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The crystalline phases of the liquid crystal 80SI [racemic 4-(2'-methylbutyl)phenyl 4'-(octyloxy)-
(1,1")-biphenyl-4-carboxylate] have been studied using high-resolution synchrotron x-ray-scattering
techniques. A careful analysis has been performed on the x-ray-scattering profiles of samples with
thicknesses varying from 1000 molecular layers to five layers. Three-dimensional long-range posi-
tional order with large-amplitude thermal fluctuations is observed for a very thick film. As the
thickness is decreased, two-dimensional characteristics become apparent. The scattering profiles of

.
thin films are described by the power-law line shape, 1//Q—G| ", with an effective exponent 7.g,

which evolves with thickness.

I. INTRODUCTION

Because of their large thermal fluctuations, two-
dimensional (2D) systems show quite different behavior
from those in three dimensions. Three-dimensional (3D)
solids exhibit true long-range positional order; that is, the
constituent particles vibrate around well-defined 3D lat-
tice positions with an amplitude which is small compared
to the interparticle spacing. On the other hand, broken
translational symmetry is impossible for two-dimensional
systems because of the overwhelming amplitude of the
phonon excitations.! Two-dimensional solids are de-
scribed as “crystals,” without conventional long-range
positional order, in which phonon excitations coexist
with bound dislocation pairs.> Rare gases physisorbed on
various substrates,’ reconstructed surfaces of metal and
semiconductor crystals,* intercalated systems,’ and smec-
tic liquid crystals® are all examples of systems which ex-
hibit two-dimensional characteristics. There now exists a
substantial body of knowledge on crystalline order in
both two and three dimensions, and it is an intriguing
question as to how the nature of the order evolves as the
aspect ratio and thence the effective dimensionality of the
system changes.

In a fluctuating system, dimensionality is determined
by the relative magnitude of the correlation lengths in the
different directions. Two-dimensional behavior is expect-
ed when the correlation length in one direction is much
smaller than those in the other two directions. Two-
dimensional systems can be also realized by preparing
thin films with infinite extension in two directions and
with a finite thickness.” When we probe properties whose
length scale is much larger than the shortest correlation
length, or the physical thickness, the system is expected
to show two-dimensional behavior.

Positional ordering is quantified by the density-density
correlation function G(r)={p(r)p(0)), where p(r) is the
mass density at position r. For a three-dimensional solid,
G(r) decays to a nonzero constant at large r, whereas it
decays algebraically to zero at large r for a two-

43

dimensional system.! The correlation function can be

studied experimentally by measuring the x-ray-scattering
profile. In the first Born approximation, the scattered in-
tensity is proportional to the instantaneous structure fac-
tor S(Q), where S(Q)~ fdr G(r)e'QT. In a three-
dimensional system with long-range positional order,
S(Q) is composed of §-function Bragg peaks at reciprocal
lattice vectors (G) with diffuse 1/|q|? tails resulting from
phonon excitations; here q=Q—G is the deviation from
the reciprocal lattice vector G. The magnitude of the
thermal diffuse scattering is inversely proportional to the
elastic constants of the system. For a two-dimensicnal
system, the Bragg peaks are replaced b;( algebraically
diverging singularities S(Q)x1/|Q—G|~ "%; resulting
from the algebraically decaying correlation function.
Therefore, as the dimensionality of the system is reduced
from three to two, the Bragg peaks disappear, and the
line shape of the diffuse scattering changes from
1/]1Q—G|? to 1/|Q—G\2_TIG; that is, the effective value
of the exponent, 7.4, varies from O to 1. Systems in the
intermediate range show a two-dimensional-like line
shape for small |q| (probing a large length scale in real
space) and presumably would show a three-dimensional
line shape 1/|Q—G/|?, for large |q|, which corresponds to
short length scales.

The rich phase diagrams of smectic liquid crystals have
been intensively studied for decades; however, a clear
physical picture of the different phases has only recently
emerged.® In all of the smectic phases of thermotropic
liquid crystals, which are usually long, rodlike molecules,
the molecules are segregated into well-defined layers and
the long axes of the molecules are aligned. Two of the
high-temperature phases, the smectic-4 (S,) and the
smectic-C (S.) phases, are well described as stacked
two-dimensional fluids, since molecules in a given layer
show fluidlike ordering and the layers are only weakly
coupled. As the correlation length in a smectic layer
grows with decreasing temperature, the coupling between
the layers increases and the system freezes into a three-
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dimensional solid. The freezing transition may occur ei-
ther directly or via an intermediate hexatic phase.®’ It is
possible to make very thin smectic samples using the free-
ly suspended film technique, as is well described in the
literature.!® In the low-temperature phases of thin smec-
tic films, the molecules lock together between the layers,
and these films may be treated as two-dimensional solids.
Freely suspended films of a smectic liquid crystal provide
an excellent system for the study of crystalline order as a
function of effective dimensionality, since high-quality
single-domain samples of various thicknesses can be
made from the same material.

