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We employ collective-variable theory to describe the dynamics of a breather excitation in its

center-of-mass frame in continuous and discrete systems of one spatial dimension. The exact equa-

tions of motion for the collective variable and coupled phonon field are derived for any system

which supports breatherlike excitations that have even spatial parity where the collective variable

represents half the distance between the breather subkinks. We then specialize the theory to the

sine-Gordon (SG) case. For the continuum SG system we derive the exact effective potential in

terms of the collective variable and discuss the relativistic effects on the breather subkinks which

are quite different than the relativistic effects on isolated boosted SG solitons. The effect of the sub-

kink interaction is such that the subkinks do not Lorentz contract as they speed up when approach-

ing the collision region (breather center). For the discrete SG breather system we derive expressions

for the total energy, the effective potential which governs the motion of the breather subkinks, and a
stability criterion for the breather s position relative to the lattice sites. We compare with simula-

tion and find good agreement in most cases. Using molecular-dynamics and Fourier-transform

techniques, we show that discrete SG breathers spontaneously make remarkably sharp transitions

from a short lifetime to a long lifetime. The breather lifetimes on each side of the transition differ

by more than four orders of magnitude. We relate the existence of the transition to the structure of
the system's frequency spectrum. We also study the frequency spectrum of a "static" breather

whose subkinks are trapped by the Peierls potential, yet are close enough to interact. For the latter

case we illustrate the connection between collective-variable theory and standard perturbation

analysis.

I. INTRODUCTION

There exist many one-dimensional nonlinear systems
which support stable kink structures such as the sine-
Gordon (SG), ' ' double sine-Gordon, "' modified
sine-Gordon, ' ' P, ' double-quadratic, ' ' and multi-
quadratic' systems, to name a few. It is well known that
the high stability of the single-kink structures in these
systems arises because of topological reasons. For exam-
ple, if the field in any of the above systems approaches
appropriate dift'erent asymptotic values as x ~+~, then
the nonlinearity focuses the variation in the field until it
is balanced by the dispersive e6'ects giving rise to a kink
structure. However, in order to create additional kink
structures in these types of systems while at the same
time leaving the boundary conditions unchanged, it is
necessary to create kink-antikink pairs.

The energy required to create a kink-antikink pair such
that the kink and antikink separate to infinity is at least
twice the rest mass of a single kink. If an energy less
than twice the rest mass is injected into the system by
some means, then the kink-antikink pair may still be
created but in this case the pair remains bound, i.e., a
breather or breatherlike state is formed. It is apparent
that, at low temperatures, the breathers will play a dom-
inant role in the thermodynamics of kink-bearing systems
since breather modes are easier to excite than kink
modes. In fact, it has been shown' ' that breather dy-
namics make the dominant contributions at low tempera-
tures to appropriate static and dynamic correlation func-

tions. Therefore, considerable attention has been given to
the role of continuum breathers in classical ' and sta-
tistical dynamics of nonlinear systems in the past de-
cade. There has been some work carried out on the sta-
tistical dynamics of discrete systems but they treat gases
of kinks. ' The thermodynamics of discrete systems in
which breathers are explicitly taken into account has not
been treated. However, recent molecular-dynamics simu-
lations which use a discrete SG system as a simple model
for DNA suggest that the nucleation of kink-antikink
pairs is a necessary precursor to localized denaturation of
the DNA strand.

On a completely di|II'erent tack, the route to chaos of
driven sine-Gordon continuum breathers has recently
been treated in a collective-variable setting (neglecting
phonons) by Taki et a/. Driven discrete breathers have
not yet been treated.

There are, therefore, at least two lines of current
research for which the generalization of the current
theories to discrete-breather-bearing systems is natural.
Indeed, it has already been shown that the low-
amplitude modes trapped by impurities in a discrete SG
lattice are, in fact, low-amplitude breather modes. In ad-
dition, when such modes are unstable, the impurity "em-
its" two counterpropagating SG breathers. In Ref. 24 the
asymptotic solution for a small-amplitude breather en-
velope whose frequency lies above but near the upper
phonon band edge in a discrete system was obtained, al-
though its stability was not analyzed.

It is for these reasons that we report our results on the
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dynamics of discrete breathers where our explicit calcula-
tions are carried out for the SG system. In the present
paper, we do not consider the thermodynamics of the sys-
tem, nor do we consider a driven, damped discrete
breather. We ask a more basic question: how are the dy-
namics of a free breather modified by discreteness? We
only consider a breather whose frequency lies in the gap
below the phonon band.

There are two major effects present which cause the
discrete-breather system to exhibit fundamentally new
dynamics. As is well known, the lifting of the spatial de-
generacy in a discrete chain gives rise to the Peierls po-
tential whose effects on the dynamics of single kinks have
been studied extensively. ' ' ' ' What is added in the
breather system we consider is the competition between
the Peierls energy and the subkink interaction energy. In
addition, there exist harmonics of the breather motion
which couple to the phonon modes and produce phonon
radiation causing the breather motion to be damped
thereby requiring the determination of the breather life-
time.

In general, we consider the discrete breather system
such that the center of mass of the breather is at rest in
the laboratory frame. We therefore focus primarily on
the internal breathing motion and not the center-of-mass
motion. In order to analytically calculate the effects due
to discreteness, we employ collective-variable theory
where the collective variable describes half the separation
between the subkinks of the breather. Using a recently
developed projection technique, ' in Sec. II A we
derive the exact coupled equations of motion for the col-
lective variable and phonon field for a continuum breath-
er system. In Sec. II 8 we then specialize the continuum
theory to the SG case. We present the exact expression
for the effective potential as a function of subkink separa-
tion for subkinks of the continuum breather and discuss
the role played by this effective potential on the relativis-
tic properties of the subkinks. Its effect is to exactly can-
cel the Lorentz contraction of the subkinks as they speed
up when approaching the collision region.

In Sec. III A we derive the general collective-variable
theory for a discrete-breather system and in Sec. III 8 ap-
ply it to the discrete SG case. We derive expressions for
the total energy of the system and the effective potential
for the collective variable, both of which explicitly de-
scribe the competition between the Peierls' wells and the
sub kink interaction energy. The theory indicates at
which separations it is possible for the breather subkinks
to become trapped. We call a discrete breather whose
subkinks are trapped a "static breather" and in Sec. III C
we determine the eigenfrequency spectrum of small oscil-
lations about the static-breather profile by relating collec-
tive variable theory to standard perturbation analysis and
then comparing with simulation.

We devote Sec. IV entirely to cases where the breather
is not static but instead oscillates in the conventional
breather fashion (modulo discreteness efFects) for a wide
range of breather frequencies. We present a numerical
analysis of the frequency spectrum and show that discrete
breathers spontaneously make remarkably sharp transi-
tions from short lifetime to long lifetime where the in-

crease in lifetime is more than four orders of magnitude.
We relate the existence of this transition to the symmetry
of the system and the structure of the frequency spec-
trum. We discuss the implications of our analysis on the
stability of the discrete SG breather and compare with
the stability predictions from collective-variable theory.
In Sec. V we present our concluding remarks.

II. GENERAL CONTINUUM THEORY

A. Collective-variable theory for a continuum breather mode

We consider a field p(x, t) in 1+ 1 dimensions subjected
to a substrate potential having the general form
V,„&[/(x, t),x]. The potential V,„& represents any poten-
tial which supports stable topological kink solutions. For
example, V,„], may represent the SG potential with an im-

purity or a perturbed P potential. We assume that a
breatherlike mode exists in the system. We define the
continuum Hamiltonian density in dimensionless units
where the speed of sound is set equal to unity as

&=—,'ll + —,'P„+V,„i,[P(x, t),x], (2.1)

Since we assume that the system supports a breather-
like mode, we introduce another set of variables in an
effort to simplify the description of the dynamics. We let
the fixed parameter X denote the center of mass of the
breather in the system. The two subkinks which
comprise the breather are each located a distance z(t)
from X, one subkink on each side, i.e., the subkinks are
separated by a distance 2z(t), see Fig. 1. Thus, for the
majority of cases considered in the present paper, we as-
sume fixed X, thereby concentrating on the dynamics of
the breather's internal mode. The only time we consider
X to be time dependent is in Sec. III C when we treat the
small-oscillations problem of the discrete system about a
breather profile whose subkinks are trapped. We there-
fore treat cases for which V,„i,[$(x,t),x] is such that the
breather field is symmetric with even parity about the
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FIG. 1. Typical breather profile showing the meaning of the
collective variable z and the parameter X.

where the field-momentum conjugate to p is
II(x, t)=—P(x, t). The dynamics of the system are then
given by the equation of motion

BV,„b
(2.2)
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breather center. In a full collective-variable treatment
where X is assumed time dependent and not restricted to
small displacements, then we must have that the collec-
tive variable z is a function of space as well as time, i.e.,
z =—z (x, t), in order to account fully for relativistic elfects
associated with the center-of-mass motion. It is not
necessary to include these effects for the purposes of the
present paper.

We next decompose the field P in the following„.6, 7, 32, 33

M, —= &~'l~'&, M»—= &~. l~. &=(q» q»)

(2.5c)

1 &) o.
M»—:M»&1 —b»&, b»—= »),BX2

(2.5d)

are the masses associated with the z mode and the
center-of-mass mode, respectively, and

M, =M, (1 —b, )', b, = &o"IX&,
M,

p(x, t)=o [x —X,z(t)]+X(x, t), (2.3a) ~(x, t)=X(x, t)+b, zo', P =M,z, (2.5e)

where cr is an ansatz function that reasonably approxi-
mates for a suitable choice of z for each t the profile of
the actual system and g, in general, accounts for the
dressing of o. and any phonon radiation generated by the
breather motion. By dressing we mean that part of X(x, t)
that is localized about the kinks in o. One may choose o.
to be the exact-breather profile of the system in the ab-
sence of perturbations if one exists. If an exact-breather
solution in the absence of perturbations is not known, as
in the &t& case, then it is reasonable to assume that an
approximate-breather profile is given by a superposition
of a kink and an antikink

cr [x ——X,z(t)]=S(x —X+z)—S(x —X —z), (2.3b)

where S(x) is an appropriate single-kink profile. The
function y though is extremely important in a case for
which Eq. (2.3b) is the ansatz because &r~x will need a
large amount of dressing to correctly describe the profile
when the subkinks are near each other.

