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The statistics of collisions of conduction electrons with magnon solitons in a ferromagnetic semi-
conductor with an easy axis of anisotropy is considered by taking into account the exchange interac-
tion of the Vonsovsky type. The relaxation time of such collisions is calculated in the framework of
the nonequilibrium-statistical-operator technique. Possible manifestations of the discussed mecha-
nism in scattering experiments are discussed.

I. INTRODUCTION

In recent years "quasi-one-dimensional" (QOD) mag-
nets have turned out to be suitable systems for theoretical
investigations of nonlinear modes, and it was also possi-
ble to relate these results to experiments and to computer
simulations. ' At low temperatures a large variety of
QOD nonlinear magnetic systems can be mapped onto
the well-known sine-Gordon model. ' ' For example, the
dynamics of .easy-plane ferromagnetic and antiferromag-
netic chains in an external field breaking the easy-plane
symmetry can be approximated by the sine-Gordon equa-
tion. Moreover, it has been shown, ' that QOD
compressible magnetic chains can lead to the existence of
solitons.

Of special interest to our work is the possibility of the
formation of solitonlike excitations in QOD ferromagnets
with "easy-axis" anisotropy (EAA). Such a possibility is
indicated under the assumption that the magnetic an-
isotropy energy is small compared to the exchange ener-
gy. A similar problem, but using a different approach,
has been examined recently by Aksenov and Zakula' and
involves magnetoelastic coupling. Our treatment is con-
sistent with the method given in Ref. 9.

It is well known" that the existence of localized spin
moments that couple to the conduction electrons has im-
portant consequences on the electrical conductivity of the
corresponding crystals. The magnetic ions act as scatter-
ing centers so that at su%ciently low temperatures the
scattering they cause will be the primary source of elec-
trical resistance.

For example, in magnetic alloys it has been known"
that instead of dropping monotonically, the electric resis-
tivity has a rather shallow minimum occurring at low
temperatures ( —10 K) that depends weakly on the con-
centration of dissolved magnetic ions.

Vonsovsky' appears to have been the first researcher
to recognize that an additional contribution to electrical
resistivity could occur in ferromagnets as a result of the
exchange interaction between conduction electrons and

the localized magnetic ions, often called the s dor s f-in--
teraction.

It seems that crystals with EAA can support the ex-
istence of solitons and that, on the other hand, possess
conducting features that may be found among magnetic
semiconductors (MS). In a very interesting book dedicat-
ed to MS, Nagaev' discussed the conducting properties
of several classes of MS. For instance, it follows from his
book that the EuO crystal possesses properties which al-
low it to be mapped approximately onto the EAA chain.
The EuO crystals attract a great deal of attention from
researchers in the field on account of the simplicity of
their crystallographic structure (cubic, of the NaC1 type)
and due to the absence of an orbital angular momentum
of the electrons in the partially filled f shells of the Eu +

ions. The ground state of those f shells is the 57&2 with
I.=0, S=—,'. It should be added that, according to Ref.
14, the magnetic dipole-dipole energy of ferromagnetical-
ly ordered spins in a cubic lattice is zero. Those are the
reasons for the crystallographic anisotropy of such crys-
tals to be relatively very small (the anisotropy field for
EuO is equal to 0.02 T while the effective exchange field
is of the order of 10 T) and for the crystals to be almost
ideal Heisenberg magnets. In accordance with Ref. 9 and
with our analysis, it may be inferred that EuO can be a
good candidate for the appearance of solitonlike bound
states of rnagnons. On the other hand, from Refs. 13 and
15, it follows that the conduction electron-magnon in-
teraction in MS can be quite adequately described by the
interaction of Vonsovsky type.

All the aforementioned arguments have led us to exam-
ine an appropriate microscopic model describing MS
from the point of view of collisions involving conduction
electrons and magnon solitons. By using the
nonequilibrium-statistical-operator technique (NSOT), '

we have derived equations describing the relaxation of
conduction electrons involving both the free magnon gas
and the ideal gas of magnetic solitons. Particular atten-
tion has been given to relations between the relaxation
time and the strength of an external magnetic field.
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II. THK HAMILTONIAN OF THK SYSTEM

For the description of MS we use the model first pro-
posed by Vonsovsky. ' In his model the electrons in lo-
calized magnetic d or f shells interact with one another
via the Heisenberg nearest-neighbor exchange mecha-
nism while an entirely distinct subsystem exists which is
composed of quasifree electrons in Bloch states of the
conduction band (s). Since in this model the localized d
and f electrons can be analyzed using a virtually identical
treatment, we shall use the symbol "I" (localized) for
both.

