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The heat capacity of Fe3(l $)04 was systematically measured for nine samples in the composition
range 0&5 &0.012 and for temperatures between 5 and 200 K. The character of the heat-capacity
anomaly at the Verwey transition changed at 5=5, =0.004: for 5 &5, or 5 & 5, the transformation
was of first or second order, respectively. The transition disappears altogether for 5) 35, =0.012.
From these measurements the entropy of the transition and the temperature dependence of the en-

tropy have been calculated. The entropy change at the transition is R ln2 for 5=0 and decreases
steadily with increasing 5. The implications of these findings are discussed in terms of a mean-field
model that includes the Coulomb interactions among electrons located on neighboring octahedral
sites. The charge carriers resonate between the two equivalent octahedral positions above the
Verwey transition, and freeze out well below the transition. The model predicts a molar entropy
change of R ln2 for discontinuous transitions and 2R ln2 for continuous transitions.

I. INTRODUCTION

The Verwey transition in magnetite has been the sub-
ject of many prior investigations; it has only gradually
been recognized that the experimental data depend criti-
cally on the oxygen-to-iron ratio. In Fe3(] $}04 the 6 pa-
rameter falls in the range —0.0006 & 5 &0.0125; various
physical properties such as heat capacity, electrical con-
ductivity, magnetization, spin resonance, and Mossbauer
spectra change drastically with 5. Accordingly, it is im-
portant to provide a reliable data base that describes
those variations as a foundation for an adequate theoreti-
cal interpretation of these observed features.

The main purpose of this paper is to provide a sys-
tematic thermodynamic characterization of the Verwey
transition. For this purpose we describe a set of extensive
heat-capacity (C ) measurements from which the temper-
ature variations of the entropy for magnetite with vari-
able 6 can be determined. These results will then be de-
scribed in terms of a simple theoretical model of collec-
tive electron behavior. This work represents an extension
of earlier studies in this laboratory' on the heat capacity
of near-stoichiometric magnetite (5=0). Preliminary C~
measurements on nonstoichiometric magnetite have been

briefly reported both for the temperature range 5 —200 K
(Ref. 3) and in the cryogenic region 0.3 —20 K (Ref. 4).

Background information regarding calorimetric mea-
surements for 1926—1984 was provided in Ref. 1, hereaf-

ter designated as I. Most of those investigations centered
on the heat-capacity anomalies associated with the
Verwey transition near 120 K. In many cases, the results
serve only as a qualitative thermodynamic indicator of
the transition because insufhcient care was exercised in
ensuring proper stochiometry and homogeneity of the
sample and in eliminating major impurities. The need for
adequate precautions is clearly apparent in the present
study: with increasing cation deficiency, the Verwey
transition temperature decreases significantly and the
thermodynamic character of the transition is also altered.
As far as is known, this is the first systematic calorimetric
investigation on Fe3(] $}04 that covers almost the entire
accessible stability range of magnetite between the reduc-
tion boundary (wiistite-magnetite) and the oxidation
boundary (hematite-magnetite). The present results also
indicate a significant change in the entropy of the transi-
tion as a function of the nonstoichiometry parameter 5.

II. EXPERIMENTAL TECHNIQUE

The preparation of homogeneous single crystals of
magnetite was described in detail in I and in Ref. 5 and
will only be briefly summarized. To ensure uniformity of'

composition, single crystals grown by the skull-melter
technique were subjected to subsolidus anneals in ap-
propriate CO-CO2 burred atmospheres in the range
10 ' —10 atm. The oxygen fugacity (fo ) was moni-
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III. RESULTS

The temperature dependence of heat capacity is sum-
rnarized in Figs. 1 and 2 for Fe3(i $)04 samples with
5&0.004 and 5&0.004, respectively. These two sets en-
compass the two regimes in which thermodynamically
discontinuous and continuous Verwey transitions take
place. Figure 3 displays a typical cooling curve for a
representative sample with 5=0.0017 in the vicinity of its
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tored directly using a zirconia-yttria oxygen-transfer cell.
The appropriate fo value required to attain a desired 5

2

in Fe3(i $)04 at a specified temperature was determined
from Dieckrnann's thermogravirnetric data. Annealing
times were based on Dieckrnann and Schmalzried's work
pertaining to tracer diffusion coefficients, and on numeri-
cal calculations involving Pick's second law for a semi-
infinite slab. For samples with 6&0.004, it was neces-
sary to carry out subsolidus annealing at 1400 C, fol-
lowed by rapid quenching in a vertical drop furnace; the
exterior portions of these samples were then trimmed off
to achieve uniformity of composition of the core. Sam-
ples for which 5&0.004 were annealed at 1000 C for
several days and slow cooled; surface layers were re-
rnoved by abrasion.