In this paper we present high-resolution synchrotron
x-ray-scattering measurements of the crystalline phase
of freely suspended films of 80OSI [racemic
4-(2'-methylbutyl)phenyl 4'-(octyloxy)-(1,1’)-biphenyl-4-
carboxylate]. 80SI has the smectic phase sequence
S 4—Sc—S;—S;,!! which includes an intermediate tilt-
ed hexatic phase, S}, and a crystalline phase, S;. The tilt
angle of the molecules with respect to the smectic layer
normal is 26.5°. The lattice spacing in_the smectic layer
is 4.5 A, and the layer spacing is 28.4 A in the S; phase.
The thickness of the samples was varied from 5 molecular
layers to roughly 1000 layers thick. Careful analysis of
the scattering profiles of 5-, 14-, 18-, ~90-, and ~ 1000-
layer films has demonstrated evidence of dimensional
Crossover.

This paper is organized as follows. In Sec. II the ex-
perimental configuration is described and the details of
the instrumental resolution are discussed. In Sec. III we
report the experimental results and their analysis. First,
the data for the thick film, which is expected to be in the
three-dimensional limit, are presented. It is shown that
the S; phase is a true crystalline phase with large-
amplitude thermal fluctuations. Highly anisotropic elas-
tic constants are obtained from the data. The line-shape
analysis of the thin films is presented in the second part
of this section. The amount of diffuse scattering increases
as the film thickness is decreased. The change in the
value 7.4, as a function of thickness, indicates dimension-
al crossover. In Sec. IV we present theoretical considera-
tions on the amplitude of fluctuations and their correla-
tion functions. We summarize the results of this experi-
ment in Sec. V.

II. EXPERIMENTAL DETAILS

Single-domain films, produced by the freely suspended
film technique, were used. A 1-kG magnetic field gen-
erated by a pair of SmCos permanent magnets aligned the
tilt direction of the molecules. This provided the effective
ordering field to lock the direction of the local crystalline
axes via the coupling between the molecular tilt and the
bond orientation.!?> Applying an external magnetic field
to produce single-domain samples in tilted hexatics was
one of the experimental breakthroughs required to reveal
the nature of the hexatic S; and Sy phases®!® and is also
crucial in this experiment.

Films were made in the S, phase, at about 140° C, and
slowly cooled into the S; phase. Single-domain S; sam-
ples produced this way then froze into a single-crystal S,

phase as the temperature was lowered further; this
phenomenon was first demonstrated by Brock et al.!3
All the films, from 5 layers thick to ~ 1000 layers thick,
underwent the S;-S; transition around 345.7 K. The
transition temperature was quite insensitive to film thick-
ness, varying by at most 0.5 K. The transition was very
abrupt, suggesting that it was first order, in agreement
with earlier studies."> The data in the crystalline phase
were taken near 343.7 K, about 2 K below the transition.
The diameter of the films was 6.375 mm, and the films
were held inside a two-stage, temperature-controlled,
oven, which was kept at a pressure of ~0.1 torr of nitro-
gen. The thickness of thin films less than 20 layers was
determined by the width of the x-ray-scattering profile
perpendicular to the smectic layers, although optical
reflectivity measurements were used as a guide prior to
the x-ray measurement.

The x-ray-scattering profile for momentum transfers
perpendicular to the smectic layers is similar to the opti-
cal diffraction pattern from a finite number of slits. The
width of the diffraction maxima is determined by both
the finite number of smectic layers and the mosaic distri-
bution of the smectic layer normals. For thicker films the
width decreases and the mosaic distribution of the layer
normal becomes more important, and so must be decon-
volved; this introduces large uncertainties in the thick-
ness measurement. We use the relative phase angle of the
ordinary and extraordinary rays of an initially linearly
polarized laser beam induced by the birefringence of
80SI as it passes through the film to measure the
thicknesses of the thick films. Details of the optical tech-
nique are discussed elsewhere.!*

The experiments were performed at the IBM/MIT
beam line X-20A at the National Synchrotron Light
Source (NSLS) at Brookhaven National Laboratory. The
white x-ray beam from a bending magnet is focused by a
platinum-coated Si(111) mirror and monochromatized by
a pair of asymmetrically cut Ge(111) crystals. Using
asymmetric Ge crystals allows us to match the angular
acceptance of our monochromator system to the angular
divergence of the source. The double-crystal monochro-
mator results in an incoming beam resolution profile with
tails which fall off as ¢ ~*. The size of the beam is set by
an aperture in a tantalum plate in front of the sample
cell. The scattered x-ray beam from the sample is then
analyzed by a flat Ge(111) crystal and two pairs of slits.
Figure 1 depicts schematically the scattering geometry
used.