Let us construct the s-l model Hamiltonian due to
Vonsovsky:

H, =H, +Hl+H, ( . (2.1)

The first term on the right-hand side represents the
noninteracting conduction electrons described by the
operators ak, ak which destroy and create an electron
with the wave vector k and with an up ( 1 ) and down ( 1 )

spin projection (o =+—,
' ), respectively:

H, = HEI, ak al,
k, o

(2.2)

The normalized energy of electronic Bloch states, includ-
ing the Zeeman energy due to an external field and the
shift caused by the s-l interaction, can be written in the
form

fi k
Ek = +og, m~h —SS'kk5 g,

2m
(2.3)

H& = —g, m~h g S„'—Jo
4 g (S„+S„+) +S„S„+) )

where m ' is the effective mass of a conduction electron;

g, is the Lande factor; m~ is the Bohr magneton; h is an
external magnetic field directed along the z axis; S is the
spin of a single magnetic ion; 8'kk is the interaction ener-

gy of Vonsovsky type, which is on the order of
Wkk —10 eV.

The second term on the right-hand side of Eq. (2.1)
represents the interionic magnetic interaction which is of
direct or indirect exchange type, ' i.e., it is a function
solely dependent on the angle the atomic spins make with
each other:

conduction electrons and the spins of magnetic ions. In
the single-band approximation this can be expressed in
the direct space representation, as follows:

H, I
= — g W„(S„s) a„.a„

n, o, o'
(2.6)

III. THE BOUND STATE OF JV MAGNONS
AND A SOLITONLIKK SOLUTION

The formation of bound states of two, three, four, and
five magnons in a QOD ferromagnet with EAA was ex-
perimentally observed for the first time some 20 years
ago. ' ' A theoretical explanation of this effect is given
in Ref. 19. The basic discussion about the necessary con-
ditions for the formation of a magnon bound state in one-
and three-dimensional ferromagnets with EAA is given in
Ref. 9. The starting point in this discussion is the as-
sumption about smallness of anisotropy, i.e., the relative
magnitude of the energy (Jo —Jo) in comparison with the
exchange energy Jo. The main results obtained in Ref. 9
in terms of a classical approach will be reproduced in the
present paper using a quantum-mechanical method for-
mulated in the space of coherent states.

We start from Hamiltonian (2.4). The linear chain,
which models the magnetic system under consideration,
is taken to be along the z axis. In order to obtain cluster-
ized solitonlike bound states, we consider a chain with a
large number of chain sites (N ))1) separated by an equi-
librium distance Ro. Holstein-Primakoff (HP) represen-
tation allows us to go over from the spin operators to the
magnon annihilation and creation operators (B„,B„),as
follows:

where the exchange energy W, is of short-range type,
s are Pauli matrices, and (a„,a„) are Fourier trans-
forms of the operators introduced in Eq. (2.3). Note that
a constant part of this exchange energy is always includ-
ed in Eq. (2.3) as its third term.

Subsequently, one may take into account only the s
electron's interaction with the atom it occupies, since in
this case the exchange integral W(0) is dominant being of
zeroth order in the overlap of the Bloch function with the
wave function of the l shell. The s-l interaction infIuences
the optical, magnetic, and transport properties of MS and
rare-earth metals.

JZ

g S„'S„'+),
n

(2.4)
S'=S—BHBn

where the spin ladder operators are S„+—=S„+iS„and the
spin projection operator in the direction of the external
field is S„'. These spin operators satisfy the usual commu-
tation relations

S„+=(2S)'i 1 — B„B„B„,1 (3.1)

[S;+,S. ]=25,JS [S,Si+]=+5;iS;—. (2.5)

The energy parameters introduced above are the
exchange interaction constant Jo=+„J(n—n') and
the anisotropic exchange interaction constant
Jo=+„Jo(n —n'). The last term on the right-hand side
of Eq. (2.1) describes the exchange coupling between the

S =(2S)' Bt 1 — B tB
n n 4S n n

After performing the transformations (3.1) and discard-
ing small terms (in orders higher than the fourth), the
model Hamiltonian (2.4) becomes
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M(=EO+5+B„B„—JOS QB„(8„+,+8„,)
—Jo g B„B„,B„,B„

+ g I I(B„) +(8„,) ]8„8„
4.

&~ &
= &p...(t)l~, lp...(t) &

= &e, lp, (t)l' —& '(J; —J, )

x g p,"+, (t)p,*+, (t)p, (t)p, (t) .
q, ql, q2

(3.9)

+8„,8„(8„,+8„)],
where the new energy parameters are

Eo = NS Jo g In~ hNS

A=g, p~h+2SJO .

(3.2)

(3.3)

The amplitude p (t) is usually treated as a generalized
coordinate with the corresponding generalized momen-
tum imp~(t). The equation of motion for our generalized
dynamical variable is taken to be a classical Hamiltonian
equation in which the expectation value of the quantum
Hamiltonian (3.9) appears as the Hamilton function

For the sake of simplicity we can now use the normal
mode expansion of magnon excitations,

imp, (t ) =a&a & yap,*(t) .