Samples approximately 5X5 X0.7 mm in size, weigh-
ing between 40 and 80 mg, were obtained from the an-
nealed crystals; they were polished, and mounted in a re-
laxation calorimeter designed by Griping and Shivashan-
kar. The equipment could be operated in the relaxation
mode for heat-capacity measurements or in a transition
mode to obtain the enthalpy of transition. Temperatures
were measured with a Ga-As-P diode' calibrated against
a Ge or Pt resistance thermometer in the range 4.2—100
K or 75 —350 K, respectively. The instrument was suc-
cessfully checked for accuracy by measurement of the
heat capacity of Cu metal and by monitoring the latent
heat of freezing of Hg.
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FIG. 2. Heat capacity vs temperature (0& T&200 K) for
Fe3(] $)04 samples with 5, &6 &0.012, exhibiting higher-order
Verwey transitions.
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first-order phase transition near 114.8 K. The first-order
nature of transition is reflected by the nearly flat thermal
arrest (plateau); the latent enthalpy of the transition was
calculated as described elsewhere. This arrest corre-
sponds to a very sharp C spike in Fig. 1 which is super-
posed on the background of a continuous variation in
heat capacity with temperature.

Figure 4 shows the temperature dependence of the ex-
cess heat capacity AC for a sample with 6=0.0096 un-
dergoing a continuous Verwey transition that is centered
on Tz-—89 K. The corresponding heating or cooling
curves exhibit no thermal-arrest features. There is some
uncertainty in the hC versus T plot of Fig. 4 because
judgmental factors are involved in drawing the baseline.
In particular, differences between the baseline and ob-
served heat capacities should extend down to 0 K in aH
second-order transitions. However, the general shape of
the AC curve remains unaffected by this difFiculty. As is
seen, the heat-capacity anomaly now extends over a wide
temperature range centered on Tz. Additional heat-
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FIG. 1. Heat capacity vs temperature (70& T&150 K) for
Fe3(]—$)04 samples with 5 & 5, =0.004, exhibiting first-order
Verwey transitions.
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FIG. 3. Cooling curve for Fe&(] &)0& with 6=0.0017 in the
vicinity of the Verwey transition. Note temperature scale.
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FIG. 4. Excess specific heat of Fe3(f $)0$ with 5=0.0096
near the Verwey transition.

capacity data and heating or cooling curves for other 6
values of magnetite were already presented in Refs. 2 and
3 and will not be duplicated here.

One important conclusion to be drawn from the above
data, in conformity with our earlier report, is that a
drastic change in the nature at the Verwey transition
takes place for 6=6, =0.004. For the composition range
—0.0005 & 5 & 5, (group-I specimens), the phase transfor-
mation is first order, as manifested by the presence of
thermal arrests (e.g., Fig. 3) in the cooling or heating
curves, and by extremely sharp spikes in the heat-
capacity curve at the transition temperature Tz. For the
composition range 6, &5&0.012 (group-II specimens),
the transition is of second or higher order, consistent
with the absence of thermal arrests and with the broad
heat-capacity anomalies near Tv. These distinctions are
further substantiated by the following observations:

(a) Within experimental error, group-I and -II speci-
mens share a common baseline above 126 K, as depicted
by the representative plots in Fig. 5. This means that the
nature of the spectrum of thermal fluctuations is the same
well above Tv, irrespective of the character of the transi-

tion. The universality of the high-temperature behavior
demonstrates that the lattice properties above T~ have
not changed appreciab1y with increasing non-
stoichiometry 6. However, below their respective T~
values this is no longer the case: the heat capacities for
group-II specimens lie significantly above those for
group-I specimens. This trend continues down to the
lowest accessible temperature range of 5 and 0.3 K, as
shown in Fig. 6 and in the work of Ref. 4, respectively.
Below Tz changes in 5 have a greater effect on the heat
capacities of the second-order than on the heat capacities
of the first-order samples. Clearly, the elementary excita-
tions of the low-temperature phase of group-II samples
increase with 5; they differ from those of group-I samples.
This situation arises because, in type-II samples, as in any
system undergoing a second-order transition, thermal
Auctuations grow with T and destroy the ordered state at
T~. In type-I samples the transition is determined by the
coexistence condition involving the equality of chemical
potentials of the two stable phases.

(b) Within each grouping, T~ decreases linearly with
increasing 6, as is shown in Fig. 7. Tz values shown as
open circles were read off from either the average temper-
ature of the thermal arrests for group-I specimens (as
shown in Fig. 3) or from the maximum in the heat-
capacity anomalies of group-II samples. Tv values
shown as triangles were obtained from discontinuous
temperature changes of the magnetic moment reported in
detail elsewhere. " These transition temperatures inter-
polate satisfactorily with those read off from discontinui-
ties in resistivities p or in dp jdT, obtained in comple-
mentary electrical transport measurements. ' One clear-
ly encounters two linear regions in the Tz versus 5
dependence, with a gap in Tz extending from 109 to 101
K, which separates the transition temperatures of the
first-order from those of the second-order regime. These
findings provide a quantitative verification and extension
of earlier observations, ' ' including that by Verwey in
his original report, ' that Tz diminishes with increasing
deviations of magnetite from the ideal oxygen
stoichiometry.
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FIG. 5. Comparison of heat capacities for two samples exhib-
iting Verwey transitions of different order; 5= —0.00018, first-
order transition, and 5=0.0049, second- or higher-order transi-
tion.
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FICx. 6. Heat capacity vs temperature for several Fe3(»)04
samples below 10 K. Curve (a). 5= —0.00018; (b): 5=0.0002
(e): 5=0.0096; (d): 5=0.0121.
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FIG. 7. Variation of Verwey transition temperature with 6 in

Fe3(1—$)04. Note the two regimes and the separation of the tem-
perature regions between 101 and 109 K. Circles refer to
calorimetric measurements, triangles, to magnetic measure-
ments.