Equation (2.3a) is the coordinate transformation from
the field P(x, t) to the collective-variable system consist-
ing of the field X(x, t) and the variable z(t). We have
therefore introduced into the Hamiltonian system two ex-
tra degrees of freedom in phase space [z(t) and its conju-
gate momentum P(t)] and so we impose the two con-
straints

(2.4a)

(2.4b)

where

+ f dx V,„b(o+X), (2.5a)

in order to conserve the number of degrees of freedom.
The function rr(x, t) is the momentum conjugate to X(x, t)
and the prime denotes the derivative with respect to z.
The bracket notation means integration over dx from

to ~. The first constraint gives meaning to the
variable z(t) by determining z such that o is the best fit
to the shape of the actual breather system. The choice of
the second constraint imposes a condition ' ' on the
momentum transformation [cf. Eq. (2.5f)] from the
momentum II(x, t) to the momenta ~(x, t) and P such
that the collective-variable Hamiltonian H takes the fol-
lowing form:

H = + —,
'

& I &+ —,'M~+ —,
' &X. IX„& b'P2 Mx

2M,
2 x 2 x x 2

II(x, t) = +~(x, t) .
Po'

M 1 b— (2.5f)

&) V,„b(o +X)+o'z+ o "z —o-
BO

(2.6a)

Next, projecting Eq. (2.6a) in the direction o ' (integrating
over x) we obtain, after dividing through by M, (z),

Note that only the subscripts on o. and g denote partial
derivatives. The subscripts on the other quantities, such
as Mx and b„are only labels for these functions defined
in Eq. (2.5).

We see that the kinetic energy of the collective mode
appears explicitly as the first term in Eq. (2.5a). If the
constraint C2 is chosen differently, the kinetic energy of
the collective mode does not separate conveniently from
the rest of the Hamiltonian but is inconveniently ac-
counted for in more than one term. The second term in
H is, in general, the kinetic energy of the phonon and
dressing field. The next three terms arise from the elastic
coupling energy. Even though we are considering the
system such that its center of mass is at rest, the mass
Mx(z) associated with the center-of-mass motion appears
in H because &)cr /&)x = —&)o. /&)X.

It is possible to derive the coupled equations of motion
for y and z in two ways. One way requires much calcula-
tion and consists of using the Dirac bracket —Dirac s
generalization of the Poisson bracket in the presence of
constraints —to calculate from H in Eq. (2.5a) the first-
order equations of motion for the system of coordinates z
and g, and momenta P and m, after which the momenta
must be eliminated. One ultimately obtains two coupled
equations of motion for the collective variable z(t) and
the phonon-dressing field X(x, t) which are exact relative
to the constraints and second order in time. From this
coupled pair of equations, one calculates the effective po-
tential for z. However, one of the most useful results of
collective-variable theory is that the above procedure for
the derivation of the collective-variable equations of
motion is equivalent to a simple projection-operator tech-
nique. The derivation of the equations of motion using
the projection algorithm is then carried out very quickly
and requires that we first substitute the ansatz Eq. (2.3a)
into Eq. (2.2) to obtain one equation of motion of the
pair. Second, we project this equation of motion in the
direction o' to obtain the other equation of motion of the
pair. See Ref. 33(a) for the proof of the equivalence of
the two methods.

Substituting Eq. (2.3a) into Eq. (2.2) we obtain
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az

a
Z+ — 'Z'—

2 (2.6b)

The coupled equations of motion (2.6a) and (2.6b) are ex-
act and completely determine the evolution of the sym-
metric breather system in terms of the variable z(t) and
the field X(x, t). The constraints C, =0 and C2 =0 must
be satisfied initially', the theory then guarantees they are
satisfied for all time as long as the dynamics evolve ac-
cording to Eqs. (2.6a) and (2.6b).

At this stage of the theory an expansion in y can be
made in order to calculate, say, the linear dressing of the
function o. where the corrected o. may, for example, be
used to calculate corrected (renormalized) frequencies of
characteristic oscillations of the system and their corre-
sponding radiation linewidths such as in the case of the
quasimode for a SG soliton. In addition, the Hamiltoni-
an Eq. (2.5a) can be expanded in X in order to investigate
the role of phonon interactions in the statistical mechan-
ics of the system. Note that if g is set to zero, then the
"bare" theory results. The bare theory may or may not
agree well with simulation depending on the choice of a;
that is, depending on how much dressing g has been
thrown away. In the next subsection we apply the above
theory to the continuum SG case so that we can compare
with the discrete generalization of the theory derived in
Sec. III.

B. Continuum sine-Gordon breather system

We consider the continuum SG system where

V,„&[/(x, t),x]= VsG[P(x, t)] —= I 0(1 —cosP) .

Equation (2.2) thus becomes

+I osinP=0 .

(2.7)

(2.8)

co =k +I (2.9)

Therefore, the parameter I o is the frequency of the k =0
phonon, or equivalently, the frequency of the phonon
band edge.

The single-soliton solution of Eq. (2.8) in its center-of-
mass frame is

The meaning of the parameter I 0 is made clear by ex-
panding P about the vacuum solution as

P,=e expi(kx cut), —

where e is a small parameter, substituting P, into Eq.
(2.8) and linearizing in E in order to obtain the phonon
dispersion law

where X locates the center of mass of the breather, the
parameter 0 determines the initial phase, cub is the
breather frequency, and ~b and kb satisfy

co +k =Ib b 0' (2.12)

From Eq. (2.12) we see that I o also represents the max-
imum allowed breather frequency.

We next express the breather solution Eq. (2.11) as the
sum of a kink and an antikink —which is not an approxi-
mation but a rigorous result for the continuum SG
breather system. Defining z(t) as

kb
sinh[kbz (t) ]= cos(cob t —8) (2.13)

and substituting Eq. (2.13) into Eq. (2.11), we obtain

Pb 4 tan
slnh(kbz)

cosh [kb (x —X) ]

=4 tan 'exp[kb(x +z —X)]
—4tan 'exp[kb(x —z —X)] . (2.14)

Equation (2.14) implies that the exact SG breather con-
sists of a linear superposition of a kink and an antikink
which are separated by a distance 2z(t) which is centered
on X. (See Refs. 11, 12, 23, 34, and 35 for similar
collective-coordinate descriptions. ) Equations (2.13) and
(2.14) imply that the breather motion corresponds to the
subkinks oscillating about the center of mass of the sys-
tem where oscillations of larger amplitude in z(t) corre-
spond to lower frequencies. Note that the subkinks of
the breather given by the right-hand side of Eq. (2.14) are
not the same as the single-soliton solutions of Eq. (2.8)
since the spatial extent of each subkink in Eq. (2.14) is
given approximately by 2/kb and not by 2/I o as in Eq.
(2.10). However, the subkinks asymptotically approach
the soliton solution of Eq. (2.10) in the limit z~ ~, as-
suming they have enough energy to do so, because this
limit corresponds by Eq. (2.13) to very low-frequency
breathers which, in turn, implies by Eq. (2.12) that
kb~I 0.

Next, we substitute cr =pb into the Hamil«»an Eq.
(2.5a) (which implies X=re=0 because pb is the exact SG
breather solution) and the Hamiltonian becomes

P, =4 tan 'exp[ I o(x —X, )], (2.10)

Pb 4 tan
kb cos(cob t —0)

cgbcosh[kb(x —X) ]
(2.11)

where X, locates the center of mass of the soliton. The
breather solution in its center-of-mass frame is

p2
Hso(z, P)= + V(z),

2M, (z)
2I oV(z) =

—,'M, (z) tanh(kbz) + —,'Mz(z),
b

where

(2.15a)

(2.15b)
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and

2khz
M, (z) = 16k' 1+

sinh(2k„z)

2khz
M~(z) = 16k' 1—

sinh(2k&z)

P=M, z .

In deriving Eqs. (2.15a) and (2.15b) we used

oo Io
dx Vso((hq ) = —,'M, (z) tanh(k„z)

QO b

(2.15c)

(2.15d)

(2.15e)

or simply by reducing Eq. (2.6b) for the present case:

8 lnM, 1 g V(z)Z+ z
2 Bz M, Bz

(2.18)

where V(z) is given by Eq. (2.15b). Equation (2.18) is the
exact equation of motion for the collective variable z for
the continuum SG breather system and indicates that the
general potential given in terms of the variable z is veloci-
ty dependent, i.e., the z term. However, we can obtain
an effective potential in terms of z which takes into ac-
count all velocity effects by considering the first integral
of Eq. (2.18) which is just the Hamiltonian given by Eq.
(2.15):

It must be borne in mind that the masses M, (z) and
M~(z) do not rellect much information about the indivi-
dual effective masses of the breather subkinks (except in
the large-z limit) but rather they are the effective masses
associated with the z and X modes. The reason is because
M, and Mz do not account for velocity effects which we
will discuss in more detail when we calculate the effective
potential seen by the subkinks. For now, however, we
Just note that the masses M, and M~ both approach 16I 0
in the limit z~ ~, where 16l"0 is the total energy of the
infinitely separated solitons whose profiles are given by
Eq. (2.10). As z ~0, we have M, ~32k& and Mx —+0. In
general, we note that the mass of the z mode is larger
than the mass of the X mode, the difference arising be-
cause the subkinks have opposite helicities, as we will dis-
cuss in more detail in Sec. III C.