The spectrometer resolution in the scattering plane is
constructed from the incoming and the outgoing resolu-
tions. For a given angular divergence of the incident x
rays, R,(0), and an outgoing acceptance R,(O), the reso-
lution function R(6,0) at the point in angle space
(60,9,) is given by

R(6,0)=R,(0—6,)R,(0—0,+0—06,) . (1)

This equation represents the measured intensity distribu-
tion in the scattering plane from a 8-function scatterer at
the sample position. The resolution function in
reciprocal-lattice coordinates is obtained by a transfor-
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FIG. 1. Experimental geometry used in the experiment.

mation from (6,0) to (K,L). The definitions of angles
and the coordinates are given in the top part of Fig. 2.
The resolution function is measured by placing a
Si(111) single crystal at the sample position. The rocking
curves of the sample crystal and detector are used to ob-
tain the incoming divergence of the x-ray beam and the
outgoing acceptance of the detector separately. It is
essential to deconvolve the intrinsic Darwin curve of the
Si(111) crystal to obtain the exact incoming and outgoing
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FIG. 2. (a) Scattering profile from a Si(111) single crystal in
the scattering plane. (b) Resolution function in the scattering
plane generated from the separately measured incoming diver-
gence of the beam and outgoing acceptance of the detector.
Note that different scales are used in the two figures. (c) Incom-
ing and outgoing directions of the x-ray beam relative to the
smectic layer normal, which is defined to be the L direction in
the reciprocal-lattice coordinate system.

resolutions from the measured rocking curves.!> Upon
deconvolution we find that a Lorentzian line shape raised
to the power of 1.36 with a 0.0017° half width at half
maximum (HWHM) describes the incoming divergence
of the beam quite well, while the outgoing resolution is
well described by a Lorentzian with a 0.0023° HWHM.
Figure 2(a) shows the measured data, while Fig. 2(b) gives
the resultant resolution contour in the scattering plane.
Because of the configuration of the monochromator and
the analyzer crystals, the resolution function has a tilted
and elongated shape, with a sharply decaying tail along
the incoming direction and a relatively slowly decaying
tail along the outgoing direction. A cut along L =0 can
be thought of as the longitudinal resolution, along the
direction connecting the origin to the peak in the recipro-
cal space, and one along K =0 as the transverse resolu-
tion in the scattering plane. The longitudinal resolution
has a width of 2.7X10™* A~! HWHM, while the trans-
verse resolution is 5.4X 107> A™! wide (HWHM). The
resolution function in the scattering plane has tails which
are empirically described by the form 1/|q|*” along both
axes. The resolution perpendicular to the planes is deter-
mined by slits. It is well described by a Gaussian; for the
thick film, the out-of-plane resolution was 0.0015 1:\"1
HWHM, while it was set at the coarser value 0.015 Al
HWHM for all of the thin-film measurements.

The tilted, elongated resolution function makes the
measured intensity profile complex. If the intrinsic
scattering from a sample is a 6 rod, that is, very sharp
longitudinally, but flat in the transverse direction, as is
the case for a two-dimensional crystal with L in the direc-
tion perpendicular to the plane, then a longitudinal scan
does not simply show the cut along L =0 in Fig. 2; rather
it integrates over the intensity along the spine of the
elongated shape, which is quite broad with slowly decay-
ing tails. For this reason the broadening in the transverse
direction must be considered carefully in the analysis of
the longitudinal scans.

III. RESULTS AND ANALYSIS

A. Thick film: Three-dimensional limit

There are two major reasons for studying the crystal-
line order of a 3D sample. First, by studying a thick sam-
ple, questions about the nature of the bulk liquid-crystal
S, phase, such as the existence of true long-range order,
elastic properties and stacking order can be addressed.
The coupling constants between molecules deduced from
the elastic properties may be useful in constructing mod-
els for thinner samples or systems close to the 2D limit.
Second, a thick film provides the 3D limit of the dimen-
sional crossover to be used as a reference for the thin-film
data. Both these reasons require a high-quality single-
domain sample and precise knowledge of the instrumen-
tal resolution.

