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XYmodel on a Sierpinski gasket
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Correlation functions and topological excitations of the XYmodel on a Sierpinski gasket are stud-

ied. The energy of a vortex is shown to be finite, so no Berezinskii-Kosterlitz-Thouless transition
can be expected to take place. At any temperature the correlation function decays exponentially at
large distances. A form of the XY model on a Sierpinski gasket is found that allows for exact renor-
malization. The results obtained can be applied to superconducting wire networks and tunnel-

junction arrays.

I. INTRODUCTION

Recent progress in the techniques of lithography has
led to the development of an interesting branch of experi-
mental physics, namely, the fabrication and investigation
of two-dimensional superconducting systems (tunnel-
junction arrays and wire networks) with different regular
or irregular structures. ' This means that one has the pos-
sibility to produce quasicrystalline, fractal, or some other
nontrivial superconductors. For example, wire networks
in the form of a Sierpinski gasket have been studied by
Gordon et al. and more recently by Martinoli et al.

On the other hand theoretical investigations of fractal
superconducting wire networks have not, so far, gone
beyond the application of the Landau-Ginzburg approxi-
mation. ' Such an approach is certainly not sufhcient,
since even in two dimensions the phase fluctuations of the
superconducting order parameter are very important
both for the properties of the ordered phase and for the
phase transition. In the case of a Sierpinski gasket with
effective dimensionality less than two one can expect
them to be of even greater importance.

In this paper we investigate the inAuence of the Auc-
tuations on the properties of a fractal superconducting
system on the example of the Sierpinski gasket (Fig. l).
VVhen only the most relevant phase fluctuations are taken
into account, the 2D-superconducting system can be de-
scribed by one or another type of XY model. The Joseph-
son junction array, for example, will be described by the
ordinary XYmodel with cosine interaction

H = —J g cos(8, —8, ),
(r, r')

where variables 0, 's stand for the phases of the order pa-
rameter of corresponding superconducting grains. The
summation in Eq. (l) is taken over pairs of nearest neigh-
bors on a lattice that are connected by Josephson junc-
tions.

On the other hand the phase Auctuations in the wire
network should be described by the Hamiltonian

8=I' '
(2)

where integration should be performed over the whole
network bearing in mind that 0 is a multivalued function.
Hamiltonian (2) being quadratic in 0, one can integrate
out from the corresponding partition function the Auc-
tuations of 0 on the wires but not on the nodes of the net-
work, obtaining in such a way
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FIG. 1. The Sierpinski gasket is constructed with elementary
triangles (or elementary plaquettes). The first-order fractal is
formed by combining three of them. In the general case the
(s+1)-order fractal is obtained by the juxtaposition of three s-

order fractals. We will call the greatest plaquette which is situ-
ated in the center of s-order fractal an s-order plaquette, and
sites at its three corners the s-order sites. The dual lattice is
shown in bold lines. Each bond of a dual lattice intersects a
bond of a direct lattice.
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Z = g exp ——g (8,, —8,—2~m„. )

~m„, ~

(3)

where Z [ h j stands for the generating function

d0,
Z[h j= + J exp ——g (8,—8, )

277 2 ( )

where 0, stands for the values of 0 at the nodes of the net-
work and m is the winding number. In the general case J
would be dependent on the length L of the link, but we
will be interested only in the case of all links being of
equal length. The partition function of the form (3) cor-
responds to an interaction between 0, and 0, that is very
close to a cosine function for J( «1 and to a piecewise
parabolic function for K &&1. The interaction incor-
porated in Eq. (3) was initially introduced by Berezinskii
and Villain instead of a cosine for the sake of conveni-
ence, because it allows for a number of various rigorous
transformations to other representations. We would like
to emphasize here that for a network (in contrast to an
array) this particular form of the interaction is the most
adequate.

We start our investigation of the XY model on a Sier-
pinski gasket by developing the harmonic approximation
in Sec. II. Then we turn to the investigation of topologi-
cal excitations (vortices) in Sec. III and finally find a kind
of description that explicitly incorporates the periodicity
of the phase in Sec. IV. Our main conclusion is that in
such models there is no phase transition in the rigorous
sense of the word. For arbitrarily low temperature the
energy of the vortices is finite and the correlation func-
tions decay exponentially at large enough distances. So
in such a system there will be no global phase coherence.