We now calculate the total energy of the system from
the collective-variable Hamiltonian in Eq. (2.15a) merely
in order to make contact with the previously well-known
result of the energy of a SG breather. If we define the
amplitude of the subkink oscillations as zo—:z(t =0),
then we obtain from Eq. (2.13) with 0=0 the result

Io
tanh(kqzo ) = 1 .

b

(2.16a)

Equation (2.16a) corresponds to the initial condition
where the breather is started from rest

Po =P(t =0)=0— (2.16b)

(2.16c)

where 16kb is the well-known expression for the total en-
ergy of the continuum SG breather system in the center-
of-mass frame.

Since y=~=O, the constraints are identically satisfied
and the equation of motion for z is derived by using the
unconstrained Hamilton equations

z= BHsG . BHsa
aP

P a, (2.17)

with the subkinks at their maximum separation zo.
Throughout the present paper we always consider the
t=O initial condition to be started from rest. Substituting
Eqs. (2.16a) and (2.16b) into the Hamiltonian Eq. (2.15a),
we obtain the total energy E,'„of the continuum system:

E;„,=Hso(zo, PD) =
—,
' [M, (zo)+Mx(zo) ] = 16k~,

—,'M, (z)z + V(z)=E;„=16k' .

We rewrite Eq. (2.19a) as

—,'z + V,s(z)=0,

where

V,ft:— I V(z) —E„,]1

M, z)
2I 0 j

tanh(kqz)
2 kb

b

(2.19a)

(2.19b)

(2.19c)

Equation (2.19b) is an effective Hamiltonian for a particle
of unit mass moving in the potential V,ff where the total
effective energy is zero. Taking the time derivative of Eq.
(2.19b), we obtain

~ ~z— a V„(z)
az

(2.19d)

which is a simple equation of motion for z that is
equivalent to Eq. (2.18) since it is expressed in terms of
V,s(z). Note that, because of the complete integrability
of the SG system, Eq. (2.19c) is exact for the collective
variable z.

We see that V,s.(z), which has a width —2/k&, is an at-
tractive potential [dotted line in Figs. 3(a) and 3(b)] indi-
cating that the subkinks increase their velocities from
zero as they approach one another. In fact, at the center
of the interaction region (z=0), the velocity reaches the
value z

~

= 1 by Eqs. (2.19b) and (2.19c) and therefore the
collision is ultrarelativistic. However, the right-hand side
of Eq. (2.14) which is exact indicates that there is no
Lorentz contraction of the subkinks as they approach the
collision region —their widths —2/k& are constant for all
time. This constancy of the subkink mass is in marked
contrast to that of a single boosted, but isolated, SG kink
whose rest length undergoes a Lorentz contraction
y

' = (1—v )', where v is the soliton's constant veloci-
ty. In general, that is, I 0 in Eq. (2.10) is multiplied by y.

The subkinks have constant mass because of two
effects, one which tends to increase the mass and the oth-
er tends to decrease the mass, which balance exactly.
The "standard" relativistic increase in mass comes from
the increase in kinetic energy near the collision region.
However, unlike special relativity where the dilated parti-
cle mass is determined only by the particle's instantane-
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Z0
COI,

(2.20)

Since the only requirement on co& is m& « I 0, we obtain
the general result that

1
Zp e

Q

(2.21)

According to Eq. (2.21), 1/I"0 is a lower bound on the
amplitude z0 of the breather oscillation and so arbitrarily

ous velocity, the value of the local potential relative to
the vacuum acting on the subkinks also affects the mass.
This is seen by noting that breathers for different subkink
separations z0 correspond, respectively, at t=0 to sub-

kinks of different widths 2/k& simply because the initial
strength of the subkink interaction is different for each z0
case. The decrease in the potential near the collision re-
gion therefore decreases the subkink mass. Since the sys-
tem conserves energy, the two opposed mass dilations ex-
actly balance since no phonons are generated due to in-
tegrability.

We point out that the same effect is true for collisions
between soliton-soliton or unbound soliton-antisoliton
pairs. To obtain the effective potential for a soliton-
antisoliton collision, let k& ~yI'0 in Eq. (2.19c) where the
relativistic parameter y is a function of the asymptotic
velocity of the colliding solitons (i.e., at infinite separa-
tion) in the center-of-mass frame. For a soliton-soliton
collision, make the same replacement and, in addition, let
tanh —+coth. For a soliton-soliton collision, the potential
near the collision region increases (i.e., a repulsive poten-
tial) and so the mass increases but the solitons simultane-
ously reduce their velocity and the Lorentz contraction
therefore decreases leaving no net mass change in the col-
liding solitons. This also explains why a constant mass
solution exists (neglecting phonons) for a SG soliton
whose center of mass is oscillating in a parabolic poten-
tial well.

Therefore, although SG solitons have been described as
"relativistic particles" in the literature, it is not, in gen-
eral, true that a SG soliton propagating at a nonzero ve-
locity is Lorentz contracted from its rest width. One
must take into account the change in the local effective
potential and its effect on the soliton's mass. Therefore,
although the SG equation, as well as its solutions, are
Lorentz invariant, standard special-relativity arguments
do not apply, in general, to the description of the dynam-
ics of interacting solitons which make up the solution.

These considerations on the constancy of the soliton
width during interaction, together with the exact pair-
wise interaction potential between solitons [cf. Eq.
(2.19c)], suggest that it may be possible to construct a
simple statistical-mechanical theory of an interacting SG
soliton gas at low densities. Furthermore, if similar re-
sults hold for the three-soliton solution, it suggests that
soliton gases at higher densities may also be treated.
Work along these lines is in progress.

In closing this section we note the following result.
Expanding Eq. (2.13) for the case k&zD ((1 yields

small oscillations of z (t) do not exist in the continuum SG
breather system. Of course, the amplitude of the field P&
may be arbitrarily small since, by Eq. (2.14), it depends
on sinh(ki, z0) and ki, ~0 as z0~1/I 0. For example, we
note that, if we choose z0=1/I'0, then Eq. (2.16a) yields
k&=0 as the only solution thus indicating that P&~0
and the breather energy E,'«=16k& —+0. The next sec-
tion extends to discrete systems the results discussed
above in the continuum limit.

III. GENERAL DISCRETE THEORY

A. Collective-variable theory for a discrete-breather mode

We consider a one-dimensional chain of harmonically
coupled particles where the phase or position of the lth
particle measured with respect to some reference is
denoted by Q&(t). The system is subjected to a substrate
potential of the general form V,„i,[Q&(t), l] such that the
discrete breather maintains even parity in space.

The Hamiltonian for the system is

H =-,' yP,'+-,'g(Q„,—Q, )'+ g &,„,(Q, ),
I I I

(3.1)

where the momentum P& conjugate to Q& is defined as
P& = Q&. The corresponding equation of motion for Q& is

BV,„b8—~zQi= —
~

(3.2)

where b 2Qi
—=Qi+, +Qi, —2Qi denotes the second

difference.
The incorporation of the collective variable z(t) and

the parameter X for the discrete case parallels the pro-
cedure in the previous section. We decompose the field
Qi as

Q, =f [l —X,z(r)]+q, (t), (3.3)

Ci =(fi'lqi & =0

C, =(y,'~P, ) =0,
(3.4a)

(3.4b)

where pI is the momentum conjugate to qI, the prime
denotes the derivative with respect to z and from now on
the bracket notation means sum over l rather than in-
tegration over dx. The constraints for the discrete theory
de6ne the collective variable in exactly the same sense as
in the previous section. We have the following
correspondence: p, II, cr, X, and vr in Sec. II are now re-
placed by Q&, P„f&, q&, and p&, respectively.

Using the results of Ref. 33(a), the collective variable

where f& is the breather ansatz function and the field q&

accounts for the dressing of f& and phonon radiation.
The parameter X is fixed and so our analysis is valid for
the case where the discrete breather is centered on a par-
ticle or centered between particles —there is no X
motion.

We impose the two constraints



43 DISCRETENESS EFFECTS ON A SINE-GORDON BREATHER 8497

+ g V,„b(fi+qi), (3.5a)

where

(3.5b)

is the discrete generalization of the mass M, (z) [cf. Eq.
(2.5b)] associated with the z motion and

M,'—=M,"(1 —b,")', b d=, (f,"l q, &,
M,"

(3.5c)

Hamiltonian for the discrete breather system is

p2
„+-,'(p lp&+ ,'X-(A+, f—+q+, q—)'

2M," l

Pf!
M,"(1 b—,") (3.5e)

av,„
qi

—A~qi+ f('z+ f/"z 32f'i = ——
1

(3.6a)

Note that M,"(z,X) is a function of X. We also observe
that the mass Mx(z, X), which is the discrete generaliza-
tion of the mass Mx(z) in Eq. (2.5b), does not appear in
Eq. (3.5) because there are no derivatives with respect to
x in H" but only finite diA'erences with respect to l.

The exact equations of motion of q1 and z are obtained
by substituting the ansatz Eq. (3.3) into Eq. (3.2) which
yields

p, =q, +b,dzf, ', P=M,'z, (3.5d)
and then projecting Eq. (3.6a) in the direction fi to ob-
tain

1 ~lnM . 1, 1, 1, 1, ~V b(fi+qi)+ —
~

' '— (f'l~2f &= — (f'lq &+ d(f'l~ q &
f'

2 Bz M," M," l

(3.6b)

The equations of motion (3.6a) and (3.6b) are the discrete
generalization of the continuum equations (2.6a) and
(2.6b).

In order to obtain from the discrete theory a simple ex-
pression for the total energy of the breather (as a function
of the initial subkink separation zo and X) and an expres-
sion for the eff'ective potential for z(t), we continue the
analysis for the simpler "bare" case corresponding to
q1=0. The bare case is valid in the limit of large kink
width (high-frequency breathers) since that is the limit in
which the dressing and radiation eftects are least.

B. Discrete sine-Gordon breather system

f, af
Vs,„,(z,X)= — + g Vso(fi), (3.8b)

where we have replaced fi+, f& by Bfi/B—l. (Recall the
bracket notation means sum on l. ) We define the discrete
generalization of M~(z) as

is inherently time dependent. We can, however, gain
significant insight as to how discreteness changes the
breather dynamics by retaining the first term in the Tay-
lor series.