We successfully grew such a sample, whose thickness
was measured by the optical technique to be ~3 um.
The scattered intensity from this thick sample was
sufficiently large that we were able to reduce our x-ray
spot size to a diameter of 0.1 mm by means of a tantalum
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aperture in front of the sample chamber and thence im-
prove the observed mosaic structure. The out-of-
scattering-plane resolution was set to 0.1° HWHM by
slits with a 0.1-mm opening. The mosaicity, the distribu-
tion of the crystalline axes in the smectic layers, was
found to be better than 0.1°, and the mosaic distribution
of the smectic layer normal was about 0.01°.

The scattering profile of the thick film consists of a
sharp Bragg component, as occurs in conventional solids,
and a large amount of thermal diffuse scattering. Figure
3 shows the scattering profiles along the longitudinal
direction (0,Gy0+4¢,,0) (see top of Fig. 1) and the trans-
verse direction (0, G,9,) around the first reciprocal lat-
tice vector (0,Gy;,0). The transverse scan is in the
direction perpendicular to the smectic layers. The high
flux of the synchrotron beam coupled with the sharp
resolution allows us to measure the scattered intensity
over six orders of magnitude for a two-decade change in
|ql. The diffuse scattering from the thick film is highly
anisotropic. There is approximately two orders of magni-
tude more diffuse scattering in the transverse direction
than in the longitudinal direction for the same |q|. This
indicates that phonons in the transverse direction are ex-
cited much more easily.

Although the scattering profile perpendicular to the
smectic plane, along the (0,G,q,q,) direction (transverse
scan), is extremely sharp (~2X 1074 A! HWHM),
there is some mosaic structure, which determines the line
shape near the center. The mosaic distribution of the
smectic layer normal, measured by a transverse scan, can
be described empirically by a Lorentzian raised to some
power:

4

(1+Iql?/k®)*
with k=0.00018 A™! and ¢=1.64. The broadening of
the transverse scan due to this mosaic spread induces
broadening in the longitudinal direction through the tilt-
ed shape of the resolution function as discussed in Sec. II.
Indeed, the central part of the longitudinal scan, whose

width is about 3X 104 A~ 1, turns out to be very well de-
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FIG. 3. (a) Longitudinal scan in the thick film. (b) Trans-
verse scan in the thick film. The thick solid lines in both cases
are the result of fits to Eq. (6). The background levels are
represented by the broken lines. The intensities are normalized
to a ring current of 100 mA.

scribed by the effects of the resolution function convolved
with the mosaic spread in the transverse direction; that
is, no intrinsic longitudinal width is observed to within
our experimental precision. This clearly demonstrates
that the main contribution to the intrinsic scattering near
the peak is from a §-function-like Bragg component.

To explain the scattering quantitatively, we use first-
order thermal diffuse scattering as predicted by harmonic
phonon theory:!®

(3)

Here e ~2% is the Debye-Waller factor, F(Q) is the molecular form factor, Q is the scattering vector, and u,(q) is the
displacement vector of the ath phonon mode with wave vector q. Along the high-symmetry directions of the crystal,
such as the (0,Gy;,,+¢,,0) and (0,Gy,4,9,) directions, phonons can be classified as either purely longitudinal or purely
transverse, and the scattering profile simplifies to

u2(00q,)
u32(0g,0)

S(qz) (2 3
—, 2W 2 (27)
S, e |F(Q)|

Q, , 4)

Vo )
8(q)+ WGOIO

where u, and u, are, respectively, the transverse and longitudinal displacements in the [010] direction; {2, is the volume
of the unit cell and ¥V, the volume of the crystal. Using the equipartition theorem,'®

kyT

(@) =—"5—,
(lua(@)?) Nialq)

(5)

where N is the number of molecules and M is the mass of a molecule, and with the assumption that w,= Vg for small g
(V, is the sound velocity), one can see that the structure factor along the high-symmetry directions is composed of a 8-
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function peak with 1/¢? thermal diffuse tails. In a low-symmetry direction, the normal modes of the system no longer
have purely longitudinal or transverse polarizations, and the expression for the structure factor becomes more compli-
cated. We have assumed for simplicity that the structure factor along an arbitrary direction has the anisotropic form

kg TG(Z)lo 1

3
S(Q)=e'2W]F(Q)|2—(ﬂ

0, 6(q)+

where p is the density of the system. This was construct-
ed to reduce to the exact results in the longitudinal and
transverse directions.