II. HARMONIC APPROXIMATION

In the harmonic approximation any XY model will be
described by the Hamiltonian

k~TH= —g (8,—8, ) = +8U„8, ,
r, r'

where the elements of the dimensionless interaction ma-
trix U«are equal to 4K for r=r', to —K for r and r' be-
ing the nearest neighbors and to 0 elsewhere. The corre-
lation function g«wi11 then be determined by the re-
ciprocal matrix G„=(U ')„:

g„„—:(exp[i (8,—8,. ) ] )

+i gh, 8,

which for h =0 coincides with the partition function Z.
The fractal structure of the Sierpinski gasket allows us

to calculate Z [ h j (and consequently G„)step by step, by
integrating out to the sth step the variables that are
defined on the corner sites of the sth order plaquettes of
the initial lattice (we shall call such sites the sth order
sites, see Fig. 1). For example, after the first integration
one obtains

Z[h }=A,V, [h }Z,[h j,
where A i is the numerical factor depending on K, which
is irrelevant for calculating G, and Z, [h j has the same
structure as Z[h j:

d0, Ei
Z, [h j = g J exp — g (8,—8,, )--2 2 (

+i g h,'8, (10)

h, + gy„h,

where y„=—,
' or —', and the sum is taken over six nearest

first-order sites.
The exponent of the factor

but with a renormalized value of the coupling constant
K& =(—', )K and the variables defined on the decimated lat-
tice. Due to the property of self-similarity, the decimated
lattice is again the Sierpinski gasket. In the process of in-
tegration, each field h, defined on the first-order sites
splits into three nonequal parts, which are shifted to the
neighboring sites of larger order (see Fig. 2), so h' in Eq.
(10) stands for the

with

=exp[ —
—,'((8,—8, ) ) ]

=exp( ,'F„,)—— (5)

Frr —~rr +«' +r'r +~r'r' ~

G„„ is proportional to the lattice Green function of the
Sierpinski gasket. To calculate 6„., it is convenient to
express it as

2/5 b 2/5

G rr' lnZ[h j
a a

r r' . A=o

FIG. 2. Illustration of the "splitting" of h, at the first-order
site a. At the superior order site b, all contributions from all
first-order sites to hb are shown.
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V& Ih I =exp g(h, +h, +h, +3h, h,

+3h, h, +3h, h, )

(12)

where the summation is to be taken over all first order
plaquettes and r (o.=1,2,3) are the sites at their corners,
gives the first contribution to G„.

One can repeat the decimation procedure again and
again. At each step the structure of Z, I h I is conserved,
but the coupling constant is scaled by the factor of —', and
a new additive contribution to G„appears of the same
form as the exponent in Eq. (12). The series for 6„ turns
out to be divergent, but for the combination (6) entering
the correlation function (5), it either has a finite number
of terms or it is convergent. Unfortunately it is impossi-
ble to sum this series analytically.

One can understand how the correlation function de-
cays by considering it for, say, sites r' and r" which are of
the s'th and s'th orders, respectively. Thus one can per-
form the renormalization procedure for
s =minIs', s"

I
—1 times, obtaining the expression for the

correlation function for the model [see Eqs. (5)—(8)] with
Kz = ( —,')'K with distance r between points equal to
( —,')'~r' —r" ~. This shows that the correlation function

g (r) decays as

III. VQRTICES

with Z&~ coinciding in the form with the partition func-
tion of the harmonic approximation and

Z„„=g exp
' —

—,
' gn„G„„n„.

I n„ I U, u'
(15)

where integer variables n „stand for the topological
charges of the vortices and are defined on the plaquettes
u. Now G„„.is proportional to the lattice Green function
of the dual lattice.