B„=X ' QB exp(iqRon) .
q

(3.4)
Henceforth, overdots will be used throughout this paper
to denote difterentiation with respect to time. Hence, we
can set up the relationships between coherent amplitudes:

When the number of spin deviations is not large, the
Hamiltonian of the magnon gas in the k representation is
given by the approximate expression

H( = g eqBqBq

imp (t)=up(. t)

'(J; —J, ) g P,*,(t)P, , (t)P, (t) .

ql, q2

(3.10)

Now performing the inverse Fourier transform,

q~ql~q2

(3.5) P(z, t ) =X '~ g P (t)exp(iqz), z =nRO
q

(3.1 1)

where the insignificant constant term 6 has been omitted.
The energy of a one-magnon state c. is defined in terms
of the corresponding dispersion relation

e =g, msh+2SJo —2JOScos(qRO) .

The second term on the right-hand side of Eq. (3.5)
represents the magnon-magnon interaction, which is of
exchange character. But in the long-wave limit
(qR o ~0), the magnon-magnon interaction remains
nonzero only as a result of a nonzero spin-wave collision
amplitude. Under these circumstances small attractive
forces between the magnons begin to appear.

In order to define the properties of the solitonlike
clusterized bound state of JV magnons, we consider the
product wave function of Glauber's coherent states,

and going over to the continuum approximation
cos(qRO ) = 1 —

—,'q R 0, which leads to

=g, mph+2S(JO —Jo) JOSq Ro,—
a2

, p(z, t},
az2g pq(t)q exp(iqz )=-

q

p* (t)p (t)p (t)exp(iqz )

(3.12)

=
~ p(z, t ) ~

'p(z, t ),
we finally obtain the well-known Schrodinger equation
with cubic nonlinearity (NLSE)

ihip(z, t) = [g,m~h+2S(JO —Jo)]p(z, t )

C)2—JoSR o 2 P(z, t )
Z

(3.7)
—2(JO —Jo)ip(z, t)i p(z, t) . (3.13)

The product state ~P„~(t) ) may be defined by the proper-
ty that the equality

B, IP, &=P, (t)IP, & (3.8)

is valid for all of B .
The expectation value of the Hamiltonian (3.5) in the

state (3.7) is therefore a scalar function & H )(p~(t), p~(t) }
of all amplitudes p (t) and their complex conjugates

According to Ref. 9, if the condition of small anisotro-
py energy is fulfilled and if the chain supports a popula-
tion of a large number of magnons, the possibility of clus-
terization of magnons into a stable bound state appears
to be significant. Assuming that a fixed number of
magnons JV is involved in clusterization, we solved the
NLSE including the normalization condition

I"
~ p(z, t ) ~

dz =JV. Moreover, the solution of the
NLSE is required to be in the traveling-wave form. The
corresponding envelope of the clusterized "magnon
drop" moves along the chain with velocity v in the form
of a bell-shaped soliton:
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/3(z, t)=
2

exp[i[k, (z —z0) rv—, t]
cosh[(p/RD)(z —z0 —vt )]

(3.14)
wave vector q involved in a solitonlike cluster can be
determined as follows:

The corresponding parameters are explicitly given as fol-
lows: zo is the coordinate of the center of the cluster, the
solitonic quasi-wave number k, is given by

=S;= ip, (t) i'

or explicitly

(3.23)

AU

2JoSR
(3.15)

~RoX' =A' sech (k, —
q )

2p 2p
(3.24)

the inverse solitonic width p=L ' is defined as

J() —Jo
2SJ,

(3.16)

This expression will be of basic importance to the appli-
cation of NSOT in Sec. V.

It is interesting to see the consequences that follow
from the application of the HP representation (3.1) and
the inclusion of the constraint

The application of continuum approximation requires
that the solitonic width be significantly greater than unity
(L ) 1) which imposes the inequality

1 &Ã«2SJ, (J;—J, ) (3.17)

This is in agreement with the condition for smallness of
anisotropy. It can be found that the energy of a soliton-
like cluster has the approximate value of

E„,( v) =A'co, =ED+ —,'M*v (3.18)

where the static energy of the cluster is expressed by

(J' —JD) A'
Z, =~M 1—

12JoSco
and ea=e (q=0) .

(3.19)

g2

2JoSR o

(3.20)

The Fourier component of the solitonlike solution (3.14)
is calculated as

f3 (t)= I dz/3(z, t)exp( iqz) . — (3.21)

This provides a clear physical insight. First, the only
quantity that depends on the magnitude of the external
magnetic field h is the carrier wave frequency m, . This,
of course, aff'ects the soliton energy as given in Eqs. (3.18)
and (3.19). This is very much in agreement with the re-
sults obtained by Ivanov and Kosevich. Second, the
magnitude of the negative binding potential energy of
magnons increases with an increasing number of mag-
nons. This, of course, is limited by the conditions (3.17).
The eff'ective mass of the cluster is simply the sum of the
effective masses of the participating magnons,

1 & JV«2SJD(JD —JD) (3.25)

It is well known that the HP transformation to boson
operators satisfies all the basic spin commutation rela-
tions, but it becomes incorrect whenever (B„B„)exceeds
2S. This simply follows from the appearance of the
square root in the exact transformation relations. How-
ever, in the case of the EuO crystal the value of spin is
S=—,'so that for A'& 7 the application of the HP expan-
sion is justified. Moreover, it has been shown' that, by
using the Dyson-Maleev ' transformation, Hamiltonian
(2 4) gives the equivalent form (3.5) including attractive
magnon-magnon interactions. We wish to stress here
that the quantum treatment of a very closely related
easy-axis Hamiltonian has been earlier given by Bonfim
and De Moura. Furthermore, a very comprehensive
survey dedicated to the applicability of the Heisenberg
model to the theory of solitons has been written by
Schneider and Stoll.