The measured scattering profiles along the longitudinal
and transverse directions are fit to a convolution of Eq.
(6) with the resolution function given in Sec. II:

IQ)=I, | [dq'S(@)R(Q—q") |+ , ¥

where I is the overall amplitude and Iyg is the measured
background. The integration in the scattering plane was
performed numerically, while that in the out-of-
scattering-plane direciion was carried out analytically.
As may be seen in Fig. 3, Eq. (7) describes the measured
line shape in the longitudinal and transverse directions
extremely well, justifying the construction used for the
structure factor.

From these fits we have obtained the elastic stiffness
constants pV?=1.4X10® (£3X10") N/m? and
pV2=2.0X10% (£1.8X10°) N/m? The transverse
sound velocity is only about 12% of the longitudinal ve-
locity, emphasizing the highly anisotropic nature of the
system. These elastic stiffness constants, especially along
the transverse direction, are very small compared to
those of conventional crystals,'” which indicates that the
S; phase is a “soft” crystalline phase. They are only
about one-quarter of those in the S; phase of TBBA
(terephthal-bis-butyl-alkylaniline), which has a crystal
structure closely related to that of the S, phase.'®
Despite this large difference, it is noteworthy that the ra-
tios between the transverse and longitudinal sound veloci-
ties of the two systems are comparable, indicating that
this small interlayer coupling may be common to all
smectic systems. A possible explanation of the small
values of the measured elastic constants of 80SI, relative
to TBBA, is that our data were taken just 2 K below the
melting point, whereas the TBBA data in Ref. 18 were
taken about 25 K below the phase transition. In support
of this statement, the transverse elastic stiffness constant
in the TBPA (terephthal-bis-pental-alkylaniline) system
shows a marked rise below the transition.” As a note of
caution, we should also remark that in the analysis we
have ignored possible sources of diffuse scattering other
than thermal fluctuations. Inclusion of other sources,
such as finite-size effects, acts so as to increase the de-
duced values of the elastic constants.

The thick-film results may be summarized as follows.
A Bragg 6-function component is necessary to describe
the scattering profile, implying that there is long-range
positional order; this demonstrates that a film 3 um thick
is in the 3D limit, at least as probed by our high-
resolution measurements. The |g| 2-dependent thermal
diffuse scattering is also a feature of three-dimensional
systems. The smallness of the transverse sound velocity

Qm)pV? g2+ (VEi/vig?

» (6)

implies that there are large harmonic fluctuations in the
interplanar order, although the sharp Bragg peak demon-
strates that the long-range stacking order of the smectic
layer persists.

B. Thin films

As the film thickness is decreased, the scattering begins
to take on a more two-dimensional character. First, the
scattering profile in the transverse direction becomes
broad, showing the rodlike scattering characteristic of a
two-dimensional system. The scattering profile is as
sharp as the instrumental resolution in the smectic plane,
but is broad in the direction perpendicular to the smectic
layers. The widths of the transverse scans are used to
determine the thicknesses of the films by approximating
their central regions to “N-slit diffraction patterns.”

Second, the intensity in the diffuse wings of the longitu-
dinal scans increases relative to the peak intensity as the
thickness decreases, which indicates that the amplitude
of the thermal fluctuations is increasing. This is illustrat-
ed in Fig. 4, in which the raw data, background subtract-
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FIG. 4. Longitudinal scans from films of various thicknesses.
The data are background subtracted and normalized to the peak
intensity in order to compare the peak-to-tail intensity ratio.
The solid lines are the results of fits to Eq. (9) for films thinner
than 100 layers and to Eq. (6) for the 1000-layer film. Note that
both the mosaicity and instrumental resolution are much nar-
rower for the 1000-layer film compared with those for the thin
films. This decreases the relative intensity of the tails for the
thick film. The glitches in the solid lines are due to the sharp
cutoff of the resolution function by the slits.
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ed and normalized to the peak values, are plotted. To
compare the intrinsic intensities, the effect of the resolu-
tion volume, which was smaller by a factor of 10 for the
thick film because of the small spot size and narrow slits
in the out-of-scattering-plane direction, has to be decon-
volved, and varying mosaicities must be taken into ac-
count. The measured diffuse intensity is roughly propor-
tional to the resolution volume, while the peak value is
independent of it. It is clear, nevertheless, from Fig. 4
that the relative intensity in the wings varies by orders of
magnitude as the sample thickness is changed.