We expand the finite difference in Eq. (3.8a) and con-
sider the potential

Choosing the ansatz function (3.9)

fi =4 tan
sinh( ki, z)

cosh[kgb(l —X)] and further note that fi satisfies

Vsui, (fi) = Vso{fi ) =1 o(1 cosfi ) ~ (3.7b)

r,g Vso( fi ) = —,'M, (z, X) tanh(k„z)
I b

(3.10)

a natural definition according to Eq. (3.5a) for the bare
(qi =0) potential for the discrete SG breather is

Upon substituting Eqs. (3.9) and (3.10) into Eq. (3.8b), we
obtain the discrete bare Hamiltonian for the SG breather
system:

'll~.„{»»= ,
' (fi+ i fI lfi+ i —fi&+—2 Vso(A—) . p2

Hh„, (z,X,P)= „+V~„,(z,X),
2M,"

(3.11a)

Equation (3.8a), however, is not accurate because, if we
expand the finite difference in Eq. {3.8a) in a Taylor series
and keep all the terms, we are essentially keeping higher
and higher corrections to discreteness due to the f& but at
the same time we are neglecting the corrections due to
the q1 which we have set to zero. The Taylor series ex-
pansion is not valid unless we simultaneously include
corrections due to q1 at each order which is a rather for-
midable task in light of the fact that the breatherlike state

2

Vi,„,(z,X)= —,'M, (z, X) tanh(ki, z)
b

+ —,
' M~ (z,X),

P =M,"{z,X)z .

(3.11b)

(3.11c)

We see that the form of Hi",„,in Eq. (3.11) is identical to
the form of the continuum Harniltonian Hs& in Eqs.
(2.15a) and (2.15b) but that discreteness in Hi,„,enters in
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+ g B sin(2irmX)
m=0

(3.12a)

are given by

A„=2f g (u)cos(21rnu)du, n =0, 1, . . . ,

8 = —2 g u sin 2mmu du, m =12, . . . . 312c

(3.12b)

through the masses M,"(z,X) and Mz(z, X). We now
derive expressions for these masses and, consequently, the
total energy of the system.

We note that both masses are periodic in X with period
unity and therefore we expand M," and Mz in a Fourier
series in X. It was shown in Ref. 6 that, for a function of
the form g&g(I —X), the Fourier coefficients in the
Fourier series

AOg g (l —X)= + g A„cos(2irnX)
I n=1

(kb ~0) that M, (z,X)—+M, (z) and Mx(z, X)~M~(z).
The continuum values of the masses are recovered in the
high-frequency limit. Note that, for a breather, it is the
value of kb and not I o which directly governs whether
discreteness effects are large or not. %"e are assuming, of
course, that I o has not been chosen so small that we are
in the "displacive" limit, that is where discreteness effects
are essentially eliminated for all values of kb. For
sufficiently large I o then, our theoretical analysis shows
that discreteness effects are negligible in the high-
frequency limit which is equivalent to the limit of large
subkink width.

We now derive the expression for the total energy E,"„
at t=O for the discrete breather system in the bare ap-
proximation by substituting Eqs. (3.14) into Eq. (3.11b)
and evaluating the resulting expression at z =zo, the t=O
subkink separation, which yields

We therefore find

M, (z,X)=M, (z)+ g A„'(z)cos(2~nX),
n=1

(3.13a) cos(2irzo )cos(2m.X)

Eto, (zo, X)= —,
' [M,"(zo,X)+M~(zo, X)]

27r /kb
=16kb 1+

sinh(m. /kb )

Mz(z, X)=M+(z)+ g A„(z)cos(2irnX),
n=1

where the coefficients 3„' and A „are given by

(3.13b)
Io

tanh(kbzo ) = 1,
kb

(3.15a)

(3.15b)

A„'(z)

A„(z)
32~kb

sinh(ir n/kb )

n~
X cos(2irnz)

+ sin(2irnz)

sinh(2kbz)

(3.13c)

2khz
Mx(z, X)= 16kb 1—

Siilll ( 2kb z

32kb~+
2

cos(2irz)—
sinh( vr2/kb )

(3.14a)

sin(2irz)
cos(2irX).

slllll 2kbz

(3.14b)

We see from Eq. (3.14) for high-frequency breathers

The dc term for each discrete mass is the correspond-
ing continuum mass expression and discreteness causes
oscillations in z and X about the continuum value. The
terms higher than and including the second harmonic
(n ~ 2) contribute on the order of a percent or less to the
total sum because the coefficients decay exponentially and
typically kb is O(l) or less. Therefore, keeping only the
n=1 term, we have

2kbz
M, (z,X)=16kb 1+

smh 2khz

32kb~ sin(2rrz)
cos(2irz) + . cos(27rX),

sinh(7r /k„) kb sinh 2k„z

which is shown in Fig. 2. Equation (3.15a) must be sub-
ject to the t=0 condition Eq. (3.15b) which, although de-
rived in Sec. II [Eq. (2.16a)] for the continuum case, is
valid for the present discrete case because f& and pb have
the same functional form. Simply put, we are calculating
the total energy of a discrete breather at t=O whose sub-
kinks have the same separation as a continuum SG
breather at t=O. The relationship between the parame-
ters kb and zo for the discrete case is then given by Eq.
(3.15b) which is the same as for the continuum case.
What has changed for the discrete case is not the rela-
tionship between kb and zo, but rather the relationship
between kb and cob. For discrete SG breathers, the con-
tinuum relationship Eq. (2.12) is not true although it is an
excellent approximation for high-frequency breathers.
For lower-frequency breathers, Eq. (2.12) begins to be-
come inaccurate. For large enough zo, the Peierls poten-
tial pins the breather subkinks (as we will discuss below)
and there is no "breathing motion" and one obtains a
"static"-breather profile. The relationship Eq. (2.12) then
becomes meaningless since cob loses its meaning as a
breather frequency. In the latter case, the parameters kb
and cob =(I 0

—kb )' then simply determine the shape of
an initial breather profile which does not breathe in the
discrete system, but which mould breathe with a frequen-
cy cob in the continuum system.

Equation (3.15) is analogous to Eq. (2.16) for the con-
tinuum SG breather system. In fact, for high-frequency
breathers, Eq. (3.15a) approaches the continuum value
16kb. Note in Fig. 2 that the function E„,(zo) cannot be
evaluated for arbitrarily small values of zo because the
condition Eq. (2.21) must be satisfied. Even though we
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have calculated the inequality Eq. (2.21) for the continu-
um SG breather system, we see that it is a high-frequency
criterion, which is precisely where discreteness effects are
negligible since the breather subkinks have infinite extent.
The inequality therefore also holds for the discrete SG
breather case.

Figure 2 shows that E„,(zo) is not a pure cosine wave
in zo as Eq. (3.15a) seems to be imply since Eq. (3.15b)
must also be satisfied, which changes the value of kb for
each zo. Consequently, we see that for small zo the in-

teraction energy of the subkinks overcomes the effects of
the Peierls potential and breathing motion is possible.
On the other hand, we see that one does not need zo to
approach infinity before one obtains "large subkink sepa-
ration. " Actually, only a few kink widths sus.ce and we
can see in Fig. 2 where the breather subkinks will be
trapped if started from rest.

Note that the total energy given by Eq. (3.15) is exactly
the same as if X were considered a dynamical collective
variable. This is because Eq. (3.15) is the energy of t=0
breather profiles which are merely parametrized by the
initial values zo and X. Equation (3.15) clearly shows that
there exists a Peierls potential for both the zo and X pa-
rameters. In addition, the depth of both Peierls wells are
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FIG. 2. Total energy as a function of subkink oscillation am-
plitude zo, I 0=&2. The solid line corresponds to Eq. (3.15).
The center of the plus symbols mark the energies calculated
from a static chain and the center of the circle marks the energy
of a breather calculated from simulation. (a) X=O, (b) X= 2.
Since zo is measured with respect to X, (a) and (b) each indicate
that the minima of the Peierls wells are located between parti-
cles.

the same to this order of approximation. For large sub-
kink separation we see that, whether or not the breather
is centered on or between particles, the minimum energy
is obtained when the subkinks are located between parti-
cles. This is in agreement with the results of Ref. 5 in
which it was shown that the minimum energy of a single
static discrete SG kink is obtained when its center is lo-
cated midway between particles.

In order to check Eq. (3.15), we have numerically cal-
culated the energies for static-breather profiles such that
the breather subkinks are located at the stable Peierls
minima near the breather center. For example, for the
case I 0=&2, X =

—,', we place a continuum breather
profile according to Eq. (3.7a) at the center of chain of
3003 particles which are harmonically coupled to their
nearest neighbors (spring constant p= 1) and subject the
SG potential Eq. (3.7b). We choose zo=2.0 because Fig.
2(b) indicates that a well should be present in this vicini-
ty. We then relax the profile until the maximum forceF,„on a particle satisfies F,„~10 pa, where a = 1 is
the particle separation in the absence of any kink struc-
tures. We measure the static energy according to Eq.
(3.1) and determine the relaxed value of zo such that the
constraint Eq. (3.4a) is satisfied for the resulting relaxed
profile. For this case we find z0=1.9710. We repeat the
process for cases where the subkinks are trapped in other
nearby wells for X=O and —,

' and plot the values located
by the crosses in Fig. 2.

We must consider the energy scale in order to corn-
ment on the agreement. If there are fluctuations in the
system such that the subkinks can migrate to the breath-
er center, they will reach zero vacuum energy. The ener-
gy scale will then be set by twice the subkink rest mass
( —161 o) and the energies calculated from Eq. (3.15) and
from the relaxed chain agree to within 3%. If the tem-
perature is low enough so that the subkinks truly remain
trapped, the energy scale is set by the depth of the Peierls
potential which then yields a disagreement of about 50%.
It has already been shown ' that, when the energy scale
is set by the Peierls potential, one must include the q& for
the dressing in order to obtain good quantitative agree-
ment with numerical calculations. Note, however, that
the locations of the minima in Fig. 2 from Eq. (3.15) are
in good agreement with those computed numerically.