Finally, a few words about the possibility of an experi-
mental generation of high magnon populations. In 1960
Schlomann et al. predicated the phenomenon of "paral-
lel pumping, " i.e., the parametric excitation of magnons
by an alternating magnetic field with its polarization
parallel to the direction of magnetization. At the present
time, parallel excitation is one of the main methods of
generating magnons in ferromagnets. A recent survey of
investigations dedicated to the emergence of solitons in
parametrically excited magnons systems has been given
by L'vov. The other possibility of magnon creation is
the coherent amplification of magnons by a beam of
charged particles. When a charged particle moves
through a ferromagnet with a sufficiently high velocity
(conduction electrons), it excites both intrinsic elec-
tromagnetic waves and spin waves (magnons).

p, (t)=
rr exp[i [(k,v —kv —co, )t —qz0]I

2p ~Ro
cosh — (k, —

q )
2 p

(3.22)

According to Ref. 20, the density of magnons with the

After performing the corresponding integration, we
readily obtain

IV. THE RELAXATION RATE OF CONDUCTION
ELECTRONS DUE TO THE SCATTERING
PROCESSES BETWEEN CONDUCTION

ELECTRONS AND SOLITONS

As is well known, MS display much stronger anomalies
in the temperature dependence of the conductivity than
ferromagnetic metals. In particular, for most of them the
specific resistivity exhibits a sharp peak at a temperature
of the order of the Curie point T, . In the presence of a
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sufficiently large external magnetic field, the peak disap-
pears, indicating an exceptionally strong negative magne-
toresistance. All these anomalies are due to the strong
coupling between mobile electrons (i.e., conduction and
donor electrons) and localized magnetic moments of
atoms, which is caused by the exchange interaction (2.6)
between them. The electron levels in the band shift up-
wards with a diminishing degree of the ferromagnetic or-
der, and vice versa. On the other hand, the degree of the
local magnetic ordering depends on the local electron
density since mobile electrons support the ferromagnetic
ordering. An analysis carried out by Nagaev shows
that at low temperatures the charge carriers are in states
of the spin-polaron type, i.e., with an electron spin every-
where directed along the local magnetic moment.

In oxygen-deficient samples of EuO there occurs a
metal-semiconductor transition for which the high-
temperature phase is nonmetallic. ' This transition
takes place far below the Curie temperature T, =69.3 K
and is called the Mott transition. Our treatment here is
confined to the metallic side of the transition. In the next
stage we intend to consider the nonmetallic region where
the concentration of carriers depends in a very complicat-
ed manner on temperature and the magnetic field.

The relaxation processes involving conduction elec-
trons in MS will be considered here in the framework of
the NSOT. In the case where the thermodynamic system
is under the inAuence of external fields, Kubo's method
takes precedence, while in the case where the separation
of mechanical and thermal perturbation is complicated,
the NSOT is more convenient.

Let us begin by separating our system described by the
Hamiltonian of Vonsovsky type, Eq. (2.1), into two in-

teracting subsystems'

The basic assumption is that in a nonequilibrium state,
where the magnon population is generated by an external
field, the subsystems are at slightly different tempera-
tures:

p ]=(k ]]T ]) 'WI32=(kt]T~) (4. lb)

From Akhiezer et aI., in magnon systems for which the
condition

4/7
0

Oc PB
c

T+ 8c& Sc ~B Tc (4. 1c)

is fulfilled, where M0 is the maximum magnetization per
ion, the exchange magnon-magnon scattering is stronger
than the magnon-phonon and the magnon-conduction
electron interactions. Thus, the spin temperature may
differ from both the temperature of the crystal lattice and
that of the gas of conduction electrons. The correspond-
ing magnetic moment also differs from the equilibrium
magnetic moment of the crystal. Equalization of the spin
and conduction electron temperatures may take place due
to interactions capable of modifying the magnetic mo-
ment of the system, i.e., the magnetic dipole and the
spin-orbit interactions. For the temperature region (4. 1c)
and for the EuO crystal where the orbital quantum num-
ber is L =0, the dipole-dipole interaction is negligible
compared to the exchange interaction. Therefore, the re-
laxation of the magnetic moment and equalization of the
magnon and conduction electron temperatures occurs
slowly in comparison with the process of establishing the
quasi-equilibrium Bose distribution for rnagnons with a
given value of the magnetic moment. Then, the energy
current between the two subsystems is defined by

