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Tunneling between two wells in the disspative medium is considered in the framework of a spin-
boson Hamiltonian. It is shown that, when the interaction energy between the two wells (character-
izing the barrier between the wells), U is lower than certain critical energy U„determined by the in-

teraction with bosons, the tunneling friction vanishes. This supertunneling phenomenon is con-
sidered in both the weak- and strong-coupling cases.

I. INTRODUCTION

The problem of the tunneling of a particle that also in-
teracts with excitations of the medium has recently at-
tracted considerable interest. ' Tunneling developed
into an important field in solid-state physics, elucidated
in the extensive early review by Duke.

The simplest tunneling process in a dissipative medium
is a transition between two approximate ground states of
a two-well potential in the presence of phonons. Such a
process can be described by a two-state system interact-
ing with a harmonic solid. ' ' This problem is isomor-
phous to that of energy transfer between localized elec-
tronic states in crystal. ' ' "

As is known, interaction with the phonons of the medi-
um to the decay of quantum beats two wells: "tunneling
friction. " The aim of this paper is to show that under
certain conditions, when the interaction energy U between
two wells is lower than critical energy U„determined by
interaction with phonons, the tunneling friction vanishes.
This phenomenon is called supertunneling. ' ' '

The origin of this unusual behavior is connected with
the appearance of discrete bound states in the spectrum
of the two-state system interacting with phonons. It has
to be noticed that existence of local states and local
modes in the dissipative system interacting with some
kind of impurity has been known for a long time. Ray-
leigh found local modes in the chain of interacting os-
cillators in the framework of classical theory. The quan-
tum one-level system interacting with the continuum of
states has been considered by Rice ' and Fano.
Riess, Rosenfeld et al. ,

5 and Gelbart and Jortner~
have shown that discrete local states may exist in such
systems provided certain conditions are satisfied. Cukier
and Mazur have proved that the existence of local
modes in a harmonic-oscillator chain with an impurity,
leads to the violation of the ergodic properties of the sys-
tem. Similarly, the existence of bound discrete states in a
spectrum of a two-level system interacting with bosons
leads to a qualitative modification of the process of spon-
taneous emission of bosons. ' (The probability to
remain in the excited states does not tend to zero when
t —+ ~.) But the most striking example of the inAuence of
bound states on the properties of the system with the con-
tinuum of states is the superconductivity phenomenon.

Of course, the supertunneling phenomenon has nothing
to do with the superconductivity.

The existence of isolated modes and bound states in
dissipative systems has been extensively studied for many
years. The novelty of the present work is the implication
of the existence of local states to tunneling in a dissipa-
tive medium.

The material is organized as follows. Section II recalls
the model in which tunneling in the condensed medium is
reduced to a two-state system interacting with phonons.
Section III is devoted to a general quantum-mechanical
description of time development of the density matrix. In
this section we do not use any specific approximations.

On the other hand, in Secs. IV and V the one-boson ap-
proximation is used. It is shown that this approximation
is valid in the case of weak spin-phonon coupling. In Sec.
VI the time development of tunneling system in the dissi-
pative medium is obtained in the strong-coupling case.

The weak-coupling case is based -on the exact non-
Markovian solution for the relaxation via the spontane-
ous emission of bosons, while the strong-coupling case
uses the exact solution for the degenerate spin-boson sys-
tem. (See also Ref. 30.) Considering processes connect-
ed with the spontaneous emission of phonons, we restrict
ourselves to the zero-temperature calculations.

II. THE MODEL

We consider a quite general model '' ' which may be
appropriate for the description of nuclear group transfer,
electron transfer accompanied by the transfer of nuclear
groups, or a transition between two stable configurations
of a molecule embedded in the condensed medium. We
assume that all these processes occur in a single electron-
ic state, i.e., we consider adiabatic transitions. In the
Born-Oppenheimer approximation, such a system may be
presented by the Hamiltonian

T+ U(Q)+ g (pk+~kqk ) X Ak(Q)Ik
k k

(2.1)

Here Q is the set of coordinates of singled-out nuclear
modes describing the nuclear subsystem (molecule) in-
teracting with its surrounding a condensed medium. T
and U are the kinetic and potential energy of the nuclear
subsystem; the third term in the Hamiltonian (2.1) de-
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scribes the condensed medium in the harmonic approxi-
mation as a phonon bath, and the last term is the interac-
tion energy between the nuclear subsystem and con-
densed medium. The only assumption about this interac-
tion is that it is linear in the coordinates qk, i.e., the exci-
tations of the surrounding condensed medium are small
enough.

The potential energy U is supposed to have two mini-
ma corresponding to two quasistable configurations of
the nuclear subsystem. We assume that these two mini-
ma (potential wells) are divided by a barrier which is
sufficiently large so that tunneling through this barrier
may be considered as a small perturbation.

Let us consider the Hamiltonian of the isolated mole-
cule

+L~LL +~R~RR + r+~LR + r —~RL (2.7)

LEL+ RER + Q(pk+~kqk ) R X ~kqRkqk
k k

2 2
L X ~kqLkqk + +X VLRk'qk

k k

where

+ 1' — U +g VRIkqk.
k

(2.8)

~kqLk «I &k(Q)lL &, ~kqRk = «& k(Q )l R&,

where the matrix elements are taken with the aid of the
eigenfunctions ~L ) and ~R ).

Thus, the effective Hamiltonian takes the form

E=T+U(Q) . (2.2) (2.9)

E =nLEL+n~E~+r+vt~+r v~l. (2.3)

He nL =—+r, ng =— r, r+ = I +lr2, ri, r2, and rg
are components of the effective spin describing the
two-state systems

We assume that only two low-lying energy levels of this
Hamiltonian are essential, i.e., that these two levels are
separated from others so that it is possible to neglect ex-
citations to other levels. Employing the assumption
about the smallness of the tunneling, we can introduce
the eigenfunctions ~L ) and ~R ) with eigenvalues EI and
ER which are approximate stationary states (without tak-
ing into account the penetration through the barrier).
These states are localized in the left and right wells, re-
spectively.