Experimentally, it was observed that for films of thick-
ness of less than 20 layers, radiation damage was a
significant problem. The low scattering power of thin
films means that, in order to obtain reasonable statistics,
long counting times must be used. After a sample has
been exposed to the intense synchrotron x-ray beam for
times in excess of a couple of hours, the peak intensity of
a scan decreases dramatically. To ensure consistent data,
the peak intensity was measured after each scan to moni-
tor the effects of radiation damage.

As the film thickness decreases, the in-plane mosaicity
becomes broader. This is partly due to the relatively
large x-ray spot size used to compensate for the small sig-
nal rate. However, we believe that the large amplitude of
the bond orientational fluctuations in the thin-film hexat-
ic phase also contributes to this broadening in the solid
phase.'® Specifically, these fluctuations heuristically cor-
respond to a mosaic distribution of the in-plane crystal-
line axes, which is, in part, frozen into the crystalline
phase at the first-order hexatic-solid freezing transition.

To characterize quantitatively the systematic changes
of the line shape as the sample thickness decreases, we
have approximated the intrinsic line shape of a thin film
to that of an idealized two-dimensional system:

Q= f(@)—— ®
(QL—G) eff

in which the absence of true long-range order is assumed.
Note that f(Q,), the Q, dependence of the scattering
function, is assumed separable from the in-plane com-
ponent of the structure factor. This is exact for a true
two-dimensional system; in that case, f(Q,) is simply the
molecular form factor in the Q, direction. We note, how-
ever, that in three dimensions the structure factor is
nonseparable as described in Sec. IIT A [Eq. (6)].

The transverse scans of thin films perpendicular to the
layers are illustrated in Fig. 5. The peaks become
broader as the sample thickness decreases, showing the
effect of the films’ finite size. The central parts of the
scans are approximated to N-slit diffraction patterns to
obtain the sample thicknesses. The positions of the
higher-order Bragg peaks show that the S, phase of 80SI
has the rare AA-type stacking order of the smectic lay-
ers.!? Even though this stacking order exists, the ampli-
tude of the stacking fluctuations is so great that no subsi-
diary peaks are observed between the Bragg peaks. The
subsidiary peaks, which exist between the principal peaks
in the N-slit diffraction pattern, have been observed in the
(0,0,9,) direction,?® where layer compression modes are
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FIG. 5. Transverse scans from 5-, 14-, and 18-layer films.
The thicknesses of the samples are derived from the widths of
the peaks. The solid lines are guides to the eye. The intensities
are normalized to a ring current of 100 mA.

important, but fluctuations in the stacking order are ir-
relevant. Therefore, we conclude that since layer
compression fluctuations are not enough to decrease
significantly the intensity of the secondary peaks, the lay-
er slipping fluctuations must represent the dominant con-
tribution to the diffuse scattering in the (0,Gy,o,q, ) direc-
tion.

For the longitudinal line-shape analysis, the broaden-
ing of the transverse scans and in-plane mosaic structure
must be treated properly. The in-plane mosaicity is mea-
sured by performing an in-plane angular scan; the proper
mosaic average is then done as part of the analysis. After
mosaic averaging, the resolution function in the scatter-
ing plane, discussed in Sec. II, is convolved with the in-
trinsic S(Q) [Eq. (8)] to describe the measured scattering
profile.

The final functional form of the measured intensity in
the longitudinal direction can be summarized as

1(0,0,,0)=1I, [ dq; | [ da;R(q},q;)f(q})

M(y)

X de (Q—G)Z—-neﬁ

+1gg

9)

where M(y) is the measured in-plane mosaic structure
and Iy is the background scattering. We have fit the
data in the range |q| <0.05 A~!. Outside this region the
statistics are too poor to make the data useful. The back-
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ground scattering is fixed at the value measured far from
the peak, at |q| =0.2 A7l Itis important to measure the
background directly since in the fitting routine the value
of the exponent 7.4 is strongly coupled to I'yg. All of the
integrations have been done using elaborate numerical
methods, paying close attention to the divergence at the
peak position. Even though the assumption of separabili-
ty is incorrect as we approach the 3D limit, the function-
al form has been applied to the thick-film data to keep
the analysis consistent throughout the data set.

