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Asymmetric phases in the mean-field theory of the axial next-nearest-neighbor Ising model
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We study the effect of the weakening of the intraplane interactions on the mean-field theory of the
axial next-nearest-neighbor Ising model and show that commensurate phases, which lack the usual
reflection or inversion symmetries, may be stabilized. These asymmetric phases separate commens-
urate phases with the same period but different symmetries, and the phase-locking angle changes
continuously as a function of the temperature. We also compute the phase boundaries numerical1y
and by a continuum approximation, and show that they have a characteristic bottleneck shape.

During the past decade there have been many studies
of the axial next-nearest-neighbor Ising (ANNNI) mod-
el. ' In this model the spins interact with nearest-
neighbor coupling J& and next-nearest-neighbor coupling
Jz along a single spatial direction, and with nearest-
neighbor ferromagnetic coupling Jo & 0 within the planes
perpendicular to this direction. The ANNNI model ex-
hibits a complex series of commensurate and incommens-
urate structures, and it has been applied to the descrip-
tion of a variety of experimental systems, including
binary alloys, ferroelectrics, polytypism, and magnetic
systems. A survey of theoretical work on the ANNNI
model and its application to experimental systems can be
found in recent review articles by Selke and Yeomans.

Among the variety of methods used to study the
ANNNI model, much insight has been provided by the
mean-field theory. ' ' Many aspects of the mean-field
calculations have been confirmed by low-temperature
series analysis. ' The mean-field studies have, however,
been largely limited to the situation Jo =J&. In this paper
we report some interesting implications that the weaken-
ing of the intralayer coupling Jo relative to the interlayer
coupling J, has on the mean-field theory of the model.
Of particular interest are the possibilities of commensu-
rate phases with disordered planes (zero magnetization),
and asymmetric commensurate phases which lack the
usual reAection or inversion symmetries. Recently
Nakanishi has carried out a similar study, but he did not
consider the possibility of asymmetric phases. We note,
however, that asymmetric phases have already been ob-
served in Frenkel-Kontorova-type models and also in
competing spin models on Cayley trees. '

The mean-Geld theory of the model is based on the fol-
lowing free-energy functional

N F = —J, g (2pM„+M„M„+, ~M„M„+2)

—k&TQ f tanh 'm dm,
n

where p= Jo/J&, K= J2/Ji, M„ is the magnetization
per spin in the nth layer, and N is the number of spins in
the system. In what follows we will set J& = 1 and kz = 1

throughout. The condition for an extremum dF/dM„=O

gives the mean-field equations

M„=tanh —4pM +Mn —1+Mn+ i
1

T

—~(M„,+M„+,) (2)

For a given value of the parameters p, K, and T there are
in general many solutions to the above equations. The
condition for a given solution with period Q to be at least
a local minimum is that the matrix

0 1 0 0
g 0

M= +
n=1

0 1 0
0 0 1

1 1—1 —B
K K

where

1 TB„=—4p-
K 1 —M„

(4)

has no complex eigenvalues of unit modulus. '" The
sought-for solution corresponds to the absolute minimum
of the free-energy functional.

Let us consider the commensurate phase with wave
number q =

—,'. Near the phase boundary at K= —,
' and

T, =4p+ —,
' the modulated phase is given approximately

by a sinusoidal magnetization M„=A, cos[2mq (n +P) ].
Some time ago we observed (Ref. 12, Appendix A 2) that
due to the Umklapp terms the phase-locking angle P is 0
for p) lo and —,

' for p & —,'o. The magnetization structure
corresponding to /=0 and —,', to be denoted A and 8, re-

spectively, are shown in Figs. 1(a) and 1(b). Phase B is
characterized by the presence of disordered planes with
zero magnetization. Due to the high entropy associated
with the disordered planes, we expect this phase to be sta-
bilized only at high temperatures. Figure l(c) shows an
intermediate situation between 2 and B, to be denoted C,
in which 0(P( —,. Phase C is asymmetric, without the
reAection or inversion symmetries present in phases
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M„=A, cos2vrq (n +P)+ A~( —1)" . (5)

In the neighborhood of T, we can make the constant am-
plitude approximation' by assuming that 3, has the
same value of the commensurate phase and that P(n) and
A &(n) are slowly varying functions of n. Then we obtain

—0.5—

—1.5 ——
0 1

L
7 8

1.5
T = 1 0

and B. We have found that for p( —,
' the commensurate

phase changes from B to 3 as the temperature is de-
creased. Inbetween these phases there is a narrow strip
of phase C where the locking angle P varies continuously,
as shown in Fig. 2. The transition to the C phase was
determined by monitoring the eigenvalues of the matrix
M given in Eq. (3). The 8 phase is locally stable at high
temperatures, but as the temperature is lowered it eventu-
ally becomes unstable at a temperature Tz(lr). Analo-
gously, the 2 phase is stable at low temperatures but it
becomes unstable at a higher temperature T~(lr). For
T~(x.) & T & Tz(a. ) phase C is the locally stable one, as
depicted in the inset of Fig. 3.