Thus, we are dealing with a two-state system and the
Hamiltonian of the molecule may be represented as

Considering terms proportional to qk, one can neglect
terms containing the overlap integrals V&Lk. They have
exponentially small factors of (2.5) type. Without the
terms VRIk and VLRk, the Hamiltonian (1.8) is isomor-
phous to that describing a widely used model in
which the electron-nuclear system is represented by two
intersecting electronic parabolas plus a perturbation
causing transitions between these electronic states. A re-
view of Silbey is relevant to the problem. The generali-
zation to the case of intersecting electronic energy hyper-
parabolas with a continuum of degrees of freedom was
also considered in Refs. 41, 42, 31, and 32.

Using definitions of operators nL, nz, we can rewrite
the Hamiltonian (1.8) (without the terms with
VRLk VLRk ) 1n th««m

I. r 1 7 2 ]= l 1'3

l. r 2, r3 ]= lrl

[1"3,7'1 ]= ll'2

2
J 4

(2.4)

&=r, (EL ER )+2r3U+——,
' g (pk+cokqk )

k

rl X ~k(qLk qRk )'qk X ~k(qLk +'qRk )qk
k k

(2.10)

and v is the matrix of the effective perturbation energy
corresponding to the tunneling between the states ~L )
and

~
R ) . It is reasonable to assume that this matrix ele-

ment has the form

Here we have dropped terms which do not depend on
the system's variables qk, pk, r„r2, and r~. Performing
the unitary transformation

vL~ =v~L =v =Acne (2.5)
qk qk (qLk+qRk ) (2.11)

where the effective parameter A'~ has the order of the
characteristic energy difference in one well and A, is much
larger than unity. For the one-dimensional case in the
semiclassical approximation,

we get (again dropping the constant terms)

~=@1(EL ER )+2r3U+ —,
' g—(pk2+ wkqk )

k

r1 g ~k(qLk qRk )'qk
k' f /PfdQ—,

b
(2.6) qRk) .2 2 2

k

(2.12)

where a and b are the classical turning points, and P is
the (imaginary) momentum inside the barrier. Now tak-
ing into account only two levels EI and Ez of the mole-
cule, the Hamiltonian (2.1) of the whole system can be
presented in the form

For the symmetrical two-well potential

EL =Eg O'I.k
=

one can rewrite the Hamiltonian (2.12) in the form

(2.13)
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gj =(»3+
2

)'Act30+ —g[(pk +&krak ) Acok ]

(2.14)

and Vis the interaction energy. Let S be a unitary matrix
transformation which connects eigenstates of the Hamil-
tonian H with eigenstates of the Hamiltonian Ho

or

k

&=(»3+ )flco0+ g akakA'cok
k

gL =g SvL

or, equivalently,

(3.2)

(3.3)
(r+ +» —) rf Bk(ak +ak )

k

In the later relation r+ =r &+ir2,
1/2

B„2

i5COk

(2.15)

(2.15')

and ak, ak are the creation and annihilation operators of
phonons. The frequency cup is expressed through the ma-
trix element v,

The unitary matrix S connects the density matrix in the
Hp representation with the density matrix p in H repre-
sentation

p =S PS. (3.4)

In the new representation, the von Neumann equation for
the density matrix has the form

I I
PLM l NLMPLM

Atop =2v (2.16)
or (3.5)

Parameters Bk describe an interaction between the tun-
neling system and phonons. A localization in the poten-
tial wells is described by the operator r&. The localiza-
tion in the left well corresponds to I"

&

=
—,', nL =1, n~ =0,

while r&
= —

—,
' corresponds to the localization in the

second well: nz =1, nI =0.
Two forms of the spin-boson Hamiltonian (2.14) and

(2.15) are convenient for two different approximations.
For the weak-coupling approximation, we divide the
Hamiltonian into two parts:

~0=( r3+ —,
'

) two+ —,
' g akak Acok —g Bk(r+ak+r ak )

k k

(2.17)

I

PLM(t) =PLM(0)e

where

+~LM —EL. —EM (3.6)

P=SP S

We find, from (3.7) and (3.5),

(3.7)

and EL, EM are eigenvalues of the Hamiltonian (3.1). We
will be interested in the time development of the density
matrix in the representation of the unperturbed states Pv.
In particular, we will be interested in the time depen-
dence of the probability of the localization in one of the
walls. For this purpose we can use a relation inverse to
(3.4)

and

V= —QBk(r+ak+r ak) .
k

(2.18)

I
(t)— (0)

Puv X uLPLM vM
LM

(3.8)

In the case of strong coupling, the perturbation energy is To express pLM(0) through the initial conditions for the
unperturbed density matrix p(0), we use the relation (3.4)

V' = ( r3+ —,
' )A'co0,

while the unperturbed Hamiltonian is

(2.19)
PtM(0)= g S„*LP„„(0)S„M.

u, v

(3.9)

(2 2()) Substituting relation (3.9) into (3.8), we get~0 2 X I. (Pk +~k9k ) ~~k ) 1 g ~kQk9k
k k I

SuL Su'LPu'v'(0)S'MSvMe (3.10)p„,(t)=
L, M, u', v'

On the other hand, in many applications it is assumed
that the time development can be described by the master
equation

I'„=—g ( W„kP„—8'k„PL ) . (3.11)
k

III. TIME DEVELOPMENT OF THE SYSTEM:
GENERAL RELATIONS

The exact solution for the unperturbed Hamiltonian
(2.17) has been presented in a previous paper, while the
exact solution for the Hamiltonian (2.20) has been found
in Ref. 29. In this paper we will consider both the weak-
and strong-coupling cases.

We consider a system described by the Hamiltonian

H=Ho+ V (3.1)

where the energy spectrum of the unperturbed Hamil-
tonian Ho contains discrete and continuous energy levels

Here, P„ is the probability that the system is in the state
n, once 8'„k is a probability of transition (per unit time)
from state n to state k. This equation is derived in the
Markovian approximation. The necessary condition of
this approximation is that the eigenfrequency cu, has to
be much larger than the transition rate 8' „
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IV „/ico „i (&1 . (3.12)

In previous papers ' it has been shown that there is
another necessary condition of the Markovian approxi-
mation. The exact spectrum of the whole system should
not contain nondissipative discrete levels (apart from the
ground state of the system). It will be shown below that
the existence of the nondissipative discrete states leads to
the crucial change in the time development of the system,
which cannot be described by the Markovian approxima-
tion.