H, =H)+H2,
where

a, =a„a2=a,+0, ,

(4.1)

(4. la)

(4.2)

The s-l exchange interaction Hamiltonian (2.6) can be
transformed into q space so that it explicitly becomes

1/2
25

W] ] 5(k2 —k]+q)(a] ta], ]B +a] ga] tB )

k), k2, q

+(2+) g WQ Q 5(k2 k] +qp q] )(+Q Jag t+~A; ]~/& t)B
17 2'

ql, q~

(4.3)

On the basis of Eq. (4.3) the energy current (4.2) has the explicit form

H](t)=—
1/2

1 2S
ih W&& (E]

& E& ], )5(q —k+k')—(B~a],]a],, & a], , ] a], &Bq )—
k, k', q

+ . —g W],],.( —1) +' (E], E], )5(q q' k+—k')B B .a],—a], —
EA

(4.4)
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%e now formulate the density matrix of NSOT as fol-
lows:

p =Z 'exp( P—,H, f3—2Hi+ 5M ), (4.5)

where Z is the statistical sum, while the small perturbing
term which is responsible for the interaction between sub-
systems is

5M =(p2 p, )—f e"H, (t)dt, e «1 . (4.6)

7'k. =~1«k. )1»—
)', =&2(e, —I 2) .

(4.7a)

Here c is a small parameter including the time adiabati-
cally. The standard procedure ' gives

1p= 1+f dr[exp( Mr—)5M exp(Mr)] p, , (4.7)

where M is proportional to the diagonal part of Hamil-
tonian (2.1) including thermodynamical forces,

M= gyqBqBq+ gyk ak ak~
q ko.

7 is a dimensionless parameter and p, is the Fermi level
of the conduction band, while p2 is the chemical potential
of the magnon subsystem. Finally, the equilibrium sta-
tistical operator (ESO) has the usual form

p
—e M/(Tre M) (4.7b)

The next step is to And the mean value of the energy
current (4.4) taking the average with respect to NSO
(4.7):

(H, ) =Tr(pH, ) =(p, —p, )L12, (4.g)

where I.,2 represents the kinetic coe%cient of the pro-
cess,

L12= f dt e 'f dr(H, (0)e 'H, (t)e '), . (4 9)

Here we took into account that the mean value of the en-
ergy current in equilibrium is zero because
Tr[p, H, (t)]=0. The process of averaging with respect
to ESO is denoted by ( ),. On the basis of Eqs. (4.4),
(4.7a), and (4.8), the expression (4.9) may be transformed
after integration with respect to ~ into the form

'q F ~ t l
— 'q

k, k', q

(4.10)

where we have introduced the following set of symbols:
t 1/2

Wkk ( Ek 1 Ek.)5(q +—k —k )

+kk'q x
~kk'q ~1(Ek1 k'L P1) ~2( q P'2)

kk'q ak f+k'$~q

(4.11)

In the next step we take into account the standard rela-
tions

2S
L,2= g 2qr5(s Ekt+Ek —1)

k, k'

2 2

X
~kk'q

X [(1+% )nkt(1 nk g)—
—nk tXq(1 nkt)]—(4.14)

e q(Fkk H1(t) ) (H1(t)Fkk q )

e
"' (F . kHkq, (t) ), = (H, (t)Fkk. q ), ,

(4.12)
where the statistical mean values are

nk =(e ' " +1)PE (4.15a)

so that we can use a boson retarded Green's function as
follows: X =(e ' —1)

P2c.
(4.15b)

L,2= f dte '
for Fermi conducting electrons and for Bose magnons, re-
spectively.

1
X g C„„.q

k, k', q

V. THE SQLITQMC CASE

X [ «Fi, /,
, (0)IHI(t) »

+ «Fkk, q(0 (4.13)

Now, substituting Eq. (4.4) into (4.13), we turn to decou-
pling the corresponding correlators and after integration
with respect to time, the kinetic coefticient is found as

If the magnon population taken together with the con-
dition of small EAA enables the appearance of cluster-
ized solitonlike bound states, the density of free magnons
X given by Eq. (4.15b) can be replaced by the density of
bound magnons involved in the magnon cluster %' given

by Eq. (3.24). Bearing in mind the prevailing conditions
and taking into account the weak dependence of 8'kk. on
quasimomentum ( Wkk. = W-10 ' J) using Eq. (4.14),
we obtain the formula for the kinetic coefFicient
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2n SW J(/
'

12
p

2

6(Ek „E—k&+Ek. &)x g
/& /&' /&, /&', /&

—/&'

t

(nk& nk—1)
X

cosh [(rrRO/2p)(k, —k+k')]

R0 ~&&o

2ir f—~/Ro
(5.2)