In the case for which zo is small enough so that breath-
ing motion results, we show a point (the center of the cir-
cle) in Fig. 2(a) corresponding to the total breather ener-
gy calculated from simulation for z0=0.928 (cob =0.868).
We see agreement is good. Discreteness effects are not
too large for this case.

We calculate the effective potential for z(t) by consid-
ering the equation of motion corresponding to the bare
Hamiltonian Hb„, just as we did for the continuum case
in Sec. II. The exact equations of motion for the discrete
SG breather system are given by Eqs. (3.6a) and (3.6b)
into which must be substituted the general expressions
for f& and Vso(f&) defined in Eq. (3.7). Equation (3.6b)
for the z mode (with q& =0) becomes exactly

lnM," & 8Vbd„,'+— (3.16)
2 Bz Md Bz
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where 4'b„, is given by Eq. (3.8a). As previously ex-
plained, we must replace Vb„,(z,X) in Eq. (3.16) by

Vb„,(z, X) which yields

1 BlnM,"z+ —— z
2 Bz

d8 Vb„,
M,d

(3.17)

We see that Eq. (3.17) is of the same form as Eq. (2.18)
for the continuum case and that the general potential for
z depends on the square of the velocity z as in the con-
tinuum case.

We treat the velocity effects on the potential in Eq.
(3.17) by considering the expression for the total energy
from Eq. (3.11):

—,'M, (z,X)z + Vb„,(z,X)=E„, ,

separated by large z, tanh(kbz)~1 and Eq. (3.6b) with

q2 =0 reduces to

8 lnM,"z+ — ' z2= (3.20)
2 az 4M"

z

C. Small osciHations about a static-breather profile

Equation (3.20) is exactly the discrete bare equation of
motion for the center of mass of a single SG kink derived
in Ref. 6. The fourth derivative term comes from consid-
ering the quantity b, lII in Eq. (3.6b) expanding it in a
Taylor series and keeping only the first two terms the first
of which cancels the last term in Eq. (3.6b). Equation
(3.20) describes the dynamics of the breather subkinks
when they are su%ciently separated so that they do not
interact.

which we rewrite as

—,'z + V,tr(z, X)=0,
where

(3.18b)

If the breather subkinks are trapped then we have a
quasistatic-breather profile to which we assign the equi-
librium values zo and Xo. We expect that the small-
oscillation frequency spectrum about such a profi1e will

V",~= „[Vb„, (z,X)—E„,I,1

M,"(z,X)
(3.18c) 0.2 I I I t

I
I I I I

I
I I I I

I
I I I I

where E„,is given by Eq. (3.15). The time derivative of
Eq. (3.18b) yields the simple equation of motion

z= a V'„(z,X)
C)Z

(3.19)

which is equivalent to Eq. (3.17).
The potential V",It(z, X) is shown in Fig. 3. We see

there exists a large central well representing the attrac-
tive force between the subkinks when they are close to
each other and oscillations at larger subkink separation
representing the Peierls potential. The effects of the
Peierls potential are diminished in the vicinity of the cen-
tral well. Consequently, if the breather subkinks are os-
cillating sufficiently near the bottom of the central well,
discreteness efFects are small and we have
M, (z,X)~M, (z), Mx(z, X)~M, (z) and Eq. (3.17)
reduces to Eq. (2.18).

We measure the instantaneous potential energy for a
SG breather as a function of z(t) from simulation in or-
der to compare with the collective-variable theory. We
choose an initial breather profile such that the subkinks
will not be trapped when started from rest and let the
motion evolve according to the discrete SG equation
given by Eqs. (3.2) and (3.7b). As the motion evolves, we
measure the potentia1 energy at various times according
to the potential part of the Hamiltonian in Eq. (3.1). We
determine the value of z(t) for the instantaneous profile
at time t by requiring the constraint Eq. (3.4a) to be
satisfied. Since we are measuring the potentia1 energy
directly, it is correct to compare with Vb„,(z,X) given by
Eq. (3.11b) rather than with the rescaled efFective poten-
tial V Ir in Eq. (3.18c). We Show tile COIIlpallSon ln Flg.
3(c). The only discrepancies come from the region of the
turning points of the oscillation where discreteness effects
are becoming more significant.

For completeness, we note that if the subkinks are
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FICx. 3. I 0=&2. In (a) and (b) are shown the effective poten-
tials for the collective variable z for X=O and —,', respectively.
The solid line corresponds to Eq. (3.18c) and the dotted line to
the continuum, Eq. (2.19c). (c) The solid line shows the instan-
taneous bare potential for a discrete breather calculated from
simulation for I o= &2, X=O. We treated the phonon contribu-
tion of the potential energy, which is about 1% of the total po-
tential energy, as a simple dc shift that originally appeared on
the solid line in (c) and simply subtracted it out of the data;
therefore, the solid line now touches the z(t) axis. The dotted
line corresponds to Eq. (3.11b) where we used the simulation
value z0=0.9282 and the corresponding value k& =1.0767 from
Eq. (3.15b). The observed frequency is m&' =0.8679. We have
not derived a formula which gives the frequency of a discrete
breather (see end of Sec. V).
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consist of an in-phase mode of the subkinks correspond-
ing to the oscillatory center-of-mass motion X(t) of the
breather about the equilibrium value Xo (where we must
now allow X to become time dependent), an out-of-phase
mode corresponding to the z motion about the value zo,
and the phonon states. If the separation between the
trapped subkinks is large, then the subkinks essentially
do not interact, the frequencies of the in-phase and out-
of-phase modes are degenerate and the problem of trap-
ping reduces to that of the dynamics of a single discrete
SG kink, which has already received much attention.
However, if the subkinks are trapped, say, in the first
Peierls wells which appear on either side of the central
well, then the interaction of the subkinks is non-
negligible and we expect that the in-phase and out-of-
phase frequency line will be split into a doublet.

The lower frequency of the doublet corresponds to the
internal z mode and not the center-of-mass X mode. We
show this by examining a small displacement of the
static-breather profile for each collective mode which is
shown in Fig. 4. Figure 4(a) shows that the center-of-
mass mode corresponding to a small shift of the subkinks
in the same direction has a node at the center of the
eigenfunction. For a small shift of the subkinks in oppo-
site directions, Fig. 4(b) shows that the z-mode eigenfunc-
tion has no node. Therefore, the center-of-mass mode
corresponds to the higher frequency whereas the z mode
corresponds to the lower frequency.

It is apparent that the higher frequency of the doublet
is associated with the center-of-mass mode because the

I I I I
)

I I I I
)

I I I I
)

I I I I

0.5

~ ~ \ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~

two subkinks are antiparticles of one another, i.e., they
have opposite helicities. If we were considering the
small-oscillation spectrum of two trapped kinks which
have the same helicity (as for a pinned discrete double
sine-Gordon profile), then a similar inspection of the
eigenfunctions shows that the in-phase mode has the
lower frequency and the out-of-phase mode the higher
frequency. Another way of looking at this phenomenon
is to note that the masses associated with the two modes
are not the same, Mz & M~ Thus the internal z mode
associated with M,"corresponds to the lower frequency if
the increase in mass from Mz to M," is enough to over-
compensate for the increase in the e6'ective force con-
stant. We see that this is indeed the case from the follow-
ing calculation where we derive expressions for the fre-
quencies of the doublet and then evaluate the expressions
numerically.

It is possible to calculate a closed-form expression for
the frequency of the z mode using Eq. (3.18) but unfor-
tunately the expression is too large to be of any use. We
therefore derive expressions for the frequencies of the
doublet in a difFerent manner "which incorporates the
exact shape of the metastable static-breather profile and
which, at the same time, relates collective variable theory
for the small-oscillation problem to standard perturba-
tion analysis. The formulas we now derive for the fre-
quencies of the doublet are valid for any kink width but
they must be evaluated numerically.

Since we seek an expression for the frequency of the X
mode as well as the z mode, we must necessarily promote
X from a fixed parameter to a time-dependent collective
variable X(t) in addition to z(t) and we therefore need
to introduce an ansatz and a total of four constraints.
We denote the exact static-breather profile by f&(zo, xo).
In general, the function f&(z,x) represents a departure of
the breather profile from the exact stable state. Two of
the constraints are given by Eqs. (3.4a) and (3.4b) with
the replacement f& ~f&(z,x) and the other two are

I I I I I I I I I

and
c,= (a/ (z,x)zax~q, ) =o

c,=&,af, (z,x)yax~J, ) =o.

One I I I I
)

I I I I
)

I I I I
)

I I I I

In order to construct the ansatz, we first substitute

Qi =fi(zo, xo)+@exp( —iso t)gi

into the discrete SCi equation of motion

Qi
—E~Qi+ I OsinQi =0 (3.21)

and linearize in the small parameter e to obtain the eigen-
value equation

&47=~' 4P ~ (»»4P (3.22a)

O ~e ~

—I I I

~ ~ ~ 0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~
I I I I I I ) I I I I I I I I I-

FIG. 4. (a) Center of mass and {b) internal mode eigenfunc-
tions about a "static"-breather profile for I"o=n/2, X=0.

where m labels the mth eigenstate. That is, gi represents
gi, gf, or g& for the kth phonon state. The operator X is
defined by

X:——62+1 ocos[f)(zo, xo)] . (3.22b)

We have also included in Eq. (3.22a) a Lagrange multi-
plier a (z,X) which constrains the profile at an arbitrary
z or X thus introducing z and X dependence into the
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Q, =f, (z,X)+q,

=fi(zo, Xo)+ J gi(zo, X')dX
XQ

+ I z', Xo dz'+qI,
zo

(3.23)

eigenfunctions itii . Therefore, a (zo, Xo)=0 since there
is no constraint needed to keep the system at equilibrium.