+ g S—I/2 1,1;L f I/2 —1,1 +
1 A,

i
1' 2

PL 2 I /2, L 2
P I /2, 0+g —I /2, I ~,

' L 2
0 I /2, I—k

(4.5)

In this paper we consider processes taking place at zero
temperature. Therefore, we will analyze expansions (3.2)
containing the phonon vacuum states:

PL1 —I /2, L1 0—I/2, 0++ I/2, 1~,L1 41/2, 11

IV. UNITARY MATRIX
IN THE WEAK-COUPLING CASE Here

I /2, I~, I~,Li WI /2, I~, 1~
1' 2

(4.6)

To find a time development using expression (3.10), we
have to find matrix elements S„L of the unitary matrix.
We will choose indices u as corresponding to the eigen-
functions of the Hamiltonian

0+I/2 @+I/2 H @0(7k )
k

)+I/2, 1 @+1/2@1(9k) Q @0(qk )
k(XX)

(4.7)

H0 =fico0(r3+ —,
' )+g akakficok .

k

These eigenfunctions have the form

0+ I/2, [ „)
=@+I/2 H @ „(Qk )

k

(4.1)

(4.2)

0+ I/2, 1,1„@+I/2@I(~k, )+I(~k, )
1 2

x g @(q ), . . . .

We substitute eigenfunctions (4.7) into the Schrodinger
equation

where N„are eigenfunctions of the harmonic-oscillator
k

Hamiltonian

akak@ (qk ) ~k@ „('vk )

(H0+ V E)PL =0—,

where H0 is determined by Eq. (4.1) and

(4.8)

and
V= —(r+ +r )g Bk(ak+ak ), r+ =rl+ir2 . (4.9)

k

~3 @+1/2 —
2 @+1/2 (4.4) After usual operations, we get

(El/2, 0 EL )Sl/2, Ii+2 I/2, 0; —I/2, 1 —I/2, 1i,'L2 (4.10)

~l—I/2, 1l L2 )~ —I/2, 1i,L2 + V—I/2, 1~, 1 2, 0/SI 2, L/+2g V—I/2, 1k, O~, , I/2, 1~ I SI/2, I~, I~, ,L2
A.'( WA. )

(4.11)

(E E' )S —. + V1/2, 1~, 1~ L2 1/2, 1~, 1~ ', L2 1/2, 1~, 1~ ',
—1/2, 1~,0~ S 1/2 1 L

A,
' 2

+v . s . + w v, . s . =o,
1/2, 1~, 1~,' —1/2, 0~, 1~ —1/2, 1~„'L2 ~ 1/2, 1~' lA, 'Ok ' 1/2, 1~, 1~"1k 1/2, 1~, 1~"1k, L2

k(WA. , A, ')
(4.12)

(E I/2 0 EL )S I /2 L +g V I/2 0. I/2 I Sl/2 I~.L
—0 (4.13)

I/2, 1) Ll ) I/2, 1k,L1 + Vl/2, I(, —I/2, 0 —I/2, L1 + $ Vl/2, I)0(,, —I/2, 1), I~, —I/2, 1~, 1k, ,L2
A, '(WA, )

(4.14)

~t—I/2, 1i, l~, ~L1 )S—I/2, 1~, I~, , L1 + V—I/2, 1~, 1~,, 1/2, 11,0~, I/2, 1~,L1

+v . s . + ~ v . s . =o.—1/2, 1~, l~,'1/2, 0~, 1~. 1/2, 1A, , L2 ~ —1/2, 1~, 1~.,0k &1/2, 1~, 1~„1k 1/2, 1~, 1~., 1k ', L2
k(WA, , A, ')

(4.15)

This infinite chain of coupled equations has been derived
under the assumption that the boson system has a contin-

uum of modes, their number N ~~. The normalization
condition of wave functions (4.5) and (4.6) provides the
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following relations:

S+1/2 L (X )

S+1/2, 1,;L "(& ')'"

S+1/2, 1 1
.L

1 2

—1 3/2
S+1/2 1 1 1 L

(4.16)

These relations enabled us not to include in Eqs.
(4.10)—(4.15) terms of

~1/2, 1;—1/2, 2 S—1/2, 2;L yP

The contribution of these terms vanishes in the continu-
um limit.

Now we will adopt a one-boson approximation. It
means that we neglect terms having more than one bo-
son: like S+,/2, 1 .L. This also means that terms

with a higher number of bosons can be neglected in com-
parison with terms containing a lower number of bosons.
Conditions of the applicability of a one-boson approxima-
tion will be derived below.

In a one-boson approximation we have two systems of
equations for the S matrix and for the eigenenergies
which follow from the Hamiltonian (2.15)

S1/2, 1), 1~,, L2

—1/2, 1~,L~ ++k —1/2, 1~,', L 2

'SCOP+ AC&)g+ ACOg EL
1

(4.23)

S—1/2, 1~', L
1 'AC&)g EL

S1/2L, ~

&~ S1/2, 1,;L +&~S1/2, 1,„I,
—1/2, 1~, 1~,, L I

1

(4.24)

Equations (4.17)—(4.19) can be obtained as exact equa-
tions following from the Hamiltonian (2.17). This Hamil-
tonian is usually called a rotating-wave approximation
Hamiltonian. Thus, the rotating-wave approximation
leads to Eqs. (4.17)—(4.19). On the other hand, Eqs.
(4.20) —(4.22) also describe one-boson states, but they fol-
low from the counter-rotating part (2.18) of the interac-
tion energy. Thus, strictly speaking, the rotating-wave
approximation does not coincide with the one-boson ap-
proximation. The higher boson terms in Eqs.
(4.10)—(4.15) are connected with both rotating and
counter-rotating terms in the interaction energy (4.9).