As in the case of the original lattice, the calculation of
G can be made with the help of the generating function,
which is quite analogous to Eq. (8):

Z[f I
= g I dx„exp g (x„—x„)U 2~ U U

The unrestricted decrease of the coupling constant in
the process of the renormalization suggests that for any
temperature the harmonic approximation will not be
applicable at large enough scales (d ~ /=K'~ ). For XY
model this usually means that one should also take vor-
tices into consideration. It can be most easily done for
the partition function (2) which allows exact decomposi-
tion into spin-wave part and vortex part:

ZxF Zsw Zvort

g (r) ~ exp
( —', )'

=exp
C

(13)

+2mi g f„x„ (16)

Such a law of the decay of the correlation function
signifies that there is no quasi-long-range order in the sys-
tem. But since we are in the harmonic approximation
this means that for the fractal network one can have no
hope to have a better phase coherence than to have g (r)
of the form (13) with v( 1. However there still remains a
possibility to have a phase transition into a state with a
more rapid decay of g (r).

f=0
(17)

The first step is to integrate out the variables defined at
the elementary plaquettes. That yields

where the first summation is now over pairs of nearest
neighbors on the dual lattice. Then G„„canbe expressed
as

ZI f I V& If I Q I dx„exp — g (x„—x„) +2m&' g f„'x„
5K' U

(18)

with

E, =—3K, f„'=—,
' g f„+f„,

U

(19)

where the sum over u' is to be taken over all elementary
plaquettes surrounding the sth order plaquette u. The
form of the expression for f' corresponds to splitting
each field f„defi ed non an elementary plaquette into
three equal parts that shift to the three neighboring pla-
quettes.

Thus we have obtained again the lattice that is dual to
a Sierpinski gasket of a smaller order. But now we have

coupling not only between nearest neighbors but also be-
tween second-nearest neighbors (see Fig. 3) which corre-
spond to plaquettes of diferent size which are adjacent to
the same elementary plaquette. All the couplings are
equal ~ The exponent of the factor

4 K 1
(20)

gives the first additive contribution to G„„., where the
summation is to be taken over all elementary plaquettes.

Luckily at all other steps of the integration the struc-
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the model with Kz =( ,') —K and distance between pla-
quette centers equal to (—,') ~u

—u' . This shows that the
interaction energy decays as

FIG. 3. Pairs of sites of the dual lattice that become coupled
after the first decimation are connected by bold lines.

ture of the expression for Z, If I will be conserved. No
additional coupling will appear, and K will scale with a
factor of —,'. So the scaling on the dual lattice and on the
original lattice are completely consistent with each other.
After summing all contributions G can be expressed as
follows:

G(r)~( —,') =r, r)0,
with the same exponent v=ln( —,')/ln2 as the correlation
function of the harmonic approximation. This also
means that the vortex self-energy is multiplied by a factor
—,
' when the plaquette order is increased by one.

Our calculation has shown that the energy of a vortex
is always finite on a Sierpinski gasket. Thus free vortices
will always be present and no phase transition related to
the dissociation of vortex molecules will take place (in
contrast to the case of regular 2D lattice). Moreover the
energy of a vortex scales with a factor —', with the increase
of the size of the plaquette. So for any temperature for
large enough plaquettes the concentration of vortices will
be large in comparison with unity. So, at least starting
from the scale g, the behavior of the correlation function
will be strongly modified by vortices. In order to investi-
gate the decay of correlation function at large scales we
shall introduce another approximation, which is suitable
for the limit of weak coupling.

IV. EXACTLY RENORMALIZABLK MADEL

G„„,=4~ K —,'Q„„,+ —,
' g ( —', )' 'a„(s)a„(s)

S =S
(21)

Let us consider an XY model on a Sierpinski gasket de-
scribed by the Hamiltonian

H = kiiT+ln —I+Kgcos(0, —0, ) (25)

a„(s)= g( —) ',1 N(

I

(22)

where summation is to be taken over all paths that begin
at u, go step by step to a larger plaquette along the
second-nearest neighbors (except for the first step in the
case where u is an elementary plaquette when the paths
go to a nearest neighbor) and reach the sth order pla-
quette which is at the center of the s-order fractal includ-
ing u. X& is the number of steps forming the Ith path.
Then G„„ is always finite because it is evident that a„(s)
never exceeds 1. Therefore

(23)

for any u and u'.
The same approach as in Sec. II can be used to under-

stand the dependence of the vortex self-energy ( ~ G„„)on
the plaquette size and that of the interaction energy
(~ G„„)on the separation distance ~u