We choose the ansatz which depends on the eigenfunc-
tions gi of the operator X in the following way:

which will make the connection between collective-
variable theory and the standard perturbation analysis.
Since the ansatz function fi(z, X) takes into account all
static discrete effects, the qi in Eq. (3.23) represent only
the radiated phonons which are zero in the limit of small
oscillations about the exact profile fi(zp, Xp). The con-
straints are therefore identically satisfied.

Substituting Eq. (3.23) into Eq. (3.21) and linearizing in
z and X, we obtain

itii(zp, Xp)z+Q((zp, Xp)X+X[g'i(zp, Xp)(z —zp)+g, (zp, Xp)(X —Xp)] =0 . (3.24)

Projecting Eq. (3.24) in the direction Pi(zo, Xo) and solv-
ing for z, we obtain

~ ~z— (z —zp) .
& pi le &

(3.25a)

(X —Xp) .

Projecting Eq. (3.24) in the direction gi (zo, Xp) and solv-

ing for X, we obtain

( yX~~ ~qX&
X X (3.25b)

sists of two large peaks with frequencies
=0.763+0.006 and cu" =1.013+0.006. We obtain

from Eqs. (3.22a) and (3.27) the values p~, =0.759 and
cox=1.01. We see agreement is excellent because of the
choice of the ansatz Eq. (3.23). In addition, we notice in

Fig. 5 that the phonon band is in the approximate fre-

quency range 1.5~co~2.5 which is consistent with the
frequency values calculated from the discrete dispersion
law

& Wi(zo»o) ~ Ci (zo»o) & =o . (3.26)

In deriving Eqs. (3.25) we used the orthogonality condi-
tion

tp (k)=4sin

which are tp(0) = I o= 1.57 and

~(~)=(r,'+4)'"=2.54 .

(3.28)

From Eqs. (3.22a) and (3.25) we see that the frequencies
of the doublet are given by

z = —co, (z —zo), X= —cpx(X —Xp), (3.27a)

(3.27b)

Therefore, when we use the ansatz Eq. (3.23) we have the
result that the frequencies of the doublet in the
collective-variable theory Eq. (3.27a) are given by the ei-
genvalues of Eq. (3.22a) with a„(zp,Xp)=0 and necessari-
ly yield agreement with simulation.

We compare Eq. (3.27) with results calculated from
simulation for the case I p=7t/2. The spectrum is deter-
mined from simulation by relaxing an initial condition as
described in the previous subsection to generate a stable
static-breather solution. The solution is given random
noise of amplitude —10 a and we analyze the resulting
dynamics of Eq. (3.21) by calculating the Fourier trans-
form of the motion of one particle in the quasistatic
breather.

Let us first consider zo=1.4498 which is the smallest
value of zo that leads to a static breather for our choice
I o=m/2. The relaxed profile fi(zp, Xp) is centered on a
particle. The Fourier spectrum shown in Fig. 5(a) con-

In order to calculate the phonon modes using collective-
variable theory, we must use Eq. (3.6a) for the qi, but this
is not one of the goals of the present paper.

Figures 5(b) —5(e) show similar Fourier transforms for
which the breather subkinks are trapped in wells that are
progressively further apart. We see the gradual decrease
in the line splitting with increasing zo. The last panel,
Fig. 5(f), shows the doublet frequencies as a function of
zo. Note that the upper frequency of the doublet reaches
a maximum at zo = 1.9916, whereas there is no such max-
imum for the lower frequency.

IV. MOLECULAR-DYNAMICS SIMULATIONS
FOR DISCRETE SG BRKATHERS

A. Frequency spectrum

In this section we are interested in a discrete breather
whose subkinks are no longer trapped in the Peierls po-
tential and want to investigate particularly (a) its stability
depending on its location with respect to the lattice sites
and (b) its lifetime. Our analysis is based upon the nu-
merical simulation of the dynamics of the breather and
the investigation of the waves that it radiates.

Let us illustrate the method by one example for
I o=&2 and toi, (t=0) =1 which corresponds to a
moderately discrete breather. The initial condition is a
continuum profile with z0=0.88 situated at the position
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X=1500.5 in a chain of 3003 particles. When the system
evolves according to Eq. (3.21), this initial state, which is
not a solution for the discrete system, first shows a fast
transient during the first few oscillations after which the
breather frequency is mb' =0.959+0.006, slightly less
than the initial condition. Then the solution shows a vir-
tually constant amplitude of oscillation accompanied by
an extremely weak emission of radiation. In order to an-
alyze this radiation, we calculate the magnitude of the
temporal Fourier transform iV[QI(t)]i of the motion for
each of the 100 center particles of the chain which con-
tain the breather. We construct a matrix of frequency
versus particle number thereby forming relief of the
transform and normalize the largest peak in the matrix to
unity. Choosing a cutoff between 0 and 1, we plot a point
for each peak in the relief matrix whose magnitude
exceeds the cutoff value. The duration of the transform is
approximately 160 breather oscillations and is started
after the initial transient effects have radiated away. The
results are shown in Fig. 6(a) which corresponds to a
cutoff of 1.5X10 . The cutoff is chosen just above the
noise level. Figure 6(b) shows the relative amplitudes of
the Fourier transform for a particle inside the breather.
The value co=3 represents the Nyquist frequency —the
highest sampled frequency —for all our simulations.

We see there exists spatially localized and nonlocalized

3 IIIIIIIIIIII~ IIIIIIIIII I I I I
I

states in Fig. 6(a). We first focus our attention on the
nonlocalized states of which there are six and as we
might expect they are situated inside the phonon band.
The lowest nonlocalized state is the lower phonon band
edge which has a measured frequency I 0 =1.417+0.006
which agrees with I o=&2 within the frequency resolu-
tion. The lower band edge in Fig. 6(a) is pronounced be-
cause there is some relaxation of the inexact initial condi-
tion and the phonons created at these frequencies cannot
propagate away because they are standing waves, or at
least nearly so, with small group velocities. They are
therefore present throughout the duration of the trans-
form. Campbell et al. ' call this "prompt" radiation.
The other five pronounced phonon states in Fig. 6(a) arise
because of spatially localized modes (whose origin we dis-
cuss below) associated with the breather which are
present in the phonon band at these specific frequencies
and excite phonons. What appears to be the upper band
edge in the simulation of Fig. 6(a) is actually a phonon
excited by a localized mode whose frequency is just below
the upper edge.

Now we consider the localized states in Fig. 6(a). They
are outside of the phonon band as expected. We find the
frequency of the largest (in space) localized state is
cob =0.959+0.006, which we associate with the funda-
mental frequency of the breather oscillation. The breath-
er mode looks rather extended in space and this is merely
because the cutoff is such that we see those particles
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0
I I I I I I I I I I

1 2 3
3 1:

'
— (b) I
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FICx. S. Fourier transform of a particle during small oscilla-
tions about a "static"-breather profile for I 0=sr/2. Parameter
values are (zo, X modn) = (a) (1.4498,0), (b) (1.9916,

2 ), (c)
(2.4979,0), (d) (2.9994, 2 ), (e) (3.4998,0), where n is an integer. (f)

shows the frequencies of the doublet as a function of equilibri-
um value zo. Note that a maximum exists for the center-of-mass
mode (upper sequence of dots) but does not exist for the internal
mode.

FIG. 6. (a) Frequency vs particle number for
cob =0.959+0.006, 1"Q=&2, X=O. (b) shows the relative ampli-
tude vs frequency of the states in (a) for a particle in the breath-
er and has been turned on its side for easy comparison with (a).
The largest peak in (b) corresponding to the breather frequency
is normalized to unity indicated by the dotted line. All other
peaks show actual amplitudes. (c) shows the frequency vs parti-
cle number for cob =0.837+0.006, I ()=&2, X=O. The nonlo-
calized state of highest frequency appearing in (a) is not the
upper band edge, but it is the upper band edge in (c).
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whose amplitudes of oscillation are at least 0.015% of the
largest amplitude in the system which is the breather
mode. Some other localized states can be identified be-
cause they correspond to breather harmonics but we
must recall that only odd multiples of the breather fre-
quency will be present for our case due to the symmetry
of the underlying potential. We call the breather the first
harmonic. Although there is a frequency in the phonon
band that appears to be resonating at 2coI,', a quantita-
tive check shows that this is not the case. Its origin will
be discussed below. The third harmonic which has a fre-
quency (3'& )$™=2.864+0.006 is directly seen in Fig.
6(a) and corresponds to the second largest peak in Fig.
6(b). The fifth harmonic cannot be observed directly be-
cause it exceeds the Nyquist frequency of our transform,
but its presence is observed indirectly since it has been
aliased (folded back) into the range of sampled frequen-
cies cu (3 by the discrete transform and appears at
(Sco&)" —+1.185+0.006 just above the breather mode.
The understanding of the other localized states is less
simple. In particular, the two modes that appear to be
first and second subharmonics (-coi, /2 and -co&/4) do
not coincide exactly with these values. Figure 6(c) clearly
shows for the case cob =0.837+0.006 that the subharmon-
ics are not present.

The origin of the local and nonlocal states not yet
identified can be determined by observing their evolution
in a series of numerical simulations for various breather
frequencies in the range 0.837 ~ cob ~ 1.406. This frequen-
cy range is natural for our choice of I o=&2 since it in-
sures that the breather frequency is always in the gap
below the lower band edge while at the same time the
third harmonic lies above the upper band edge. This cri-
terion corresponds to a long breather lifetime and makes
an accurate Fourier transform possible, as we will discuss
in detail in Sec. IV C.