Now we derive conditions of the one-boson approxima-
tion. Neglecting terms with more than the two bosons
involved, we get, from (4.11), (4.12) and (4.14), (4.15),

0 Li ) 1/2, L2 g ~iL —1/2, 1~, L2 (4.17)
S1/2, 1;L

A~P+ ACOq
—EL

S—1/2, L
1

(~~it EL2 )S—1/2, 1~, L2 +1Sl/2, L2

fico() EL-
Au~ —FL

(4.18)

(4.19)

Here we assume that higher boson contributions are
much smaller than lower boson contributions. Taking
into account one- and two-boson contributions, we can
write the normalization conditions in the form

Li —1/2, Li 2 2. 1/2, 1~ ,Li' (4.20)
2 2 2S 1 /2, Li +2 S —1/2, 1~,L2 + 2 S 1/2, 11,1~„L2

I

(4.25)

L (g~o+fi~i EL ) 82S, /—2 L
—0,—(4.21) S—1/2, L1 +g Sl/2, 1~,'L) 2 S —1/2, 1g, lg, L1

2 2 2

I
i

(4.26)

E I

Ll LOP+ %CO~
—EL

(4.22) Substituting Eqs. (4.23) and (4.24) into relations (4.25)
and (4.26), respectively, one gets

ANg EL
Sl/2 L 1++ + g

(Ace,, EL ) 2 i„(A—co2+Acoi E2) ficoo+A—~2 EL—
2

2

(4.27)

2 2

S—1/2 L, 1++ +g
(AcOO+fi~2 EL ) 2 2 (ACO2+—fiCO2„EL )—%COP +AMg~ EL

1

(4.28)

It is easy to see that the double sum in Eq. (4.27) has the
order of the magnitude

g 2 g 2

(4.29)
(Aevi EL ) i (llicoo+iri~2 )—

provided

, «I,
( %coo+ irido~ )

(4.30)

It implies that one can use the one-boson approximation or a more strict condition is fulfilled
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B2

, , «1.
A cog

(4.31)

It can be shown that the same condition is sufticient in
order to neglect the double sum in Eq. (4.28).

We will solve one-boson equations (4.17)—(4.19) and
(4.20) —(4.22) separately. They generate two classes of
one-boson eigenstates:

(Acoi EL—) )0 (4.39)

(4.37), then it follows from (4.34) that S»2 L ~0 when

The only exception may be if B&~0 at
EL =%co&. We do not consider this case. On the other

2

hand, states lying beyond the continuum region (4.37)
give finite contributions to the sum (3.10). In this case

4L) —1/2, L1 0—1/2, 0+g 1/2, 1~,L( 41/2, 1~ (4.32)
and S1/2L s finite.

The onset of the continuum starts at the zero energy.
Therefore, the state with negative energy

L2 =Sl/2 L2 $1/2 0++ S I/2 1~.L2 P 1/2 1 (4.33) Ed: Eo Eo &0 (4.40)

1

I +g [82 I(Ac02 EL ) ]— (4.34)

Now we will assume that spectrum of the boson energies

First we will consider Eqs. (4.17)—(4.19) and (4.33).
These equations describe the interaction of one discrete
state

~
—,',0) with the continuum of states —

—,', 1 &
).

Such a problem has been analyzed in Refs. 21 —26 in
the context of the configurational interaction. In the con-
text of the spontaneous emission of bosons, this problem
has been considered in a previous paper. We will brieAy
review here the main results of the analysis. From the
normalization condition for it/L (4.33) and Eq. (4.18), it

2

follows that

is the discrete state. We find from Eq. (4.19) that

(4.41)

It is easy to see that the root Eo & 0 exists provided

'flC00 ( irlCO~ =g
~ Ace~

(4.42)

E„',=E .,+6, 6&0

provided

(4.43)

By the same token there may exist a discrete level above
Emax

(4.35) Emax ~~0 (X Emax
(4.44)

is spread from zero to

Emax ~~max (4.36)

Also in this case the sum in (4.34) does not contain the
singularity, since condition (4.39) is fulfilled. Therefore,
for discrete states Ed, Ed, we get

Eigenvalues of EL may lie either in the continuum re-
2

glon
1

1++[Bil(fic02+Ep) ]
(4.45)

0&EL &E „2
(4.37)

or below zero and above E „.The latter belong to the
discrete spectrum of the entire system (the tunneling sub-
system coupling with the phonon bath) while the former
belong to the continuum of the entire system. The ex-
istence of the discrete states in the context of the
configuration interaction has been discussed by Riess,
Rosenfeld et al. , and by Czelbart and Jortner.

It is easy to see that the existence of excited discrete
states ~d ) leads to nondecaying harmonic terms in the
time dependence of the density matrix (3.10). [The
ground discrete state always exists and it is the solution
of Eqs. (4.20) —(4.22) as will be shown below. ] If Ed are
eigenenergies of the excited discrete states, then nonde-
caying harmonic terms in (3.10) emerge, provided

1+g[B2 l(E,„—iricdL+5) ]
(4.46)

2
S1/2, d =0

while the value of S1/2 d depends on parameter coo

(4.47)

B2

1++
2 (fiC0&+ Ep )

o&

C00 ( Cpq
—g 4 cog

(4.48)

For simplicity s sake, we wi11 consider the case when con-
dition (4.44) is not fulfilled. In this case,

lim S„d&0,&~ oo
(4.38) The eigenfunction p'd corresponding to the eigenvalue

Ed = —Eo has the form
otherwise these terms will give an infinitesimal contribu-
tion to the corresponding Fourier integral. This property
(nonvanishing of S„d for X~ oo ) may serve as a
definition of the discrete state. If EI lies in the region

2

~d 1/2, d ~1/2, 0+X —1/2, 1&', d 0—1/2, 1&

where S 1/2, .d can be found from (4. 18):

(4.49)
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1
—1/2 1~ d g +E 1/2 d

0
(4.50)

Now, substituting the value of tan(irb /E) from Eq.
(4.55), we obtain

Now we will consider the eigenstates g' of the new
continuum. First, we consider the case when eigenvalues
E& =Ace& form an equidistant spectrum, being the
difference between two neighboring energies, ' c tends
to zero in the continuum limit N~ oo. From Eq. (4.19)
we have

2 = 2
1/2, a a

I Bi+.
+ (E+ E—) (4.60)

In general, when the continuum spectrum is not neces-
sarily equidistant, c has to be substituted by the density
of states p in the unit energy interval and one gets

Acoo E' =—g
E~ —E' (4.51)

1 fiy(E )
S 1/2

harp(E ) fi (E )+(E E)—
where

(4.61)

All the contributions to the summation in this equation
are of two kinds. There are contributions for which E~ is
very different from E' and contributions from the region
in which E&—E is of the order of c. Let a be the least
positive value of E& —E', and let b be

and

2
max

E+(E )=A'coo —I p(Ei, )dEi„
0 E& —E (4.62)

b =a —e/2 . (4.52)
y(E )= „p(E )B—' . (4.63)

It can be shown ' that a contribution from the region
where E& —Ea is of the order of c takes the form

To analyze the function S,/2, we consider the roots of
equation

—B —tan(n. b /e), (4.53)
E+(E)—E=O

where B is the value of B& for very small E& —E'. In
the continuum limit N~ ~ when c.~0, the rest of the
sum may be rewritten as an integral, and one gets

2

%coo f 0

BA.