(c) No offsets in baseline are encountered at the various
first-order Verwey transitions: We find no experimental
evidence to support claims' that short-range order al-
ways persists well above the Verwey transition tempera-
ture in this regime. In group-I samples the sharp heat-
capacity spikes are superposed on top of small premoni-
tory and postmonitory shoulders extending several de-
grees above and below Tz. The interpretation of these
latter features is uncertain but their contribution to the
transition enthalpy AH& and entropy AS& is estimated to
be more than 1 order of magnitude below the correspond-
ing values obtained from the thermal arrest curves.

(d) In the first-order regime the spikes in the heat-
capacity anomalies were so sharp that they could not be
fully tracked by the relaxation technique. Their posi-
tions, as read off from the thermal arrest curves, are indi-
cated by dashed vertical lines in Fig. 1. In the second-
order regime, the largest portion of the specific-heat

anomaly extends over a 5 —30 K temperature range below
Tz, in principle, the anomaly occurs down to 0 K. The
excess heat-capacity curve extends as well over a 5 —15 K
range beyond T&, indicating that short-range ordering
persists beyond the transition. The resultant curve forms
a rather broadened A,-type trace, only roughly resembling
that generally encountered in mean-field theories of
second-order transitions. For the most cation-deficient
specimen, 5=0.0121, the AC versus T curve was nearly
bell shaped. In this particular case a single-phase speci-
men could not be obtained by the quenching techniques
described earlier. The areas under all AC curves in the
temperature range above Tv represent a sizable fraction
of the areas encountered in the range below Tv. Again,
the precise shape of the excess AC& curve such as in Fig.
4 depends greatly on how the base line is assumed to vary
with temperature.

(e) No additional heat-capacity anomalies were detect-
ed below Tz for any of the samples. This finding is in
agreement with earlier work in this laboratory' and
elsewhere' ' on Fe304, but stands in contrast to an
isolated report ' of the onset of such an anomaly near 10
K.

(f) The entropies of transition b,Si calculated either
from the thermal arrests of first-order samples by the
methodology of Ref. 9, or from integration J (b,C /T)dT
of the excess heat capacity AC in second-order speci-
mens, are assembled in Tables I—III.

Table I summarizes various measured and calculated
values pertaining to the Ver wey transition in near-
stoichiometric magnetite. The entropy of transition AS&
ranges from 5.63 to 6.08 J/(molFe304) K, with an aver-
age of 5.91+0.06 J/(molFe&04) K. This value does not
include a contribution of =0.25 J/mol K associated with
the premonitory and postmonitory effects that extend
several K below and above Tz. As will be shown later,
these findings are consistent with the modeling of the
Verwey transition by a first-order change in electronic
configuration, associated with an entropy difference

b,S, =R ln2=5. 763 J/mol Fe304K .

TABLE I. Experimental results on the Verwey transition for stoichiometric Fe304. Values listed are
the entropy of transition ( variance), average transition temperature, upper limit on the width of the
transition, hysteresis between heating and cooling transitions, and the total temperature difference that
the sample traversed during the measurement.

Sample AS (I/mol K)'

5.88(+0.05)
5.98(+0.05 )

5.98(+0.14)
5.96(+0.13 )

5.84(+0.07 )

5.83(+0.01 )

6.08(+0.03 )

6.00(+0.07 )

5.63(+0.09 )

Tv {K

121.3
120.8
120.7
120.5
120.7
120.5
121.1
120.9
120.9

Width (K)

0.37
0.49
0.4
0.5
0.35
0.35
0.5
0.5
0.5

Hysteresis (K)

0.5
0.5
0.26
0.26
0.25
0.25
0.18
0.18
0.18

AT (K)

1.83
2.22
2.00
2.00
1.00
1.00
2.00
2.00
1.50

Statistical error is shown. The experimental error is estimated to be below 5%%uo. The contribution
AS =0.25 I/mol K of Fe304 due to the premonitory and postmonitory effects is not included.
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TABLE II. Experimental results on the discontinuous Verwey transition. Values listed are the devi-
ation from stoichiometry 5, the entropy of transition AS& (+variance), the average transition tempera-
ture, the upper limit on the width of the transition, hysteresis between heating and cooling transitions,
and the total temperature di6'erence the sample traversed during the measurement.