The local stability is a necessary condition for the ex-
istence of the q =

—,
' phase, but it is not sufficient because

other commensurate phase may have lower free energy.
Thus it is necessary to investigate the stability against the
creation of domain walls. ' ' ' Let us represent the mag-
netization in the q =

—,
' phase by the Fourier series

3~ 5(3+8p)
I
3!1 10'

The above equation differs from the result of Ref. 1 by
the factor between the curly brackets because in their
work the third harmonic term 3 3 was not taken into ac-
count. Fortunately for p=1 this factor is nearly equal to
1, being 0.98198. . . , but for other values of p this term
makes a significant difference.

Equation (6) is valid only asymptotically close to T, .
For lower temperatures we have compared numerically
the free-energy densities of the —,

' phase and phases

(j +1)/2(3j+2) or (2 3J), in the notation of Ref. 2, for
lr) 0.5 and phases (j+1)/2(3j+4) or (4 31) for Ir & 0.5.
These phases can be interpreted as describing regularly
spaced walls in the —,

' commensurate matrix. In Fig. 4 we
show the structures of the phase (2 3 ) in different re-
gions of the phase diagram. The arrows indicate the lo-
cation of the walls. In Fig. 4(a), which corresponds to the
region T & T„(Ir), we observe that the core of the walls
have structures similar to the B phase. On the other
hand, in Fig. 4(c) corresponding to the region T ) Tz(lr),
the core of the walls have structures similar to the
phase. These walls are spaced by 3j+2 lattice spacings.
The situation is rather different in Fig. 4(b) corresponding
to the region T„(lr) & T & T~(lr )where we .observe two
different types of walls, one with the structure resembling
the 3 phase and the other the B phase. The two different
types of walls occur alternately and they are separated by
(3j+2)/2 lattice spacings.

The transition from phase —,
' to phase (2 3~) will be of

first order for any finite j. For the case Jo =J, the transi-
tions are of first order up to the accumulation point of

for P(n) a sine-Gordon soliton solution, from which we

get the asymptotic form of the commensurate-
incommensurate transition line of the q =

—,
' phase close

to T, :
' 1/2
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FICz. 1. Magnetization per spin in phase 6 as a function of
the layer coordinate for p=0.2, ~=0.5, and difterent tempera-
tures. The solid curve represents the main harmonic.

FIG. 2. Graph of the phase angle P of the main harmonic as
a function of the temperature T.
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FIG. 3. Phase diagram of the
6 phase with phases 3 and B separated by a bottleneck-shaped region where phase C is stable. The

inset shows the detail around the bottleneck.

the branching points that occur at a temperature Tb
The temperature Tb

' can be determined by studying the
interaction of the walls at a large distance of separation,
which can be related to the eigenvalues of the matrix
(3). ' '' This kind of analysis indicates that for p( —,

'

most of the phase boundary is a second-order
commensurate-incommensurate type, except perhaps at
very low temperatures. To determine the phase bound-
ary in practice we have compared the free-energy density
of phase —,

' with the free-energy densities of phases (2 3J)
for increasing values of j, up to j=300, until we reach a
value of j such that the wall-wall interaction energy be-
comes negligible within the numerical precision em-
ployed. The main problem we had to face in this calcula-
tion was the slow decay of the wall-wall interaction in the
neighborhood of Tz(v), Tz(lr), and T, . This implies not
only that we have to solve the system of Eq. (2) for a very
large number of equations but also that the convergence
of the straightforward iterative process to solve this set of
equations becomes prohibitively slow. We overcame this
difficulty by observing that phases (2 3~) present either
symmetries by reAection or by inversion, which halves
the number of equations to be solved. Moreover, the ap-
plication of the Newton method to this new set of equa-
tions involves only the inversion of a band diagonal ma-
trix of bandwidth five, a process in which the computa-
tion time only increases (roughly) linearly with the di-
mension of the matrix. The eKciency of this procedure
can be gauged by the fact that all the computations re-
ported here were performed on a microcomputer PC-XT.
The transition to the phase (4 3~) can be studied analo-
gously except that the possibility of first-order transition
to the ferromagnetic phase should be taken into account.
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FIG. 4. Magnetization per spin of phase (2 3 ) as a func-
tion of the layer coordinate for p =0.2 in diAerent regions of the
phase diagram. The arrows indicate the location of the domain
walls.
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To conclude we mention that there are other com-
mensurate phases, e.g. , —,', —,'„and —,'4, which show behav-
ior similar to the —,

' phase for small values of p. It would

be interesting to investigate the e6'ect of the pinning ener-

gy of the walls which may have interesting implications
on the phase diagram. Also it would be quite interesting
to know whether type-B or -C phases are present in the

real ANNNI model, in contradistinction to its mean-field
version.
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