E A. A, 0p(E )dE E=Aco —F(E) E—=0, —

orb~ E,„B /e
fico() —E +B —tan — '"

dEy =0 .
E E,

y a where

(4.64)

Therefore,

B —tan
E

mb =E —E+,

where

E . Br/e
E+ =ficoo f '" dE—

&
.

y a

(4.54)

(4.55)

(4.56)

F(E)=f '"
p(Ei )dEi =P g

%cog E

E=E„'=—E (4.65)

Here P designates a principal part of the corresponding
integral.

First, we consider the case when Eq. (4.64) has a nega-
tive root E. It is easy to verify that this root coincides
with (4.40) and (4.41),

Equation (4.55) determines tang (nb/e) as .a function of
E belonging to the unperturbed continuum. The eigen-
functions of the new continuum have the form

As we know, this is the case when (4.42)

(4.66)

4 1/2, a%1/2, 0+2 —1/2, 1&,a P 1/2, 11—(4.57)

From Eq. (4.18) and the normalization condition one gets

Now, having in mind the condition of the one-boson ap-
proximation (4.31), we get for the unitary matrix ele-
ments (4.48) and (4.61) the following expressions:

S . =,S—1/2, 1&,a E E i 1/2, a
a

S = 1+1/2, a g (E Eg )2
A. a

In the limit c.~0, one gets '
T

B m. mb
S1/2, 2

1+tan
E

(4.58)

(4.59)

S,/2 d =1—g =1, Ed = —g +%coo,
g E~

(4.67)

2Sl/2 X
=

E2
(4.68)

(4.69)

[It is also assumed that fiy(E&)«(Ei„+ED).] On the
other hand, in the case
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the excited discrete state does not exist and

2
S1/2d 0 ~ (4.70)

V. TUNNELING FRICTION
AND SUPERTUNNELING

IN THE WEAK-COUPLING CASE

and S, /2 is given by Eq. (4.61). Now let us consider the
case when y(E ) and E+ (E ) are smooth enough func-
tions so that one can neglect the variations of y(E) and
E+(E}near E=E—the root of Eq. (4.64). This means
that

y =y(E ) ((co*, E//ft, (4.71)

fiy
~p«. } f'y'+(E —E.)' (4.72)

where %co* is a characteristic scale of the variation of
functions y(E) and E+(E). This approximation corre-
sponds to the so-called pole approximation. In this ap-
proximation, Eq. (4.61) takes the form 1

1)'1/2 = —(&-1/2+ 01/2»~2
1

1/2 ~— ( 0—1/2 41/2 }~2

(5.1)

Now we will be interested in the time development of
the tunneling system interacting with the phonon bath.
For this purpose we will use relation (3.10) and unitary
matrix elements found in the preceding sections. These
matrix elements use the basis eigenfunctions of the (4.2)
type. They are eigenfunctions of the operator r3 and de-
scribe delocalized states, while the localization in one of
the wells is described by the eigenfunctions of the opera-
tor r

1 (see the beginning of Sec. II). To find the probabili-
ty of the localization in one of the potential wells, we per-
form the unitary transformation to the localized states

The normalization condition

Q S 1/2, ~ 1 (4.73)

Thus, the density matrix in the new representation can be
expressed through the density matrix in the r3 represen-
tation

can be written as

1 max gy QE
fi' '+(E E)'— —

1 - E Ay dx
2y 2+~ 2

(4.74)

Pmn X km Pkl ln
Ic, 1

where

lt'„=g U nit/

and

(5.2)

(5.3)

Using condition (4.71) and the additional condition

+Emax E (4.75)

E = —g = —g, (4.76)
%coo+ %cog E& ~ %coo+ %cog

we obtain the normalization condition in this approxima-
tion.

Using the same approximations, we get the solutions of
Eqs. (4.20) and (4.21). For the ground state of the system
we get

U1/2, 1/2 U 1/2, 1/2

1
U —1/2, 1/2 U1 /2, —1/2 (5.4)

1 Pl/2, 1/2 I+ 2 (P —1/2, 1/2+Pl/2, —1/2} (5.5)

Therefore, using the unitary matrix S derived in the pre-
vious sections, it is enough to find

In particular, it follows from these relations that the
probability to remain in the first well equals

P —1/2, '1 /2 P1/2, —1/2 (5.6)

(llicoo+ llicok )

For the continuum states we get

(4.77)
We assume that initially (t =0) the system was in the

first well

p 1 /2, 1/2(0) p —1/2, —1/2(0)
2S 1/2, A

=0.
( fico&+ ficoo )

(4.78)
P —1/2, 1/2( } P 1 /2, —1/2( } T (5.7)

Thus, performing the consistent one-boson approxima-
tion (4.31), we have obtained all one-boson unitary matrix
elements: S,/2 [(4.61), (4.72}, and (4.68)], S
[(4.67) and (4.70)],S,/2 s [(4.77)], and S»2 &[(4.76)]. It
is worthwhile to mention that only these approximate ex-
pressions are consistent. For example, expression (4.48)
is the exact matrix element S2 d for the truncated
"rotating-wave" Hamiltonian (2.17). However, the one-
boson approximation employed to the nontruncated
Hamiltonian (2.15) leads to expression (4.67).