—0.0002
—0.0002
—0.0002
—0.0002

0.0002
0.0002
0.0002
0.0002
0.0007
0.0007
0.0017
0.0017
0.0017
0.0017
0.0017
0.0035
0.0035

S (J/mol K)'

6.0(+0.1)
6.0(+0.1 )

5.8(+0.1)
5.6(+0.1)
5.9(+0.1)
5.8(+0.1)
5.8(+0.1)
5.8(+0. 1 }
5.6(+0.1)
5.6(+0.1)
5.3(+0.1)
5.3(+0.1)
5.2(+0. 1)
5.1(+0.1)
5.1(+0.1)
4.0(+1)
4.0{+1)

T, (K)

121.1(H)
120.9( C)
121.1(H)
120.9( C)
120.7(H)
120.4( C)
120.7(H)
120.4( C)
119.4{C}
119.7(H)
115.8(H)
114.9( C)
115.8(H)
115.8(H)
114.9(C)
110.7(H)
109.7( C)

Width (K)

0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3

Hysteresis (K)

0.2
0.2
0.2
0.2
0.3
0.3
0.3
0.3
0.3
0.3
0.9
0.9
0.9
0.9
0.9
1.0
1.0

AT (K)

2.00
2.00
1.83
1.50
2.00
2.00
1.00
1.00
1 ' 5

1.5
2.00
2.00
1.80
1.00
1.00
2.50
2.50

Statistical error is shown. The experimental error is estimated to be below 5'. The contribution
6=0.25 J/mol K of Fe304 due to the premonitory and postmonitory eFects is not included.

The difference between AS, and AS& is attributed to en-

tropy alterations in the lattice, notably those due to the
transition from the monoclinic to the cubic spinel phase.
One should also take note of the very small hysteresis
effects shown in Table I. The entropy differences quoted
here lie well below those reported by previous investiga-
tors and are half of the quantity 2R ln2/mol Fe30& which
had previously been thought to be correct. The present
AS, values appear to be more reliable because they were
determined directly from thermal arrest data, whereas
previously published entropies of transition were ob-
tained from areas under artifically broadened heat-
capacity plots. Actually, values close to hS~=R ln2 had
already been reported in Refs. 15 and 20, but the
significance of these findings was not followed up. The
variation of AS& with 5 and other data relating to the
Verwey transition for nonstoichiometric specimens un-
dergoing a first- or second-order transformation are col-
lected in Table II or III. For reasons already mentioned,

0.0049
0.0068
0.0096
0.0121

Tv {K)

97.5+0.5
95.0+0.5
89.0+0.5

81.5+0.5

S (J/mol K)'

1.73
1.63
1.78
1.08

'Experimental errors are governed by the uncertainties of where
the base line should be drawn and may thus be very large.

TABLE III. Experimental results on the continuous Verwey
transition for Fe3(& t;)04. Values listed are the deviation from
stoichiometry, 6, the transition temperature, and the entropy of
transition.

the entropy changes associated with the second-order
Verwey transitions in Table III represent lower limits and
are subject to considerable uncertainty. However, the
general trend of a decreasing value in Sz in the neighbor-
hood of Tz with increasing 6 in the range
0.004 & 5 & 0.012 is undoubtedly correct.

A variety of possible entropy changes at T~ are dis-
cussed in Appendix A, where we contrast models leading
to the observed value AS~ =R ln2 with those appropriate
to the larger limiting value of 2R 1n2. Basically, the
smaller ES& may be derived on the assumption that, in

Fe3O4 the Coulomb energy of repulsion between elec-
trons on octahedral sites is much larger than the band en-

ergy appropriate to itinerant behavior of the carriers. On
the other hand, when short-range order predominates, as
in group-II specimens, the Coulomb interactions are
largely screened out. One now predicts an entropy of
transitions of 2R ln2 extending over the range
0 & T & T~. We attempted to verify this prediction by es-
timating the quantity I ( b.C„ /T) d T. Unfortunately,
shifts in the base line by 5% (which is the experimental
error) yielded fluctuations of the order of R ln2; hence,
no conclusions could be drawn from an examination of
the experimental data. The theoretical predictions are
discussed further in Appendix 8, where the finding that
AS& =R ln2 for first-order samples is also rationalized.

The variation of the entropy of Fe3($ $)O4 over the en-
tire temperature range from 0 to 300 K calculated from
S ( T)=I ( C /T)d T as obtained by numerical integration
is shown in Fig. 8 for one sample from group I (5=0) and
for one from group II (5=0.0121), respectively. One
should note that, below 120 K, S&(T) (Stt(T), where the
subscripts here and later correspond to the two regimes.
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FIG. 8. Molar entropy of Fe3(l $)04 as a function of temper-
ature for magnetite with 6=0 and 0.0121.

The inequality shows that, at low temperatures, the lat-
tice of the more nonstoichiometric magnetite is
softer and subject to greater fluctuation effects. This ob-
servation is discussed further in Sec. IV. Above 120 K,
S„(T))S,(T); this fact is explained in Appendix B
where we show that the molar entropy change in samples
of type I is 8 ln2, whereas it is 28. ln2 for those of type
II.

IV. DISCUSSION

The above results are discussed under several headings.
(a) Experimentally, the first- and second-order regimes

were encountered for 6 values below 0.0035 and above
0.0049, respectively. The critical value 5, marking the
boundary between group-I and -II samples may be ration-
alized on the basis of the magnetite structure below Tz.
In the monoclinic unit cell, let n (I) and n ( V) be the
number of interstitial cations and cation vacancies, re-
spectively, and let

n(X)=n(Fe +)+n(Fe +)+n(V) .

Then

6= [n ( V) n(I)]/n—(X) .

The electroneutrality condition for nonstoichiometric
magnetite requires that

n ( V) —n (I)= [n(Fe +) 2n(Fe )]/g, —

whence,

5=[n(Fe +)—2n(Fe +)]/gn(X) .