—u'~. One consid-
ers two plaquettes u and u' with the order s' and s", re-
spectively. Then one performs the renormalization pro-
cedure s =s„„ times, obtaining the expression of Z„„for

where s„„.is the minimal order of a piece of fractal in-
cluding both u and u'. If s =s„„ then a„(s)=1 and if
s )s„„.then a„(s) is the contribution, after s transforma-
tions, of h„ to the sth order plaquette belonging to the sth
order fractal containing u. That means that a„(s) has the
form

2+%
4+K

(26)

For K (& 1 Eq. (26) reduces to KI ——( —,
' )K, so if one starts

from Ko « 1 after s steps one obtains

K, =2(KD/2)

From Eq. (26) follows that for any K &K„ the renor-
malized coupling is smaller than the initial one. This

where the external sum is to be taken over all elementary
plaquettes and the internal one over the perimeter of each
such plaquette. If one develops the logarithm in powers
of K, the first-order terms would give the Hamiltonian
(1), while the higher-order terms will introduce also
three-particle interaction on each elementary plaquette.
Thus one can consider the Hamiltonian (25) as an ap-
proximation to the Hamiltonian (1) (which is exact in the
limit K~0). The statistical weights W =exp( FI/kii T)—
defined by (25) remain positive only for K (K„=—,', so it
cannot be used directly for the investigation of the low-
temperature properties of (1).

Hamiltonian (25) allows for the same exact renormal-
ization as the Hamiltonian (4) of the harmonic approxi-
mation. But in contrast to the harmonic case the vortices
are now also implicitly taken into account, because the
phase-phase coupling in (25) is really periodic. In the
case of (25) after performing the integration over first-
order variables one obtains the Hamiltonian with the
same structure, but with the rescaled value of coupling:
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means that the coupling always scales down to zero and
there is no phase transition.

As for the calculation of the correlation function, the
simplest thing to do would be to estimate its value for the
sites on the corners of the same sth order plaquette (that
is, at distance r =2'). Then after performing the renor-
malization s times one will have them as the nearest
neighbors, so the correlation function will be proportion-
al to renormalized coupling:

2
g (r) ~ K, ~ exp — ln r

ECO
(27)

That means that the correlations decay in an ordinary ex-
ponential way and that correlation radius R, is equal to
1/ln(2/Ko).

The decay of the correlations, described by Eq. (27)
turned out to be more rapid than in the domain of the va-
lidity of the harmonic approximation. That can be con-
sidered as the manifestation of the finite concentration of
vortices. Equation (27) will hold for the model (25) with
K «1, that is for the model (1) with J «k Ts. For
E -E, it will give R, —1.

If one is interested in the low-temperature properties of
models (1) or (3) one can use the harmonic approximation
renormalization till Kz becomes of the order of one and
then switch to the model (25) and use the fact that for it
R, will be of the order of one in the units of /=K'~ .
The correlation function will decay according to Eq. (13)
for r «g and according to Eq. (27) with R, -K'~" for
r ))g.

V. CONCLUSION

We have studied an XY model on a Sierpinski gasket.
A main difference with the case of a regular lattice is that
the self-energy of a vortex is finite and the interaction en-
ergy decays as a power law of the distance. Therefore no
phase transition can take place.

For any temperature the correlation function decays
exponentially at large distances [exp( —r/R, )]. But in
case of small temperature for distances smaller than the
correlation radius (R, -(J/k~T)' ') it decays as
exp( r /C—) with C ~ K and v= ln( —,

'
) /ln2 & 1.

On the other hand in the case of a regular lattice
formed by the sth order fractals (as in Ref. 5) the
Berezinskii-Kosterlitz-Thouless transition should take
place, but at a quite different temperature than in the
periodic triangular lattice with the same lattice parame-
ter. One should bear in mind that such complex lattice
would be equivalent to the triangular lattice with the cou-
pling constant rescaled by the factor of ( —,')'.

The approach developed in this paper can be expected
to be of relevance for the description of superconducting
wire networks only if the coherence length is not small in
comparison with the wire width. In the opposite case the
network will behave like a bulk sample without manifes-
tation of fIuctuations.
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