Puv &RttRv

where
—(i /fi)EL tR„=g S„l$„*1e

u'L

(5.8)

(5.9)

As in the previous section, we assume validity of the

These initial conditions correspond to the zero tempera-
ture of the phonon bath. Using Eq. (3.9) and the initial
conditions (5.7), we find
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one-boson approximation (4.31). We first consider the
nonvanishing approximation in the parameter (4.31) 1 2v1+cos te

2

B~
2U ) fico, =g

incog

~ E~2

We start from the case (4.69)

(5.10) P =
1

1 2v

2
1+cos t, 2v &Am, .

(5.17)

COO) Cd~
—g

A cog
(5.11) VI. SUPERTUNNELING: STRONG COUPLING

In this case, the discrete state Ed does not exist and

S, /z d =0, (4.70). Then, using expression Si/z, (4.72), in
the pole approximation, one gets, from relations (5.8),
(5.9), (4.76), and (4.77),

—(i /fz)E t
R i/z 2 Si/z, ae

—(i /A)Et
dE

Azy '+(E —E)'
l=exp ——Et e rt,

In Refs. 29 and 30, exact solutions corresponding to
the Hamiltonian (2.14) with coo =0 have been found.
Discrete levels corresponding to such a Hamiltonian are
degenerated. These solutions open the possibility of con-
sidering the case of very low frequencies coo, considering
coo as a small perturbative parameter. This case may be
called the strong-coupling case since there is no limita-
tion on the strength of the spin-phonon coupling Bk. We
will rewrite the Hamiltonian (2.14) in the form

&=
—,
' g [pk + cok (A —2r i A ) —A'co k ]

k

—(i/fi)E t
—1/2

max
B2

E= ficoo I "dE&p—(E& )
Eg —Acro

(5.12)

(5.13)

where

+(r3+ —,')iricoo=HO+ V,
k ~~k

(6.1)

(6.2)

ACOo+ iwlCO~

From these relations and (5.8) and (5.9), we find

P —1/2, 1/2 P1/2, —1/2

and P1,

The unperturbed Hamiltonian Ho has the form

B2

Ho g [pk+~k(gk 2ri9k )' —&~k ]
—g &, (6.3)

k k 6~k

while the interaction Hamiltonian is

V=(r3+ —,
' )fia)0 . (6.4)

P =—' 1+cos (E—E )t e—
1

= —,'(1+coscoote r') . (5.14)

When the tunneling transition matrix element (2.16),
U =(iiicoo/2), does not satisfy condition (5.11) and the op-
posite condition

0r& =+I/2, (n )
@+1/2 H @nk(Pk + qk )

k

Bk
E+ i /z, [ n j y tik ~~k

k Amok

(6.5)

(6.6)

The eigenfunctions and eigenvalues of the Hamiltonian
Ho have the form

2v
2

COp
— ( CO~

=g
A coy

(5 15) and

~1 ++1/2 —I++1/2
is satisfied, the tunneling friction vanishes and a super-
tunneling regime emerges. Again, using relations (5.5),
(5.8), and (5.9) and matrix elements (4.67) and (4.77), we
get

1
@+i/z ~ (@—i/2 —@1/2)v'2

~3 @+1/2 —
p ++1/2

(6.7)

1 1P =—1+cos (E' E)t— —
1 d g

The energy levels (6.6) are degenerate, therefore, the
correct zeroth-approximation eigenfunctions are

= —,
'

( 1+coscoot ) . (5.16)

Thus, the main result of this section may be summarized
by the formula expressing the transition to the supertun-
neling regime (in the one-boson approximation)

+C"—i/z II +. (elk+ok)
k

(6.8)
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1
~'i n II C'.„(qk

—
qk )

Q &b„(q„+q„)
k

(6.9)

Ei y nk~~k X + Vll
k ACOk

(6.10)

In the first approximation, the eigenenergies have the
form

—(2/A')11„=g&nk e
k

(6.16)

When frequencies cok form a quasicontinuum, and

qk ~N ' (with X~ ~, when approaching the continu-
um), we follow a conventional procedure and will expand
exponents in (6.16) up to the terms of order N ' in each
mode k and present it in the form of the exponent

Eq[„[=g nkkcok —g &
+ ~%no(1+IId ), (6.15)

k ACOk

where

y nk~~k y g
+ V22

k k ~~k 1 —O(X ')=e (6.17)

where

Vll ~~0( + & Pl [ [ ~301[

V22 ~~0( p
+ & 42[n [& r3 P2[n [

) )

Using (6.7)—(6.9), one finds

—(2i /fi)
&Qi[ [ ~3&i[.[

&
= —

—,
' Q & nk le

k

& 02[ nk j t 3 42[ nk [
)

Here

(6.11)

(6.12)

IId =exp —g (2nk+1)
k

Bk= exp —2 g (2nk + 1)
A COk

(6.18)

g(2)— V Vnm mn
n 0 0

m(&n ) +n m

(6.19)

In order to estimate the approximation in which solu-
tions (6.8), (6.9), (6.14), and (6.15) have been obtained, we
will consider a second-order perturbation correction to
the energy eigenvalues

lnk & =~'.„(qk) . (6.13)

Thus, the operator V, (6.4), removes the degeneracy of
levels (6.6) and the new eigenvalues are

We need to obtain expressions for off-diagonal matrix ele-
ments V, . For this purpose we use expressions for non-
vanishing matrix elements of r3 over eigenfunctions

I
+ 1/2&

Bk
Ei [„[=g nkA'cok —g +

~
ftcoo( 1 —IId ), (6.14)

k k ~~k Thus, we get from (6.8) and (6.9)

(6.20)

& ltn j I Vl 1tn'j &
= —&2tn $ I

VI2[n'J &

H & @ „('qk 'qk )@„„'(qk+'qk ) ) +g & + „('qk +'qk )@„'(qk 'qk ) )
k k

II & C'.„(qk —
qk )C'„(qk+qk ) &

—II & +.„(qk+qk )@„'(qk 'qk ) )
k k

These relations may be rewritten as follows:

r

0 2E 0exp qkpk
k

I 2L 0 I+g nk exp
g qkpk nk

k
(6.21)

AQ)p
& ln

I
VI2n') = + nk exp qkpk nk —Q—nk exp —

qkpk n—
k

In the continuum limit N~ ~, one can easily obtain nonvanishing elements of these matrices. We will consider vacu-
um states In =0) =

I [0,0, . . . , 0&, . . . J ) and one-phonon, two-phonon, etc. , states In' );

In &=I~0~ &,

In') =
I [0, . . . , 1,, . . . , o. . .