(5.1)
In order to estimate the contribution of the solitonic
mechanism to the kinetic coefficient, it is most convenient
to replace the function in the denominator by its max-
imum value given by the relation k —k'=k, . Under
these circumstances the summation can be replaced by
integration as follows:

L SO1
12

2M*P2 f M v
dv I. ', 2'exP —

/32 . (5.4)
0 2

On the basis of Eqs. (5.3), (5.4), and (5.3c), we obtain the
kinetic coefficient's dependence on an external magnetic
field and temperature in the form

I.",,' = —g (P„gT)[B(P2)+Ch ]

should keep in mind that solitons show up in neutron
scattering experiments as a gas of noninteracting quasi-
particles moving along the ferromagnetic chain with ve-
locities v. Therefore, here we can apply the framework of
classical statistical mechanics concluding that at
sufficiently low temperature the concept of an "ideal" gas
of solitons (IGS) is still valid. Subsequently, we can ap-
ply the procedure of averaging the kinetic coefficient over
all allowed velocities of IGS by using the Maxwell distri-
bution as follows:

I SO1
12

~'SW'R ~, A0 k,

p)ri2 r k 27rp (

vr A /31
erf

8R m0

Due to the fact that MS show metallic properties in the
temperature range of 0 to a few tens of kelvins, it is

reasonable to deal with the low-temperature regime
where the inequalities Ektp())1 and Ek k. &/3(&&1 are
fulfilled. In such a regime, and performing the required
integration, Eq. (5.1) becomes

X [ exp( ,' g, m—z h—P()

—exp[/3((2SW+ 2 g, mz h ) ]],
where the following symbols have been introduced:

vr SWROJVk T'm *M*P—2(/3„b, T)=-
Pi /2p)/(. T vr /3(

rr'fi P,
X erf

Sm *R

(5.5)

(5.6a)

—(1/2)g, m& hP& P)(2S(V+(1/2)g m& h )

—haik P/2m
Xe (5.3)

g4 2

B( 2)= —SW,
8J()S R ()m *M*)(32

(5.6b)

where

rk, / 1(Ek, P1 /2(Ek, P2) (5.3a)

Now, we can numerically estimate the value of the pa-
rameter I k (p), p2, h ). Bearing in mind that Jo —10 '9 J

S

and (Jo —J() )Jo ' ((1 and that the term

rk (P„P2,h ) =//u2 /3, / (— (5.3b)

is valid on the basis of typical values of chemical poten-
tials p1-p2-10 J. If we assume that the tempera-
tures of the two subsystems differ slightly so that one can
write T2=T, +AT, where AT((T1, we may transform
Eq. (5.3b) into the form

P1AT
/32P2 )-l)P1=

B 1

(5.3c)

The latter expression for the kinetic coefficient (5.3)
shows that the scattering process depends rather
significantly on the solitonic velocity through the quasi-
wave number k, [see Eq. (3.15)]. So far we have exam-
ined solitonlike clusters as magnon bound states. We

2m * 4J()S R m *

has the value of the order 10 J, we see that for all
values of the field h ( 100T the approximation

C = 2g~mB (5.6c)

Let us consider the two limiting cases: first, without the
external magnetic field and, second, in the presence of a
strong field, respectively. This yields

(L 12 )h =0 A (1(11 /12)B (p2)exp(2SWp) ) (5.7a)

(~ 12 )h ) 1T ~ (/ l~/2)l B(/2)+ Ch ]

X exp [/3) (2SW+ —,
' g, mR h ) ] . (5.7b)

The main relaxation time for collisions of conducting
electrons with IGS is defined by the simple equality

(H', )'r=
L SO1

12

(5.8)

Ak+ g —2SW —g, m(i) h nk1, (5.9)
k 2m

then using the expression (4.15a) for the electron's popu-
lation and replacing the summation by integration, one
gets

Obviously, it is now necessary to find a statistical mean
value of the square of the energy of the electron's subsys-
tem. Keeping only linear terms with respect to the con-
duction electron population (nk ) gives

T

Ak(H) ) =- g + ,'g, mRh nkt-
2m
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(H, ) =[f~(p, )+ —,'f2(p, )g, mph+ 'f—3(/3, )g, m~h ]e

+ [f,(P, )+—,
' f~(P, )(2SW+ —,'g, m~h )+f3(P, )(2SW+ 2g,—mph ) ]e '

where the new set of symbols is used as follows:
1/2

)( ))= &o 2m*
8&7r P' P h'

1/2

~( ))= &o 2m*
4&~ P, P,h'

1/2
1 2m*

8& ' pe'
We again focus our attention on the two limiting cases: h =0 and h ) 1T, so that we have, respectively,

(H', )„=f,(/3, )+[f (P, )SW+f (P, )4S W ]e'"
and

(5.10)

(5.11a)

(5.11b)

(5.11c)

(5.12a)

(H ~ ) h & ~z. = [f~(P~ )+ —,
' fq(P~ )(2SW+ ,'g, m—zh )+f3(P, )(2SW+ —,'g, m&h ) ]e