Figure 6 shows the longitudinal scan data together
with the results of fits to Eq. (9). The adjustable parame-
ters in the fits are the overall amplitude, the peak posi-
tion, and 7.4, With only 7.+ influencing the shape of the
curves. Considering this, we believe that the fits are ex-
cellent. We have plotted the resulting values of 7.4 in
Fig. 7. The thinnest film, which is five molecular layers
in thickness, has 7.47=0.18+0.013. For the next thinnest
film, which is 14 layers thick, 1.4 shows a dramatic drop
to less than 0.1. The thickest film (~3 pm thick) has
Neg=0.001 4610.000 64, showing that the value of 7.4
does indeed approach zero with increasing thickness, as it
must do.

Although the data were taken at just 2 K below the
transition, the smallness of the value of 7.y compared to
the predicted value of § for a 2D Kosterlitz-Thouless
melting transition®?! suggests that the role of the disloca-

5 Layer Film

14 Layer Film

T

Intensity (counts/5min)

Intensity (counts/5min)
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1.34 1.37 1.40 1.43 1.34 1.37 1.40 1.43
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FIG. 6. Longitudinal scans in 5-, 14-, 18-, 90-, and 1000-layer
films. The solid lines are the results of the fit to Eq. (9), while
the broken lines are the results of the fit to the convolution of
the resolution and Eq. (10). The dotted straight lines are the
measured backgrounds. The intensities are normalized to a ring
current of 100 mA.

0.20 t

0.15

et

0.05 |

1 10

ol 1 a1
100 1000
Number of Layers

FIG. 7. 7. obtained as a result of the fit to Eq. (9). The solid
line is a fit to «< 1/P, where P is the number of layers.

tions is minor. This, presumably, is connected with the
fact that the melting transition is first order. From the
extrapolation of the behavior of 7. in Fig. 7, one might
guess that 74 for films thinner than five layers would be
close to, or larger than, 1. As 7 approaches 1, disloca-
tions become increasingly important, and one must con-
sider their effects, such as renormalizing the elastic con-
stants and giving rise to a continuous, rather than first-
order, melting transition.>?2!

The primary physics underlying Eq. (8) is the nonex-
istence of true long-range order. As a check on this as-
sumption, we have carried out fits to a line shape deriving
from an assumed lattice structure in the smectic layers,
that is, a line shape with a 2D Bragg component and
1/g? tails. A well-defined lattice is only possible in 2D
for a finite system. In this case we have assumed that the
1/¢? tails may be replaced by a Lorentzian whose width
is roughly the inverse of the sample size. Accordingly,
we have tried to fit the data to a line shape composed of a
two-dimensional 8 function in the smectic planes, with
thermal tails represented by a two-dimensional Lorentzi-
an:

Itps
SQ)=Iyf(Q,) |8(Q)+————— | +Igs .- (10
Q Of Q Ql) (Q_G010)2+K2 BG ( )

The background is fixed to the same value used in Eq. (9).
As shown in Fig. 6, Eq. (10), convoluted with the resolu-
tion function including the mosaicity, clearly does not de-
scribe the data as well as Eq. (9). In particular, as the
films get thinner, Eq. (10) cannot explain the large
amount of diffuse scattering. Even for the 18-layer film,
which Eq. (10) describes reasonably well, Eq. (9) never-
theless gives a somewhat better fit as judged by a smaller
¥2. Thin films are thus much better described by a
power-law divergence than a line shape with a §-function
peak and diffuse tails, confirming our assumption that
there is no true long-range order.
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IV. THEORETICAL CONSIDERATIONS

In this section we reconsider the amplitude of the fluc-
tuations and their correlations, explicitly including the
finite thickness of the film. We consider only the phonon
contribution; this is justified by the smallness of the
values of 7.4 as discussed in Sec. III. The position of an
individual particle is written as X;=R;+u;, where the
R;’s form a bravais lattice, and u; is the deviation from
the equilibrium position. For an N-particle system, the
mean-square amplitude of the fluctuations in the harmon-
ic approximation is given by

1 kgT 1

2

<|ui‘2 = Ty 0
N Mc} G |q?

(11

where c; is an effective sound velocity which can be ex-
pressed as a combination of the elastic constants. Per-
forming the summation in two and three dimensions, re-
spectively, the mean-square amplitude of the deviation is
given by

The first term is from the Fourier components with

g, =0, and the second term, which contains the summa-

tion over ¥, .o is approximately equal to unity. Here we
z

have used the same elastic constant in all directions in or-
der to obtain an intuitive understanding of the physics,
without complicating the algebra. For the modes with
q,=0, the molecules in one layer remain fixed with
respect to all other layers; hence the coupling between
these extended molecules, stretching across all layers, is P
times as strong as that between the bare molecules. The
fluctuations of these g, =0 modes are reduced in ampli-
tude relative to those in Eq. (12), and this manifests itself
in Eq. (13) by the fact that for these modes the elastic
constants have been effectively renormalized by a factor
P. From Eq. (13) one can roughly estimate the thickness
of a sample for which the amplitude of the fluctuations is
of the same order as those of a three-dimensional system.
For a 2D system of 1 cm diameter, the amplitude of the
fluctuations is less than twice as large as those in a 3D
system for P =17, suggesting that the crossover from 2D
to 3D behavior occurs for relatively small thicknesses.