All our simulations in the above frequency range use
breathers centered on particles. For each simulation we
construct a plot analogous to Fig. 6(a) but which has a
cutoff value equal to zero in order to observe all possible
structures. Although there is some noise seen when using
very low cutoff values, many low-amplitude modes can
still be clearly identified. We record the frequencies of all
the prominent states (both spatially localized and nonlo-
calized) and present these prominent frequencies as a
function of breather frequency in Fig. 7 where we have
connected the points by lines in such a way that the same
states, from case to case, are identified. We determined
which states were the same by inspecting their signatures
from figures like 6(a). Some of the points in Fig. 7 do not
have a line drawn through them. Such points correspond
to states, say, that were seen in just one of the 22 simula-
tions. The two horizontal lines in Fig. 7 locate the pho-
non band edges which are the same for all the simulations
since I o= V2 for each case.

First consider only the states represented by solid cir-
cles which converge to a point on the lower band edge.
The frequency difference between all the lines connecting
these states is clearly defined by the frequency difference
between co& and the lower phonon band edge. These
states are just the combination modes obtained by ex-

I I I l I I I I g I C8

34)y
V' 4+r,'

0.8

5Qb
I I I I I I I I I I I

1 1.2 1.4

FIG. 7. Most prominent states in the discrete-breather fre-
quency spectrum as a function of breather frequency. The sym-
bols represent the combination modes for the following states:
(~ ) breather frequency, (o ) third harmonic, (+) fifth harmon-
ic, ( X ) seventh harmonic, and (Q'i modes which appear to be
unique to a single case. We a1so used (0) to represent the band
edges. The abcissas in Fig. 7 are obtained from the Fourier-
transform results and do not correspond to the t=0 choice of
the parameter cob. For some cases the value of the breather fre-
quency decreases slightly from the initial value and for other
cases it increases.

panding the sine term in the SG equation and considering
the odd powers of

S = [e xp(iso&t) +e xp(il ct)]+c.c. ,

from which all the frequencies for these states are repro-
duced. The complex conjugate part accounts for the
solid lines of negative slope, including the one that seems
to be "refIected" at the value co=0. Figure 7 clearly
shows that there is no pattern for subharmonics of co&,

even though Fig. 7 was constructed from frequency spec-
tra like Fig. 6(a), but with a cutofi' value equal to zero.

We introduce the convenient notation C(co, , coz) in or-
der to represent the set of frequencies corresponding to
all combination modes between two arbitrary states ~,
and co2. Then, just as the solid circles represent the com-
bination modes C(cob, I o), the open circles represent the
combination modes C[3coi„C(co&,1 c)]; that is, they are
associated with the third harmonic. The Nyquist fre-
quency accounts for the apparent "reAection" of the lines
at the "boundary" co=3. These frequencies have simply
been aliased back into the range co ~3 by the discrete
Fourier transform. If the Nyquist frequency was chosen
sufFiciently larger, the states represented by the open cir-
cles would not be refIected and would converge to a point
above ~= 3 instead of where they converge in Fig. 7.

In a similar fashion, the states denoted by plus signs
are combination modes related to the fifth harmonic.
They have also been aliased back into the range co& ~ 3 by
the choice of Nyquist frequency. Again, the complex
conjugate accounts for their apparent reAection at the
value co=0. The x's, which lie in the lower left-hand
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corner, correspond to the seventh harmonic.
Some points in Fig. 7 which do not lie on a line

represented by the diamonds seem to be accounted for if
we consider combination modes involving the phonon at
the upper band edge. The remaining unidentified points
likely involve more complicated combination modes.
Thus, all the points in Fig. 7 seem to be accounted for by
more or less complicated frequency combinations involv-
ing the breather frequency, its odd harmonics, and the
phonon band edges which have been excited by the inex-
act initial conditions and which persist throughout the
simulation because of their nearly zero group velocity.
The generality of the existence of the combination modes,
which is to be expected via the nonlinearity, is easily
checked by exciting a phonon at an arbitrary frequency.
We have done so and observed the proper combination
modes in the resulting frequency spectrum.

As a final remark, we note that, since the excitation of
the band edges is unavoidable, Fig. 7 represents, in some
sense, a fundamental portrait of the discrete SG breather
spectrum.

B. Stability of breather's center of mass

sgn[E„, (X =0)—E,"„(X=
—,')]=sgn[cos(2~zo)], (4.1)

where the signum function sgn means "sign thereof. " To
this order of approximation, the stability oscillates be-
tween X=O and —,

' and is determined by the magnitude of
zo. Since we have chosen 1 0=&2, we must have
zo~ 1/&2 by Eq. (2.21). Equation (4.1) indicates that,
for 1/V2 &zo & 1 (1.29 &co& & V2), breathers centered on
particles are stable which agrees with our simulations.
However, for slightly lower frequencies than ~b=1.29,
the stability predicted by Eq. (4.1) shifts to X =

—,
' which is

in disagreement with our observations. However, as the
frequency becomes still lower, or as the amplitude zo be-
comes larger zo ~2, we obtain agreement again, which
corresponds to the static-breather case. T'hat is, the
breather subkinks for larger zo will be trapped and Eq.
(4.1) predicts correctly whether the static-breather center
will be located on or between particles for a given zo.

Therefore, Eq. (4.1) is in agreement for high-frequency

We noted in the previous subsection that our simula-
tions use breathers centered on particles for the choice
1 o= &2. All breathers centered between particles
throughout the above frequency range 0.837 ~ mb ~ 1.406
are unstable in X—the breather center of mass moves.
Breathers centered on a particle are stable in L except in
the approximate subrange 0.993 cob ~1.040, where the
center of mass of the breather moves. Therefore, in this
frequency subrange neither breathers centered on parti-
cles or between particles are stable in X. (Most modes in
the Fourier transform for the frequency subrange
0.993~cob ~1.040 are smeared in frequency except for
very strong modes, like the breather and its third har-
monic. )

We can obtain a partial theoretical understanding of
the breather's X stability based on Eq. (3.15a) from which
we find

breathers and low-frequency breather profiles which re-
sult in static-breather configurations. On the other hand,
Eq. (4.1) disagrees with simulation for cases in which the
subkink interaction energy at separation zo is comparable
with the depth of the Peierls wells. In this latter zo
range, the prediction of the stability of the X motion
seems to be very sensitive to approximations made on the
collective-variable equations of motion, such as neglect-
ing the q& dressing, even for moderately high frequencies.
For instance, the potentials from theory and simulation
in Fig. 3(c) for co& =0.9 seem to be very close, yet the sta-
bility prediction for the X motion for the same ~b is in-
correct.

We also note a general property of Eq. (4.1) which is
that it always predicts a stable co'nfiguration to be at
X=O or —,'. Thus, it can never predict (to this order of ap-
proximation) the observed result of instability for X=O
and —,'. We have not probed why both symmetry values
for X were unstable in the subrange 0.993 ~ cub ~ 1.040 in
the simulations.

C. Breather lifetime

If we consider a moderately low-frequency breather
and choose the parameters I o=&2 and co&(t =0)=0.3,
the third harmonic lies initially below the phonon band
and the fifth harmonic lies in the band and resonates with
the phonons thereby radiating energy. Since energy is
conserved, the breather amplitude must decrease thereby
increasing the frequency. The breather frequency co&(t) is
thus a strongly dependent function of time. Consequent-
ly, the harmonics of co&(t) all increase in frequency. The
third harmonic eventually passes into the band by cross-
ing over the lower phonon and edge and the radiation
rate increases. The breather continues to radiate pho-
nons and co&(t) continues to increase with time until the
third harmonic passes out of the band by crossing over
the upper phonon band edge. The radiation rate then de-
creases drastically. Measurements of the breather fre-
quency calculated over individual cycles during the simu-
lation show that (3'&)s™has migrated from below the
phonon band to the upper band edge after only six
breather oscillations at which time the breather frequen-
cy obtains the critical value m,"„,=0.818+0.006 which
remains constant for the remainder of the simulation
(about 150 breather oscillations). This is a remarkably
sharp transition from short breather lifetime to long
breather lifetime. The sharpness of the transition is still
observed if we start with a profile corresponding to the
t=O parameter cob =0.75 so that the third harmonic is in
the band and not far from the upper edge, the difference
being 5~=0.2. We observe that the harmonic rises in
frequency and, in five breather oscillations, reaches exact-
ly the same critical frequency as in the previous case,
which remains constant for the remainder of the simula-
tion. The sharpness of the transition is therefore in-
dependent of the initial breather frequency. After the
third harmonic crosses over the upper phonon band edge,
the only states resonating with phonons are the combina-
tion modes whose effects are very weak.

Figure 8 shows the Poynting's Aux of radiation calcu-
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breather. Now suppose we set the phonons to zero by
hand in order to obtain a more stable discrete breather
solution. This is easy to do away from the breather, but
in the vicinity of the breather it is virtually impossible be-
cause one does not known how much of the discrete field
is "breather" and how much is "phonons. " It is a time-
dependent state. Band-edge phonons not set to zero in
the breather vicinity will spread, lower their amplitude,
but still be present. Although such a process may yield
discrete breathers with longer lifetimes, we have not tried
it.

FIG. 8. Instantaneous Poynting's Aux of phonon radiation
calculated 30 particles away from breather center correspond-
ing to the t=O condition mb=0. 3. After six breather oscilla-
tions, (3'& }" crosses over the upper phonon band edge.

lated from the simulation for the former case. The Aux

does not show the sharpness of the transition because
many of the phonons initially radiated by the breather
are long wavelength and take a long time to reach the
"Aux detector" which is 30 particles from the breather
center. Thus, the signature of ihe transition is smeared
out in Fig. 8. Nevertheless, we estimate the lifetime of
the breather by noting that the energy Aux at the end of
the simulation in Fig. 8 averages to (P) =10 . Using
co& =0.818 (period T1, =7.68) and k& =1.15 (energy
E = 16k&.=18.4), we find that, during one oscillation, the
breather loses

AE /E = T~ (P ) /E =4 X 10

of its energy. Assuming that, as the breather decays it
loses this percentage of its energy after each oscillation,
we underestimate that the lifetime of the breather is on
the order of some tens of thousands of oscillations, about
four orders of magnitude greater than the lifetime before
the transition. It is now apparent why we required the
third harmonic to lie above the phonon band when calcu-
lating the temporal Fourier transform of the breather dy-
namics in the previous subsection.