~ ) =1,),
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Then we get

(l,o~v~l, D)= — n 0 *p —q„p 0 +ti 0 *p q—p Ol
k k

Scop fl63p
IId = — exp —2 g 22 2

ACOp

+ 0 exp ——
qkpk 1~ 0 exp ——

qkpk 02l p 2l p

k(AA, )

= —2 ficopHd .
'Rcog

In the continuum limit matrix elements of type

2l p0 exp —-qkpk 1&

can be calculated as

0 qkpk lg

all higher-order terms can be neglected in the limit N ~~. In the same way we get expressions for matrix elements for
many-boson transitions:

(1,0iVil li, . . . , li ) = —(2,0iVi2 li, . . . , l ) = —2 " ' fico II„,
1 2n

8$ I ~ 08$
, OIVI2, 1i, . . . , 1~ ) = —2 "

iri II
1 2n —1 Acug. . .ficog

1 2n —1

(6.22)

(6.23)

Using these matrix elements and formula (6.19), we get the second-order correction to the energy level of the system

2 2

E i (0)
= (ficoo) IId 2(2) 2 2 1 2

2! & &, %co&+Am&

24n —2
2 . . . 2

'9A. 'QA,

'AMg + +AQPg

2

ACOPIId +%CO~
A1y ~ ~ ~ i A2

2 . . . 2
'QA. 7/A.

+ ~ ~ ~ , (6.24)

where

(6.25)

I

The quantity IId (for nk =0) (6.18) is expressed through
'9:

2 21+++ +

It is easy to get the following estimate for the large
parentheses in (6.24):

II =e-»2.
d

Thus,

—
E'&(z) (e "(ficoo) (e" I )/il . —

(6.28)

(6.29)

where

1 el',
2

=—(e"—1)g'9 Ac@~
(6.26)

(6.27)

The condition of smallness of the second-order correction
in comparison with the energy difference (6.14) and
(6.15), of the first order iricoolld takes the form

ge
2

ficoo (( (6.30)
fico& (1—e &)

For the interaction with acoustic phonons g& ~ ~& ', we
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get, in the Debye model,
—q/2

COp « Q)D
1 —e

(6.31)

with correct states of zero approximation (6.8) and (6.9)
have the form

~(1/2)¹1n ~(1/2)N; 2n

For the weak coupling we get

g « 1, gap «coD,
while for the strong coupling,

Q)p«coDe ", g + 1

(6.32)

(6.33)

Of course, in the case of weak coupling (the one-boson
approximation), co0 should satisfy condition (5.15) as well.
This later condition is compatible with condition (6.32).

Now we are ready to consider the time development of
the tunneling system coupled with the phonon bath and
described by the Hamiltonian (2.14) or its equivalent
(6.1). In the strong-coupling case, the eigenfunctions are
presented by formulas (6.8) and (6.9) while the eigenener-
gies have the form (6.14) and (6.15).

We again use relation (3.10) to determine the time de-
velopment of the density matrix. Matrix elements of the
unitary matrix connecting states

(6.34)

1 l p—II +k ~"p
&

Caps "a)2 k

S (1/2)N;1n S (1/2)N

1 l p—II +a ~*P 'laPk "a) .
k

Assuming that, at t =0,

P 1 /2, 0; 1/2, 0(

we obtain from (3.10)

P1/2, N;1/2, N +1/2 N~ 1/2, N

where
—(i /fi)EL t

1/2N X 1/2NL 1/20L
L

Substituting (6.35) into relation (6.38), one gets

(6.35)

(6.36)

(6.37)

(6.38)

l p l p nkco~ t —(]/A)E) t —(]/A)E2tR „,„= ,' g + N—, exp —
&

q„p„ ttk 0 exp — q„'p„—ttk e " " (e ' +e ' ),
In, I

where

g2
E, = —g + —,'lri (1+II ) .

k ~~k

Using conventional transforrnations we get

(6.39)

(6.40)

R, /2 N =exp — co0t i g —— tN exp -——g qkpk(t) exp —g qkpk 0 exp i g N—kook t cos( —,'co011d t ),
COk k k k

(6.41)
where

pk ( t ) pk cos~k t ~k qk sin~k t

Now, using (6.17)-type transformations (for the continuum states), we obtain
2

0 exp ——g qkp„(t) exp —g qkpk 0 =exp —g (1 —e
k k ~~k

(6.42)

(6.43)

%cog flcog
1 2

Substituting these relations into Eq. (6.41), we finally get

Pl/2, 1/2, g Pl /2, N; 1/2 N P, ( t) =cos ( ~ c00IId t )
N

I

where v is a "dressed" matrix element of the transition
between two symmetric wells

2v1+cos t
u =u exp —2g

i6 COk

(6.45)

(6.44) It has to be stressed that solution (6.44) describes quan-
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turn beats without friction, while the usual Markovian
approach (see, e.g. , Ref. 32) would give decaying quan-
tum beats. In the case of weak coupling,

expression (6.44) reduces to expression (5.17) in the super-
tunneling regime (2U & fico, ). rr=g i z

«1 . (7.2)

For more quantitative predictions certain approxima-
tions have been made. The use of the truncated
rotating-wave Hamiltonian is justified if one can neglect
many-boson contributions connected with those omitted
in the (2.17) counter-rotating terms (2.18). It has been
shown that many-boson contributions can be neglected
provided the parameter rr, (5.10) and (4.31), is small

VII. DISCUSSION AND CONCI. USIONS

Tunneling between two potential wells in the dissipa-
tive medium has been considered in the framework of the
spin-boson Hamiltonian (2.14) and (2.15). The time evo-
lution of such a system can be described by the density
matrix formalism. The time-dependent density matrix is
presented by Eq. (3.10). This equation, which is exact,
can describe two qualitatively different kinds of behav-
iors. In one case, the energy spectrum of the whole sys-
tem, spin interacting with bosons, is continuous (besides
the ground state). In this case the summation in (3.10)
can be transformed into an integration. Corresponding
Fourier integrals describe irreversible behavior—
decaying quantum beats. Quite different behavior is pre-
dicted in the case when the whole system contains both
discrete (besides the ground state) and continuous states.
In this case, nondecaying quantum beats emerge. This
analysis is model independent and is not connected with
any specific approximation.