Oxidation of one Fe to an Fe + ion changes the
difference

[n(Fe'+) 2n (Fe +)]—
by 3. The monoclinic unit cell of magnetite contains 32
formula units of Fe~04, so that n(X)=96. Substitution
of these values into the expression for 5 yields

8 kg= ks T—[ln(g, /go)+ln[(1 —it )/g]] (2)

that must be met by a model system characterized on the
basis of the above mean-field theory. A general analysis
shows that c, A,f (0, thus forc—ing a transition. Equation
(2) may be solved numerically for the long-range order
parameter

Transitions are either first order, second order, or nonex-
istent according as g, /go&1, g, /go 1, or g, /go(1;
thus, the various possibilities are encompassed within a
single phenomenological scheme. From the description
of the microscopic model the ad hoc parameters go and
g, are determined explicitly rather than remaining as ad-

6, =0.0039, which falls comfortably in the range of ex-
perimental observation. Thus, conditions for a first-order
phase change apparently can no longer be maintained
when, on the average, one of the 32 ferrous ions per unit
monoclinic cell is converted to the ferric state through
the incorporation of excess oxygen into the lattice.

(b) A consistent framework for interpretating the ex-
perimental observations in both the first- and second-
order regimes may be provided by the phenomenological
model of Stra, ssler and Kittel (SK) who generalized the
treatment of regular solution theory. The adaptation of
their approach to the Verwey transition was discussed in
detail by Aragon and Honig, ' and was further eluci-
dated in a recent publication by Honig and SpaIek in
which the SK model was derived as a limiting case of a
microscopic model including intracell Coulomb interac-
tion between electrons. The basic concepts need only be
brieAy summarized; the principal ingredients of the mi-
croscopic approach are briefly sketched out in Appen-
dix B. In the SK approach, one simulates the interaction
among electrons in magnetite by a quasi-two-level system
involving ground and excited states of energy 0 and E,
with degeneracy go and gi, respectively. The state of the
system at temperature T is characterized by an order pa-
rameter 1(, representing the fraction of constituents in the
excited state. One expands the internal energy E to quad-
ratic terms in g; i.e., E =N(EQ kg —/2), where N is the
total number of subunits and A, is an interaction energy
parameter. This is a standard expression for the electron
energy, containing both the single-particle (Eg) and in-
teraction (

—
—,'A, 1t ) energies, for a uniform system with

charge carrier density 1t. The quantity E is then com-
bined with the usual expression for the entropy of
N(1 —g) and NP subunits among the ground and excited
states with their respective degeneracies. One thereby ar-
rives at an expression of the free energy

F/N = (E —TS)IN
=Eg —(A, /2)g

—kii T [ging, +(1—g)ingo

—Ping —(1 —1/i)ln(1 —g)] .

Equilibrium is characterized by the constraint
"c)(FIN)/r)/=0 which leads to the condition
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AS' /kN=[S(g+) —S(g )]/kN

=(0+ 0—)»(gl /go) (0+»0+ 0—»0-)
+ [(1—$+ )ln(1 —g+ )

—(1—f )ln(1 —g )], (3)

where P+ or g are the values of g calculated via Eq. (2)
for temperatures just above or below the first-order phase
transition at Tv. The solid curve in Fig. 9 shows the
values of b,S~/R ln2 versus 5 determined from (3), while
the circles represent the corresponding experimental
data. One should note that b,SVAO for 5=5„which cor-
responds to the fact that, under the existing experimental
conditions, the discontinuity g+ /remain—s nonzero as
the critical value 5, is approached from below. The ex-
perimental trend is thus satisfactorily reproduced by the
mean-field theory.

(c) From g( T;s, A, g& /g0 , ) one may also determine, via
Eq. (1), the variation of heat capacity C =(BE/BT) and
entropy S due to changes in the order parameter with
temperature both below and above Tv. As anticipated,
these curves resemble the corresponding functions which
arise in the standard mean-field theory of discontinuous
and continuous transitions.

justable parameters.
The parametrization procedure for the determination

of s, A, , and g& /ga in terms of the stoichiometry parame-
ter 5 has been described in detail in Ref. 24; the scheme
invokes the Ti, versus 5 dependence of Fig. 7. Within the
microscopic model, the values g, /g0=2 or 1 required
for first- or second-order transitions are obtained au-
tomatically; the theory also reproduces the experimental
fact that the entropy of the Ver wey transition of
stoichiometric magnetite is given by ASv=R ln2; see
also, Appendix B.

Having obtained g(T;s, A, ,g& /g0) for each sample, one
can determine the entropy for each first-order transition
from the relation

It is difficult to attempt a direct comparison between
the calculated and experimental heat-capacity curves be-
cause the SK approach deals solely with the electron re-
population among shifting energy levels as a function of
T, whose e6'ect is especially marked near Tv. By con-
trast, the experimental results additionally include contri-
butions involving the lattice, and the magnetic degrees of
freedom. All of the above properties change significantly
near the Ver wey transition temperature. What is
noteworthy is that, below -5S K for group-I specimens
and -40 K for group-II specimens, the contribution to
C due to configurational changes as determined by the
SK theory is very small.