Notwithstanding its long lifetime, our simulations sug-
gest that a SG breather is not stable as t —+ ~ even if the
third harmonic is above the phonon band. There are still
combination modes in the band which excite phonons
and their effects are small but not zero. A complete elim-
ination of the band-edge phonons would imply an exact
discrete breather solution since the combination modes
would be completely eliminated and no phonons would
be radiated and this is not a possibility. However, if we
could at least reduce the amplitude of phonons at the
band edges in the simulation, we would perhaps be able
to 6nd a discrete breather solution that is even "more"
stable (longer lifetime) than the ones considered above
since that would reduce the amplitude of the combination
modes in the band. However, reducing the number of
band-edge phonons is extremely dificult since the excita-
tion at the band edges is a long-time effect of arbitrary in-
itial conditions. ' Consider the crude example of running
a simulation for some time after which phonons are ob-
served on the chain which have been radiated by the

1 (4+ I 2)1/2 (4.2a)

where the right-hand side is one-third of the frequency of
the upper phonon band edge. Equation (4.2a) corre-
sponds to a critical amplitude of oscillation

3 —1z = tanh
2(2I o

—1)
(21 2 1)1/2

3IO
(4.2b)

where we made use of Eq. (3.15b). Then the only states
resonating with phonon modes will be combination
modes whose effects are very weak. Note that, for values
I o

~
—,', Eq. (4.2b) predicts that the value z, does not exist.

This is because the third harmonic of cu& will never be
above the upper band edge. On the other hand, smaller
I o implies a smaller upper limit on k& than in the cases
considered above and hence for small enough I o we will
be in the displacive limit and discreteness effects will be
small for all allowed values of kb.

V. DISCUSSION AND CONCLUSION

%'e have employed collective-variable theory and
molecular-dynamics simulations in order to study the
statics and dynamics of breather excitation s in the
center-of-mass frame in one-dimensional continuum and
discrete systems. %'e derived the exact collective variable
equations of motion for z (t) and the coupled phonon field
for continuum and discrete systems and applied the

Another possibility for finding highly stable breather
solutions in discrete systems is to consider very short
systems —less than 100 particles. The phonon spectrum
is then "very" discrete. If all combination modes be-
tween the breather, its harmonics, and all phonons are
such that the combination modes in the band lie in be-
tween the phonon states, then the discrete breather solu-
tion will have an infinite lifetime since the radiation will
decay exponentially with a positive imaginary wave num-
ber. Recent work for the P model shows that such stable
discrete breather solutions exist.

We conclude from molecular-dynamics simulations
that breather frequencies such that the third harmonic is
above the phonon band are "highly" stable. This numeri-
cal observation based on Fourier analysis complements
the theoretical result that discreteness effects are less im-
portant in high-frequency breathers. In addition, howev-
er, the numerical analysis gives a precise criterion for de-
ciding whether the breather frequency is high enough for
discreteness effects to be considered negligible. %'e must
have
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theories to the SG case.
The complete integrability of the continuum SG case

in a collective-variable context leads to the interesting re-
sult that the slopes of the colliding subkinks are exactly
constant which is true for any exact two-soliton collision,
not just the breather. The standard relativistic mass dila-
tion due to the change in velocity near the collision re-
gion is balanced exactly by the change in the local
effective potential acting on the subkinks because the sub-
kink masses depend on the value of the local potential
relative to the vacuum. It is likely that this mass con-
stancy also exists for an exact N-soliton solution due to
the exact integrability leading and the absence of pho-
nons. The continuum theory also serves as a useful refer-
ence for comparing the theoretical results of the discrete
SG case.

The calculations for the discrete case show that there
exist three regimes of breather motion. One regime cor-
responds to high-enough-frequency breathers which can
oscillate such that the interaction energy between the
subkinks at maximum separation zo is sufficiently greater
than the depth of the Peierls wells. The bare theory
agrees well with this case since discreteness effects are not
too large. A second regime corresponds to the opposite
case where the breather subkinks are situated far enough
apart so that the interaction energy is sufficiently
weak, the subkinks are trapped by the Peierls wells, and a
"static"-breather profile results. The bare theory gives
acceptable results (to within 3%) for the energy of such a
state if the energy scale is governed by twice the subkink
rest mass, but if the scale is set by the depth of the Peierls
well we need to incorporate the dressing into the theory
in order to calculate meaningful numbers. We have tak-
en into account the exact shape of the eigenfunctions of
the X and z modes about such a static-breather profile in
order to calculate its discrete small-oscillation frequency
spectrum and such a procedure corresponds to an exact
numerical dressing of the bare theory. The third regime
corresponds to the case where the interaction energy at
maximum subkink separation is comparable to the
Peierls energy and this is the most difficult case to de-
scribe theoretically. Our bare results are not sufficient in
this case to account for breather stability with respect to
the X motion. One agains needs to incorporate the dress-
ing, but since the breather oscillation is nonlinear, we
have no corresponding eigenfunctions for this case. We
briefly describe a method to include the dressing to
lowest order for such a case.

We order q& which appears in Eq. (3.3) as follows:

q&~q(x, t)=e q' '(x, t)+e q"'(x, t)+ . (5.1)

and assume that each space and each time derivative off
and q augment the power of e by one. Substituting Eqs.
(3.3) and (5.1) into Eq. (3.2) and expanding the second
difference in a Taylor series, we obtain an equation con-
taining powers of e, each coefficient of which must be
zero. To lowest order in e we therefore obtain the
differential equation

(5.2)

where subscripts denote partial derivatives with respect

to the continuum variable x and the primes on the poten-
tial denote derivatives with respect to the argument f.
Equation (5.2) for q' ' and the resulting next order
differential equation for q"' have both been solved for the
single kink case. For the breather case we must substi-
tute the continuum breather solution Pb for f and then
solve Eq. (5.2). When q' ' is found, we construct the new
ansatz Q&

=fl +q~, where

where x is replaced by l again. The qI are new dressing
and radiation variables. A new bare theory in the func-
tion f& is then expected to yield better results in all re-
gimes discussed above. Although the solution to Eq. (5.2)
for a breather has not yet been derived, a11 solutions to
the corresponding homogeneous equation, i.e., the
discrete and continuous spectrum, are known exactly
and the solution to Eq. (5.2) may take a relatively simple
form. Work along these lines is in progress.

We used molecular-dynamics simulations and Fourier-
transform techniques to analyze the frequency spectrum
of the discrete-breather system for the choice 10=&2.
We examined the frequency range 0.837 ~ cob 1.406 cor-
responding to breathers whose third harmonic is above
the phonon band. We found that only breathers centered
on particles are stable in X except in the frequency
subrange 0.993 ~cob 1.040, where breathers for both
X =

—,
' and 0 are unstable to the X motion. We do not

know if this is due to a fundamental change in the struc-
ture of the potential due to discreteness, or if there was
some internal resonance in the system which, due to finite
numerical accuracy, pushed the breather's center of
mass over the small Peierls barrier.

In general, we found that the band-edge phonons were
excited by the initial conditions of the simulation which
produce combination modes with the breather and its
harmonics throughout the spectrum. Since the band-
edge phonons cannot be eliminated, Fig. 7 is in this sense
a fundamental frequency diagram for the states that exist
in the discrete-breather system. We found no evidence of
breather subharmonics for the discrete SG case, see Fig.
7.

Molecular-dynamics simulations show that 3cob plays a
crucial role in determining the lifetime of the discrete
breather. When in the phonon band, the third harmonic
acts as a powerful source of radiation leading to a breath-
er lifetime of five or six breather oscillations. When the
third harmonic is above the phonon band, the lifetime is
about 10" to 10 breather oscillations. We have shown
that the transition from the short to long lifetime is ex-
tremely sharp and does not depend on the initial breather
frequency. In addition, for an infinite chain where the
phonon band is truly a continuum of phonon states, we
do not expect to find stable discrete breathers even with
high frequency because combination modes in the band
will always resonate with a phonon mode and radiate en-
ergy.

As a final remark, we note that we did not calculate an
expression for the breather frequency in the bare approxi-
mation. Although it is conceptually simple, the calcula-
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tion is rather involved. For example, let us consider only
the continuum case for which all the answers are already
known. The exact equation of motion for z given by Eq.
(2.19d) may be written explicitly as

z= I 2

tanh(kbz)sech (kbz), (5.3)

the solution of which is given by Eq. (2.13). Although z is
very useful as a position parameter for the subkinks, it is
not useful for calculating the breather frequency even in a
small-amplitude (high-frequency) limit since the ampli-
tude zo is bounded from below according to Eq. (2.21).
Even though we should not need to linearize since the ex-
act solution is known, the attempt itself to carry out a
linear calculation makes no sense because of Eq. (2.21).
In order to calculate frequencies, we clearly need to use a
diferent variable for which even a linearization of the
equation of motion makes sense.

Consider the new variable u =sinh(kbz). For the

smallest oscillations in z =z0, we note that k~ ~0.
Therefore, the amplitude of u does take on arbitrarily
small values and u can be used as a small-oscillation vari-
able if so desired. Instead of linearizing though, we mere-
ly transform Eq. (5.3) from z to u and obtain

u= (u —I o) .
1+u

(5.4)

Although Eq. (5.4) is nonlinear, it has a harmonic solu-
tion given exactly by the right-hand side of Eq. (2.13).
Why then is Eq. (5.4) nonlinear? It is because if we as-
sume a solution u = A cos(cobt), the amplitude A is not
an independent parameter and the nonlinearity forces
3 =kb Iwb. Now it is possible to transform the equation
of motion for z for the discrete case to the variable u.
The continuum limit of the resulting u equation will, of
course, be Eq. (5.4) but will otherwise lead to corrections
on Eq. (5.4). Corrections on cob may be obtained in this
manner and the results will be presented in a forthcoming
paper.
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