Now, assume that the spin-boson Hamiltonian has
discrete states, e.g. , ground and excited discrete states,
while continuous states lie above these discrete states.
The discrete states correspond to delocalized states in the
two-well potential. If we are interested by the probability
to remain in one of the wells, then the transformation to
the site presentation has to be performed. In the model
system described by the truncated Hamiltonian (2.17),
the analysis has been performed exactly. When the in-
teraction energy between the two wells characterizing the
barrier between the wells, U is lower than critical energy
v„ then discrete levels in the whole system emerge. In
this case,

On the other hand, the supertunneling regime emerges
provided condition (7.1) is satisfied. Another condition
which has to be satisfied is (4.71) and (4.75). This condi-
tion provides the applicability of the pole approximation
used in the derivation of formula (5.17). This condition
can be written in the form

y = p( E )Bk (
—E ) « coo . (7.3)

(Here we assume that E,„))Eand E =%coo.) Of course,
one has to verify the consistency of these three conditions
(7.1)—(7.3). At first sight, condition (7.1) contradicts con-
ditions (7.2) and (7.3): condition (7.1) requires Bk to be
large enough, while conditions (7.2) and (7.3) require the
smallness of Bk. Also, it has to be stressed that condi-
tions (7.1) and (7.2) might not be satisfied for all depen-
dencies Bi, (Ek ). Particularly, the sum (7.2) may be diver-
gent. To clarify conditions (7.1)—(7.3), we will consider
here the deformation interaction of localized electrons
with acoustic phonons

t 1/2

Bk 2M' k Edf

1

v'N 2M AD

1/2
1

a AD

1 /2

(7.4)

where Ed,f is called a deformation energy, u is a sound
velocity u =co~/a with coD, a, and N being a Debye fre-
quency, a lattice constant, and an effective number of vi-
brational degrees of freedom of the solid, respectively.

For our estimates we can use the density of states in
the Debye model

U (U~=—
~

(7.1) 3' k
p(cok ) =N

COD

(7.5)

and the tunneling friction vanishes. For the spin-boson
Hamiltonian, the transformation to the site representa-
tion corresponds to the transformation to the basis of the
r, operator (5.1). It is worthwhile to stress again that
both the general analysis and the application to the
specific case of the truncated spin-boson Hamiltonian
(2.17) are exact. The physical explanation for the predic-
tion of the vanishing of the tunnel friction in case (7.1) is
quite simple. The time development of the system with
the discrete nondecaying states is described by the densi-
ty matrix p&&i &&i(t), (5.5). This density matrix (in the site
representation) is expressed through the off-diagonal ma-
trix elements (in the energy representation) and therefore
it contains nondecaying harmonic terms.

2
3 A 1 +de&

2 2McoD pi (iii~D)~

'AC&) q
U~

— =
3
0 %COD

2

(7.6)

(7.7)

(7.8)

We see that the condition of the one-phonon approxima-

Using these relations, transforming the summation (7.1)
and (7.2) into the integration, we get the following expres-
sions for o., U„and y:
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COp «1 (7.9)

and is ensured by smallness of parameters cr and

tion (7.2), i.e., a smallness of the parameter cr, is satisfied
provided a product of dimensionless parameters
A/2McoDa and (Ed,tlhcoD) is small enough.

Condition (7.3) may be rewritten in the form
'2

and S,&2 I ~ N '~0. This can also be explicitly evident
from the expression (4.72). At resonance E=E, expres-
sion (4.72) is proportional to I lp(E)y and cannot be ob-
tained as an expansion over 8k. It has to be stressed that
expression (4.72) takes place in the one-phonon approxi-
mation and it describes the usual tunneling friction.

When EL lies beyond the continuum region and has a
negative value Ed = —E„then the sum in the denomina-
tor of (7.13) is finite and equal to

6)p
7l=

Ct)g)

«1.2U

AcoD
(7.10)

Using Eq. (7.7), one can express the parameter o as

3 ~c0—
2 coD

and

(ih'coq+ Eo )

(7.15)

Therefore, the condition of the one-phonon approxima-
tion together with condition (7.1) can be expressed in the
forms

cop&m, «coD (7.11)

or

(7.12)

1

1++[Bi/(Acoi EL ) ]— (7.13)

When EL, an energy of the whole system, lies in the con-
tinuum region, then the sum in the denominator tends to
infinity (with N ~ ~ )

(7.14)

Thus, we see that condition (7.1), co, ) coo, is compatible
with the one-phonon approximation, provided parameter
ri, (7.10), is smaller than —', tT.

Several words have to be added about the weak-
coupling case. It has to be stressed that it is not the usual
perturbation theory using an expansion over powers of
the interaction parameter Bk. Expression (4.72) for the
unitary matrix element contains all powers of y, (7.3).

Let us consider a contribution of a certain separate lev-
el EL to the unitary matrix element (4.34):

S)/2 d —1 o. —1 .2

This happens when cop & cu, .
We see that so-called weak-coupling case (7.2) does not

mean an expansion over the interaction parameter Bk. It
means only that the ratio of the interaction constant to a
certain quantity is small [see (7.6)]. At the same time, the
ratio of Bi„ to another quantity, like (ficoi„EI ) [—see
(7.14)] can be infinitely large.

We summarize the main results of the paper. A con-
sistent analysis in the one-boson approximation shows
that the tunneling friction vanishes when the interaction
energy v =(irtco, /2) between two wells is lower than the
critical energy

This supertunneling regime is connected with the ex-
istence of discrete states in the spectrum of combined
spin-phonon system described by the Hamiltonian (2.14)
and (2.15). It has been stressed in previous papers
that the existence of such states (except the ground state,
which always exists) precludes the use of the convention-
al Markovian approach. It also means that the supertun-
neling phenomenon cannot be understood in the frame-
work of the usual Bloch equations.
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