We next discuss the entropies which are much less sen-
sitive than C to temperature variations. Figure 10
shows the calculated configurational (SK) entropies Si or
S;, based on Eq. (1) as applied to Fe3~& s~04 with 5=0 or
0.012, respectively.

The calculated Si ( T) or S» ( T) values displayed in Fig.
10 approach 60% of the S,( T) or S»( T) curves shown in
Fig. 8, close to the respective Verwey transitions. To
gain a further perspective on the calculated
configurational entropy S;,(T) relative to the experimen-
tal entropy S = f (C~/T)dT, we show, in Fig. 11, a cal-

culation of S that can be directly compared with experi-
ment. This involves the determination of S»(T) by use
of the multiplier of T in Eq. (1) with g, =g0=1 and the
Debye lattice contribution to the entropy S„(T) in terms
of the Debye constant OD=511 K specified in Ref. 4.
The dashed curve in Fig. 11 represents S;&, the dot-
dashed curve is calculated as S»=PJ(C /T)dT. The
factor g was introduced because 1 —g represents that
portion of the electron (and lattice) subsystem which is in
a frozen configuration. Hence, only the fraction P of the
system contributes to thermal changes in the system.
The S,'i contribution to S&& reaches a maximum of 60%
at Tv=85 K. One may then ask why the pronounced
kink seen in the S, curve of Fig. 11 at 85 K does not re-
sult in an attenuated anomaly centered on 85 K in the ex-
perimental S&& curve shown in Fig. 8. Two principal
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FIG. 9. Entropy of first-order Verwey transition hS& vs Tv
for magnetite samples with 0~5&0.004. Circles represent ex-
perimental data, curve shows results of theoretical calculation
based on Eq. (3).
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FIG. 10. Calculated variation of S vs T due to electronic
configurational effects by use of the SK mean-field theory. S&

and S&& refer to group-I and group-II samples.
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FIG. 11. Calculation of entropy as a function of temperature.
Dotted curve represents 5» ( T) as determined by Eq. (1).
Dashed curve represents S»( T) calculated as described in the
text. Solid curve is the total calculated entropy.

reasons may be cited. First, as pointed out in Ref. 26, the
lattice itself relaxes significantly; the local deformations
around the localized electrons of the low-temperature
monoclinic phase are eliminated as T& is approached
from below. Numerical estimates based on a softening of
one of the lattice optic modes near T~ have shown that
there is a sudden small increase in the lattice entropy
which tends to round off and stretch the kink in S&,.
Second, and more important, one must recognize that the
mean-field SK calculations of S» are highly approximate
near Tz because they fail to deal with fIuctuations that
become prominent near the critical temperature of any
second-order phase transition. As Figs. 2 and 4 clearly
show, the experimental heat-capacity anomalies do not
terminate sharply at T~, as would be the case for the or-
dinary A,-type transition. Thus, Auctuations and/or
short-range-order effects induced by spatial disorder
when 5)6, smear out the mean-field discontinuities in
C to such an extent that 5» continues to vary smoothly
with T even near T~. These order-parameter fluctuations
are intrinsically absent in systems undergoing first-order
transitions; thus, the predictions of mean-field theory for
5 (6, are expected to provide a very good approximation
to the actual configurational entropy contributions. This
is the reason why the first-order theory and experiment
are in excellent accord, as is verified by Fig. 9 and by oth-
er comparisons between theory and experiment.

(d) The spin-wave excitations in Fe304 at very low tem-
peratures have also been investigated as a follow-up effort
on our recent study in the range 0.3—10 K; in the
present work the measurements were extended to 30 K.
Since these later studies are similar to the earlier ones,
they will be described only briefIky. The asymptotic low-
temperature form for the heat capacity is given by
Cp c4 T +BT, where the two terms deal, respective-
ly, with magnon and phonon excitations. Plots of
C /T versus T for the latter data were found to
yield two linear portions, with a break at 10 K, as shown
in Fig. 12. Similar findings were reported by Gmelin
et al. ' The significance of this efFect is not understood
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FIG. 12. Plot of Cp/T vs T for Fe3(& g)04 for samples
with di6'erent 6. Curve (a), 5 = —0.000 18; curve ( b),
5=0.0049; curve (c), 6=0.0096; curve (d), 5=0.0121.

but it appears to be related to an anomaly also detected in
this temperature range in studies of the magnetoelectric
effect. The slopes and intercepts of the curves in Fig.
12 in the 5 —10 K range agree reasonably well with those
reported earlier, whereas values read off from the data in
the 10—30 K range of Fig. 12 are significantly higher.
This is consistent with the general observation that the
Debye parameter OD is found to vary significantly with
temperature above 10 K. Hence, earlier literature values
for the Debye temperature and magnetic exchange con-
stants of Fe304, which were based on data in the higher-
temperature range, may be in need of revision.

V. SUMMARY AND CONCLUSIONS

On the basis of systematic heat-capacity studies involv-
ing Fe3($ $)04 with —0.0005 & 6 & 0.012, we have provid-.
ed further proof that the Verwey transition changes from
first to second or higher order as 5 is increased past the
critical value 5, =0.0039. Correspondingly, the entropy
of transition is given by AS& =A ln2 for 6=0 and dimin-
ishes with rising 6 (cf. Fig. 9). Also, the Verwey transi-
tion temperature Tz drops linearly with rising 5; there is
a discontinuity both in Ti and in its slope at 6=6, (cf.
Fig. 7). Differences in heat capacity for the first- and
second-order samples persist down to the cryogenic tem-
perature range. Finally, the magnon contribution to the
specific heat in the range below 10 K is found to differ
from that above 10 K.

