type of clusters to be formed by the algo-
rithm accordingly. The physical properties of the system,
which are responsible for slowing down of standard simu-
lation techniques, have to be taken into account at this
first stage. For example, in ferromagnetic Ising models
the appropriate moves are coherent flips of clusters of
spins. Such large-scale flips, however, do not suffice in
O(n) models, where the relevant moves are refiection of
blocks of O(n) spins with respect to a randomly chosen

(4.18)

to get V &=0 for any configuration u.
To calculate the modified energies V,' for i ~ 2, denote

by ai and az the two bonds that modification i freezes.
Unless both 0.i and az are satisfied in u, we have
P (u ) =0 (see above) and hence V,'. (u ) = ~. Such a
configuration u is therefore forbidden in the ensuing
simulation with the modified Hamiltonian. This ensures
that modification i indeed freezes the bonds ai and a2.
For all configurations u in which both bonds are satisfied,
we use Eq. (2.4) to get
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direction in spin space. Our general scheme does not im-
prove our understanding of the large-scale physics of the
system, and therefore does not determine the appropriate
moves. Experience in using the scheme may, however,
give hints on possible moves and types of clustering.
Secondly, one has to incorporate the chosen moves
within an ergodic Monte Carlo procedure that satisfies
the detailed balance condition. This is where our scheme
becomes most useful. One may use it to devise, on an en-
gineering level, legitimate Monte Carlo procedures that
perform the appropriate moves. This was demonstrated
in detail in Sec. IV on the cluster algorithm for the fully
frustrated Ising model. Knowledge of the physical prop-
erties of the system allowed Kandel, Ben-Av, and
Domany to put restrictions on the possible clustering and
moves. They came to the conclusion that one has to deal
with plaquettes rather than single bonds. At T =0 they
wanted to either delete all four bonds of a plaquette or
freeze two satisfied parallel bonds, while deleting the oth-
er two. Under these restrictions, our scheme completely
determines their algorithm (even for TWO).

Our general strategy is to modify the Hamiltonian of
the system in a probabilistic manner, with the hope that
the modified Hamiltonian may be simulated more
efticiently. We have shown that our scheme satisfies the
detailed balance condition, justifying its use as a legiti-
mate Monte Carlo procedure. However, one has to be

cautious; we have not proved that the method is ergodic.
The condition of ergodicity cannot be proven in general,
and has to be shown separately for each particular algo-
rithm. In some cases the procedure has to be supple-
mented by sweeps of a different (sometimes less e%cient)
algorithm to ensure ergodicity. Even if the added pro-
cedure is very slow, the performance of the algorithm as
a whole need not degrade as was emphasized in Sec. III.

As was shown in Sec. IV, most existing cluster Monte
Carlo algorithms are special cases of our scheme. We
have demonstrated that the SW procedure' for Potts
models, the generalizations of Edwards and Sokal and of
Niedermayer, Wolff's algorithm for O(n) models, the P
cluster algorithm, and the simulation method of Kandel,
Ben-Av, and Domany for the fully frustrated Ising mod-
el on the square lattice can all be described in terms of
our method. Clearly, our procedure contains many other
possibilities and is far more general than any of the tech-
niques mentioned above. It may therefore serve as a gen-
eral framework for the development of new e%cient
simulation methods.
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