Finally, the relaxation times of the solitonic mechanism for these two limiting cases are

f, (P, )+ [f~(P, )SW+f3(P, )4S W ]exp(2SWPi )

A(/3~, b, T)B(P )2e px( 2SWP&)

(5.12b)

(5.13a)

For the actual data,

2SR'=7X10 ' J

and for 1 K( T (20 K so that p&
' —10 J, the ex-

ponential terms are dominant and the expression (5.13a)
becomes

the following set of parameters: R o
—10 ' m,

Pl~10 kg T) T2 10 K AT 1 K S= ~~8'- 10 ' J M* —10 kg, Jo —10 ' J, JV-5,
p, -p2-10 ' J, and p-10 . On the basis of the
definitions (5.6) and (5.11), the most important constants
become

f~(/3, )SW+4S W f3(p, )

A(P, , AT)B(P~)
(5.13b) 2X 10

—12 J g 2X 1p
—23 J C 2X 10

—23

On the other hand, for large values of the external mag-
netic field the relaxation time has the value f —10 J f —3X10 J f —1.2X10

(5.14d)

a(/3, )+b(P, )h+c(/3, )h

m(/3„P2, b T)+n(P, , B T)h

where we have used the symbols

a(p, )
=f, (/3i)+SWf2(p, )+4S W f3(/3, ),

b(p& ) = —,'g, m&f2(p&)+2SWg, m&f3(p]),

c(P, )= ,'g,'m~ f, (P, ), —

m (P, , P~, b T) = A (P, , b T)B(P~),

n(P, , b, T)= A(/3, 6T)C .

(5.14a)

(5.14b)

From Eqs. (5.13b) and (5.14d) we approximately obtain

(r)h" o
—1.5 X 10 s

and for h )0, using Eqs. (5.14) and (5.14d), we have

(
—)sol 6+3h +h

10 8

4(1+h )

(5.15)

(5.16)

(R"' —1 10 s (5.17)

which yields that for h =0.7T the minimum relaxation
time has the value

Thus, the relaxation time shows a shallow minimum for

1 na —mbho=—
2 mc

(5.14c)

and becomes a linear function of h for extremely high
values of the magnetic field. If we wish to make a semi-
quantitative estimation of the relaxation time, we can use

We now recall that the experimental evidence for the
existence of solitons in magnetic systems is often based on
neutron scattering experiments. On the other hand, for
TMMC, which is a typical QOD ferromagnet with easy-
plane anisotropy, the solitonic relaxation rate in the pres-
ence of magnetic impurities has been investigated experi-
mentally. Increasing the magnetic field, the ratio
(t )'"/h has been found to be first sharply reduced down
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to a certain minimum value„and then it grows to infinity.
The aforementioned theoretical attempt' which provid-
ed a description of such a relaxation phenomenon has
been compared to experimental results ' in spite of the
fact that' it treats the QOD ferromagnets with easy-axis
anisotropy. We, therefore, expect that our treatment
when applied to some more appropriate materials as MS
wi11 provide a more accurate representation of these real
physical systems.

where

Q(pi, p2) =Pi(4 —vi) —P~(k —v2) =—A 2
—pi/ i

because g =2S (Jo
—Jo ) « p/.

In the next step the (low-temperature regime) we ob-
tain

SW'R'm* '"
Pi 2m i/i Q(P„P~)

VI. THE MAGNON CONTRIBUTION

Neutron scattering results for a typical ferromagnetic
chain CsNiF3 in a magnetic field are currently interpreted
in terms of the IGS model. However, a recent experi-
ment as well as numerical calculations indicate that
there are deviations within such a simple model, namely,
more rigorous treatments take into account the presence
of free rnagnons as well as collisions between magnons
and solitons. Keeping this fact in mind, we now estimate
the relaxation of conduction electrons due to the presence
of the "ideal gas" of magnons (IGM) without taking into
account magnon-soliton collisions.

Substituting the distribution functions (4.15b) into
(4.14) and linearizing with respect to p, —p2, it is clear
that we have

xe"'(1+. "') .

If there is a large external field, we find

p2 SW Rom*E (h)
(L mag

)
Pi 2m. A' Q(P„P~)

X I [p(h )+g][p(h)+p, +2SW]]
—p(h )f31Xe

where p (h) = ,'g, mi/h—and

E( h ) =g, m//h +2S(Jo
—Jo ),

or in a more compact form

(L )~' )/, ),T=A(P/, P~, h )exp[ p(h)P, ]—,
where

(6.5)

(6.6)

(6.7)

X g
~k, k', k —k'

2775(E/, /,
. E„t+E/, ,

$
)—

X(1+Nk k, )nkvd(1 /Tk, i) . — (6.1)

P2 SW R m*s (h)
0( „2h)= 1—

Pi 2' ir/ Q(p, ,p~)

X Ip(h)[p(h)+/M, +2SW] I (6.8)

Now, it must be noted that for the restriction pi
' « ///,

&

to be satisfied, the Fermi function nk k &
must be very

small for Ek.
&

significantly in excess of p, and the com-
plementary function (1 nk &) m—ust be very small except
in the neighborhood of Ek.