The above observations are rationalized in terms of an
elementary model (Appendices A and B) in which the
Coulomb interaction between electrons placed on neigh-
boring octahedral sites is gradually screened out with in-
creasing departures from ideal stoichiometry. The micro-
scopic model is sketched out in the Appendices; it leads
directly to the Strassler-Kittel formalism [Eqs. (l)—(3)].
The latter has been used by us to describe and interpret
both the first- and the second-order transitions within one
consistent framework: in the neighborhood of the
Verwey transition, the electron population is shifted ei-
ther discontinuously or continuously among two levels.
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A more comprehensive theoretical analysis which also in-
cludes transport phenomena is to be presented elsewhere.
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APPENDIX A: ACCESSIBLE CONFIGURATIONS
AND ENTROPY OF ELECTRONS LOCATED

ON OCTAHEDRAL SITES

where n is the probability of encountering a typical site

TABLE IV. Possible occupation states of a single orbital oc-
tahedral pair of sites.

Random states configurations: All states

Tl
0$
Tl
Tl

Tl

0
0
T

T

Configurations in spin-ordered situation

Accessible states for strong intracell interactions

We simulate magnetite in a simple manner via a collec-
tion of 2N octahedral sites per mole of Fe304, where N is
Avogadro's number. (The formal decomposition into
pair-site subunits is discussed in Appendix B.) These
sites may be populated by cations in either the Fe + (d )

or the Fe + (d ) configuration. To take account of varia-
tions in energy which depend on the valence states of
nearest-neighbor cations, we consider pairs of adjacent
octahedral sites for stoichiometric Fe304 for which, on
the average, one ion is in the Fe + and the other ion, in
the Fe + configuration. We encounter 16 pair states
shown in the top section of Table IV. Here the spin
(o.=+1) configurations of the extra electron forming
Fe + from a Fe + "core" state are indicated by corre-
sponding arrows, while the Fe + spin-aligned 3d state is
regarded as a vacuum (0) state. We consider the high-
spin configuration S =

—,
' of the Fe + 3d "core" state as

frozen since T~ ((Tc =950 K, where Tz is the Curie
temperature.

The entropy connected with such a set of noninteract-
ing electron states for an ensemble of pairs is

S =2k~N g [n inn +(1 n)ln(—l n)j, — (Al)

with an extra electron (i.e., an Fe + ion) in the spin state
o.. For stoichiometric magnetite n =

—,', whence
S =4R ln2, corresponding to the random occupancy of
octahedral sites with equal probabilities, as shown in
Table II.

In actuality, such random occupancy is not possible be-
cause the sixth d electron on Fe + must have its spin
aligned antiparallel to the S =—', spin state of the five

remaining electrons. Moreover, below the Curie point,
these d spins are themselves aligned, thereby defining a
macroscopic magnetization M =5pz/Fe + ion. This
type of ferromagnetic ordering restricts the occupancies
to the much more limited set of four states shown in the
middle section of Table IV, and corresponds to setting
n& =

—,
' and n~ =0. The summation over o.=+1 in Eq.

(Al) must now be dropped; one then obtains the result

S =2R ln2/mol Fe30& .

This is the value anticipated for the second-order transi-
tion; however, it is still too large by a factor of 2 to ac-
count for the change AS v

=R ln2 at the first-order
Verwey transition.

So far the interactions between the extra electrons on
adjacent Fe + ions have been ignored. In our view this is
not plausible in a system characterized by long-range or-
der: Fe304 is a semiconductor at high temperature,
which indicates that the extra d electrons on Fe + that
are involved in the electric conduction remain almost lo-
calized (had a band been formed, it would have been
quarter filled). To keep the electrons from forming a
band, the Coulomb repulsion energy must always be
much larger than the single-particle energy. In such a
situation, the third of the configuration shown in the mid-
dle section of Table IV is no longer accessible; corre-
spondingly, the third and fourth configurations must now
be dropped. The remaining available configurations in
the limits of very strong Coulomb repulsions are shown
in the bottom section of Table IV. The conventional
Fermi-Dirac (FD) statistical distribution function is also
no longer applicable to this case. The appropriate distri-
bution which takes its place has been discussed in detail
by SpaJek and Wojcik and leads directly to the same ex-
pression as that for distribution of electrons in single-
electron donor states in semiconductors. With this al-
tered distribution function for the accessible
configurations specified in the bottom section of Table
IV, one obtains an entropy expression which replaces Eq.
(Al), from which one finds that S =R ln2/mol Fe304, in
conformity with the result obtained intuitively on com-
paring the number of available configurations in the bot-
tom section of Table IV with those of the middle section
of Table IV.

One should also note that, for nonstoichiometric mag-
netite, 36.2N additional Fe + ions have been generated
per mole of Fe3O4. Hence, the corresponding entropy
change for nonstoichiometric magnetite should be small-
er, as is, in fact, demonstrated by Fig. 9.