The detailed behavior of a system can be understood by
considering the correlation function

G(r)={p(r)p(0))
= (/G Tun—uo)]y (14)

After some algebra, the correlation function in two and
three dimensions is given by

kpT g2
24 | £ D)
Mc} 2m
2y —
=11 2 (12)
Mc? 2n PP

J

where a is the lattice spacing and L is the linear dimen-
sion of the system. In two dimensions, the mean-square
fluctuations diverge with the size of system, radically
different from the situation in three dimensions, where
they are a fraction of the lattice spacing. As is well
known, the diverging amplitude of the fluctuations in two
dimensions formally destroys true long-range order for an
infinite system. However, for a finite-size system
(lu;12)'/? can be smaller than the lattice spacing, be-
cause of its slow logarithmic divergence.

For a system with finite thickness, specifically one with
P layers, { |u;|?) is calculated by breaking the summation

34 into qu 2,

] . (13)

1 h kBTa2]G|2 (2D)
B S _rpla 101
r'e Wi e 27Mc?
G(r)«< (15)
(o kpTa*|G|* |
4rMc? 1l

The behavior of the correlation function of a system with
finite thickness varies according to the region of interest.
For length scales smaller than the thickness of the sam-
ple, the functional form is quite complicated;’ however,
for large length scales, the system shows the characteris-
tics of a two-dimensional system, with the exponent 7 re-
duced in exactly the same way as the mean-square fluc-
tuations were reduced by the renormalized elastic con-
stant, and the correlation function is given by

1

W , (16)

G(p,0)x

that is, n.s=mg/P. Here p is the in-plane component of
r. This equation holds only when |p| is much larger than
the thickness of the sample. The detailed derivation of
this correlation function is given in Ref. 7 in the context
of thin-film superconductors. Even with the simple argu-
ments used, the predicted 1/P dependence of 7.4 gives
rough qualitative agreement with our observed values as
illustrated in Fig. 7. As expected, the agreement worsens
for thicker films when the contributions of the ¢,70
modes become important; though, of course, it has the
correct 3D limit.



850 D.Y. NOH et al. 43

V. DISCUSSION AND CONCLUDING REMARKS

Two-dimensional line shapes, which assume the separ-
ability of the g, dependence from the in-plane component
of the structure factor, have been used to describe the
thin-film data; this is equivalent to ignoring all the excita-
tions with ¢,°0. Such behavior is not strictly correct for
a system with nonzero thickness, and in principle the x-
ray-scattering profile should show 2D behavior near the
reciprocal vectors, crossing over to 3D behavior with in-
creasing |q|. However, this crossover is very subtle, and
analyzing the data in this manner introduces too many
fitting parameters to extract any meaningful information.
We have instead characterized the profiles for finite-
thickness films by a power-law line shape with an
effective exponent 7.4 Empirically, this form works very
well.

In summary, we have observed evidence of dimensional
crossover through a detailed line-shape analysis of the x-
ray-scattering profiles from films of various thicknesses.
The crystalline phase of the thick film is well described by
conventional long-range order with large amplitude
thermal fluctuations. The large amount of diffuse scatter-
ing indicates that the 3D S; phase is a very soft crystal-
line phase. Elastic stiffness constants are obtained as the
result of a fit to the first-order thermal diffuse scattering
profile. They are small compared to those of convention-
al crystals.

The nature of the “crystalline” phase of thin films is
more subtle. We have shown that the power-law line
shape, which is characteristic of two-dimensional sys-
tems, works well for thin films. To extract the intrinsic
behavior of the effective exponent 7.4, the instrumental
resolution has been deconvolved carefully. The change of
N as a function of the thickness dramatically exhibits di-
mensional crossover phenomena, at least qualitatively.
Ner Of a 5-layer-thick film is about 0.19, whereas for a
~1000-layer-thick film 7. is about 0.0014; that is, the
thick film has 1/|q|? tails as one expects from harmonic
phonon theory.
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