&
=p&. Consequently, it can be

replaced as follows:

(rm. s)/ ) i T
= f, (p, )+—,

' f2(p, )r(h)+ f3(p, )r (h)

Q(Pi, Pq, h )

Pl[r(h)+p(h)]Xe ' (6.9)

Finally, using Eqs. (5.12b) and (6.7), the IGM contribu-
tion to the re1axation time is found as

nk i(1 n/, i)=P,—'o(Ek i
—p, ),

so that we now have

2SW'
12 g p

2
Ro

x J' Jdkdk
~k, k', k —k'

X5(E/, k, Ekt+E/, ,i)—
X 5(E/, .i

—p, )(1+Nk k, ) .

n g' —)M

X(1+N~)
np

If there is no field (h =0) integration gives

P SWR m'

Pi 2m. fi Q(p„p2)

(6.2)

(6.3)

(6.4)

where r(h) =2SW+ —,'g, m//h.

VII. CONCI. USIONS

In this paper the conditions for the formation of soli-
tonlike magnon clusters in QOD ferromagnets with EAA
have been investigated in detail. According to the long-
wavelength approximation used here, the inverse width
of solitonic localization satisfies the inequality p ((1. In
this case, from Eq. (3.17) and from the demand for a large
number of bound magnons, it immediately follows that

SJo1(JV«
Jo —Jo

(7.1)

which is a necessary condition for the formation of a soli-
tonlike clusterized bound state of JV' magnons. From our
point of view the best candidates to exhibit such non-
linear phenomena are some of the rare-earth compounds.
Moreover, those compounds possess the properties of MS
so that they can be successfully described using
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Pl
P

e nF
(7.3)

predominantly affected by the conduction-electron —IGS
collisions. Here, e is the charge of an electron and n is
the concentration of free electrons in the conduction
band.

Vonsovsky's model. In this sense the main aim of our pa-
per has been the statistical treatment of relaxation pro-
cesses of conduction electrons involving both IGS and
IGM in MS compounds. The present calculations are
given in the framework of NSOT and the relaxation times
are found as functions of external field.

The solitonic mechanism of relaxation shows great
selectivity —namely, the conduction electron spin's in-
version processes play a crucial role in the energy ex-
change. The maximum value of the energy exchange is
achieved under the condition k —k'=k, . In the case of
typical ferromagnets one has

E
k~(k —k') = —,'10' s ', (7.2)m*

where kF is the wave number corresponding to the Fermi
level p, . Using the formula (3.15) and inserting the set of
physical data, m* —10 kg, p&

—1 eV, Ro —10 ' m,
Jo —10 J, S-—,

' and X-10, the solitonic velocity
which plays the dominant role in the relaxation process is
estimated to be v —100 m/s.

The present theoretical approach is analogous to that
of Ref. 10, but here the mechanism of collisions is due to
the Vonsovsky interaction which, to some extent, gives a
different physical picture. An analysis of the relation
(5.14) readily shows that the solitonic relaxation time has
one shallow minimum for h )0 while for high values of h

it becomes a linear function. We may explain this change
in the character of the h dependence as a result of the
fact that the Zeeman energy of the external field g, mph
becomes comparable to the energy of the conduction-
electron —magnon interaction S8'.

On the other hand, it is evident from Eq. (6.9) that the
relaxation time corresponding to the process of
conduction-electron —IGM collisions increases exponen-
tially with the external field. For sufficiently high values
of the field the relaxation time becomes much greater
than the relaxation time describing the conduction-
electron —IGS collision. Consequently, the resistivity p of
the MS subjected to a strong magnetic field is, according
to the definition

r (ia 'S)

1 rrr
rrr

rr

rr
0 r I

0
I

h(Y)

FIG. 1. The field dependence of the relaxation time corre-
sponding to the conduction electron IGS at T& =10 K and
hT-1 K.
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A comparison of Fig. 1 with experimental data can be
used as a test for the possible existence of solitons in MS.
Our estimates are given for temperatures in the region of
about 10 K which is in accordance with the experimental
region of the unusual behavior of conductivity for MS.

We believe that the method presented can be of espe-
cially great importance since substantial diSculties of
neutronographic studies for MS stem from their high
neutron absorption. ' We expect that very valuable in-
formation can be extracted from the measurements of
electric conductivity at low temperatures as a function of
the external magnetic field. The method of parametric
resonance can be used as a way of generating coherent
magnons leading to soliton formation when it is aided by
an alternating magnetic field at radio frequencies. In a
real crystal the electrical resistance is caused by scatter-
ing of conduction electrons by phonons, magnons, and
solitons. So, simultaneous inAuences of all these mecha-
nisms have to be included in order to provide a complete
description of the resistivity's dependence on temperature
and magnetic field.
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