Thus, the expression for the change entropy connected
with the Verwey transition b Sz =R ln2 for
stoichiometric Fe3O4, is obtained on the assumption that,
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well below T~, all electrons are in a single frozen
configuration, and that above Tz they are in
configurations that avoid Fe +-Fe + and Fe +-Fe + pair
formation on adjacent octahedral sites. The present dis-
cussion is, of course, very much oversimplified since we
calculate the entropy in the atomic limit. A more realis-
tic treatment is provided in a recent article. Additional
information is supplied in Appendix B.

APPENDIX 8: SUMMARY
OF MICROSCOPIC ANALYSIS LEADING

TO THE STRASSLKR-KITTEL MODEL

We brieAy describe the theory developed by Honig and
Sparek from which the SK model may be derived. Con-
sider Fe + and Fe + ions on 2L octahedral sites in Fe304.
The Fe + core is regarded as the vacuum state, and the L
electrons forming Fe + out of the Fe + state are assumed
to determine the entire dynamics of the transition. Con-
sequently, we ignore the "core" Fe states and concen-
trate only on the L electrons distributed among octahe-
dral sites. To take account of interaction octahedral
sites, we group them into X =Zl. /2 pairs (bonds). In the
ground state with zero energy (T~O), one electron per
bond is frozen in an ordered state, consistent with a lat-
tice deformation, whose periodicity produces the mono-
clinic distortion. There then exists a state of intermediate
energy c where the electron resonates between the two
equivalent sites of the bond; this is the precursor to the
conduction process that occurs in the presence of an ap-
plied electric field. There further exists a state of higher
energy U corresponding to the case where two electrons
reside on two neighboring octahedral sites.

The four possible configurations are schematized in
Table V. Since Fe304 is a semiconductor both above and
below Tv, we infer that U greatly exceeds the electron-
transfer integral. We now show that the change of nature
of the Verwey transition versus 5 requires a strong reduc-
tion of U with growing 6.

The free energy of the bond assembly shown in Table V
is given by

F/X = [2ea, + ( U —2e)Pz]

kz T [(1—2a&+—/3z)ln(1 —2a&+/3z)

+2(a, —/3z)ln(a, —Pz)+PzlnPz], (81)

where a& ——P&+Pz is the probability that a given site con-
tains an electron in the resonant state, and where the P
are the occupation probabilities shown in Table V. The

first two terms in square brackets represent the energy;
the multiplier of T represents the electronic part of the
entropy.

Minimizing F/N with respect to /3z yields

(1—2a&+Pz)Pz/(a& —
/3z) =exp( —R /ks T) (82)

with R —= —( U —2e)+28'a& —( U' —2E')Pz,' primes denote
differentiation with respect to Pz. The optimized free en-
ergy then becomes

F/N =2Ea, +2e'Pz(a, +Pz) —U'Pz

+k~ T[(1—2a, )ln(1 —2a, +/3z)

+2a, ln(a, —Pz ) ] . (83)

To solve this equation one must specify the dependence
of e and U as a function of Pz. In what follows we consid-
er only the two limiting situations U~~ and U~O.
The general discussion of (83) is deferred to a separate
publication.

1. Case 2: U~ao (E.~ ~)

which is the starting relation for P within the Strassler-
Kittel formalism that was used to describe the discon-
tinuous Verwey transition in the linear approximation
c.(t/)=so —

—,'A, g. Equation (84) is equivalent to Eq. (1)
with g, =2, go= 1. The minimization of Eq. (84) with
respect to 1t produces a jump in the g value from —,

' to —,
'

at the transition. The corresponding entropy change is
R ln2 per mole of Fe304.

2. Case B: U~o (R ~0)
Here pz=a&', the appropriate order parameter is 1tj=—a&

2.

and the free energy per site is obtained from Eq. (83) as

F/2X =E(P)P+kz T[(1—g)ln(1 —g)+ging], (85)

which has been used as a starting point within the
Strassler-Kittel formalism to describe the second-order

In this situation Pz=O, a& =P&,' we also introduce an
order parameter /=2', . Then Eq. (83) reduces to the
special case

F/X =E(g)g+ks T[(1—g)ln(1 —g)+g in/ —g ln2],

(84)

TABLE V. Possible configurations of the Fe ion pair of octahedral sites in stoichiometric magnetite.

Designation

BA
BB

Representation

0

0

Energy

~BA =~
CBB=U

Probability

/3o

2

Ionic state

Fe ++Fe +

+ trapped electron
Fe3+-Fe2+

Fe2+-Fe3+
Fe2+-Fe2+
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Ver wey transition in the linear approximation
E(l()=so —

—,'Ap. Equation (B5) is equivalent to Eq. (l)
with go =g& =1. Thus, a rather simple, purely electronic,
model properly describes the two regimes of interest.
The minimization of F with respect to g leads to the solu-

tion g= —,
' for T above the continuous transition. There-

fore, the entropy change per pair of octahedral sites asso-
ciated with the transition is equal to 2 ln2, or equivalent-
ly, 2R ln2 per mole of Fe304. Details are provided in
Ref. 26 and are also to be published separately.
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