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Two cases of the three-dimensional model—one with incommensurate phases and another with
commensurate phases only—have been simulated with use of the molecular-dynamics method. The
model crystallite has been subjected to periodic boundary conditions. In the incommensurate re-
gime the phase-transition mechanism consists of nucleation and growth of stripples and antistrip-
ples, having the structure described by the domains of the closest reference commensurate phase.
The stripple mechanism could not describe the phase transition in the commensurate regime.

I. INTRODUCTION

Close to the lock-in phase transition, the incommensu-
rate phase can be considered as an ordered sequence of
domains of a reference commensurate phase, separated
by discommensuration planes. This reference phase must
be stable in some temperature interval and is character-
ized by a commensurate wave vector which differs from
the incommensurate one by a small fraction of a
reciprocal-lattice vector.

In incommensurate crystals the characteristic wave
vector of the modulation changes as a function of temper-
ature or other external parameters. These changes are
consequences of crystal-lattice reconstruction. It is be-
lieved that in crystals with one-dimensional modulation
the reconstruction occurs via the stripple mechanism.! 3
A stripple is a topological defect built up from domains
of the reference commensurate phase. The domains of
the stripple are separated by discommensuration planes.
These planes are bounded by a closed curve called a
deperiodization line.® In a superheated or undercooled
crystal a stripple is nucleated by thermal fluctuations;
later it grows by lateral motion of the deperiodization
line adding to the system one period of the modulation
and a definite number of discommensuration planes. The
antistripples are nucleated in the reverse process, when
the discommensuration planes are removed from the sys-
tem. The antistripple is bordered by a deperiodization
line as well and each removes from the system one period
of the modulation. Stripples or antistripples appear when
the wave vector shifts away from or toward the reference
commensurate phase, respectively.

The purpose of the present work is to simulate, in
three-dimensional system, the microscopic mechanism of
the kinetic reconstruction of the incommensurate modu-
lation. With simulations one could demonstrate the ex-
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istence of stripples, visualize their propagation, analyze
the structure of stripples, and relate the temperature
anomalies observed in the kinetic run to the nucleation of
stripples. The results also led to the conclusion that the
phase transition between two commensurate phases can-
not be described by the stripple mechanism.

There is a number of experimental facts which are
consequences of the stripple mechanism: Namely, the
global thermal hysteresis observed in the temperature
dependence of the modulation wave vector,* dielectric
constant® and birefringence® measurements, the hys-
teresis at the commensurate-incommensurate phase tran-
sition”8 and the shape of the satellite pattern which has
been quite recently determined in the real-time kinetic ex-
periment, on rather short time scales, by time-resolved
neutron diffraction technique.” Moreover, stripples have
been already directly observed with an electron-
microscopic technique in crystals of 2H-TaSe,,!®!!
Rb,ZnCl,,'? sodium barium niobate,'* and TMATC-
Zn.'* A computer simulation of a two-dimensional sys-
tem also confirms the existence of stripples.®!>!¢ Objects
topologically equivalent to stripples have been seen in the
two-dimensional pattern of convective rolls in an aniso-
tropic fluid: a nematic liquid crystal subjected to an ac
electric field.!”

In Sec. II two cases of a simple three-dimensional mod-
el are defined: an incommensurate and a commensurate
one. Then, we specify the conditions needed to produce a
minimum in the potential energy along a high-symmetry
direction of the reciprocal lattice, which is necessary to
make the one-dimensional modulation stable. In order to
study the kinetics of the model we formulate the pro-
cedure which allows us to change the wave vector of the
dispersion-curve minimum and consequently the charac-
teristic wave vector of the modulation. Because of the
rather small size of the system, we have applied periodic
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boundary conditions which discretize the allowed wave
vectors of the modulation and prevent nucleation of the
stripples at the surfaces of the crystal.’® Only a few
essential facts about the molecular-dynamics method are
given. In Sec. III we report the results of the simulation.
Our study of the incommensurate model generally
confirm the stripple mechanism. They also show the
multidomain structure of the stripples for wave vectors
close to commensurate ones. As the wave vector moves
further away from a commensurate value, specially in the
middle region of the wave vector in between two refer-
ence commensurate phases, one still observes stripples,
but their description by domains is no longer useful. We
find that the nucleation and growth of stripples (antistrip-
ples), driving the metastable state toward an equilibrium,
always decrease the potential energy (i.e., release heat)
and thus increase the temperature of the system.
Simulations of the commensurate model showed that
J
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stripples do not appear in the phase transition between
two commensurate phases and that the transition mecha-
nism is more closely associated with a modification of
particle displacements within layers of the crystal perpen-
dicular to the modulation direction, than with the pro-
duction of stripples.

II. MODEL

The model we consider is a three-dimensional simple
tetragonal lattice with one particle per unit cell. Each
particle has one degree of freedom, which is a displace-
ment in the z direction denoted by u (i,j,/). A particle is
harmonically coupled to its nearest neighbors and, along
the z axis, also to its next-nearest neighbors. Further-
more, each particle moves in an anharmonic local poten-
tial. The potential energy of the model is taken to be

V=%Z{Au2(i,j,l)+Gu4(i,j,l)+Bu(i,j,l)[u(i,j,l tU+ul,j,l =D ]+Duli, j,Du(i,j,l +2)+u(i,j,l—2)]

ijl

+Culi,j,Dluli +1,5,D+uli —1,j,)]+u (i,j +1,D+u (5,j — 1,11} .

A one-dimensional chain of this kind (with C =0) has
been already studied'®?° as a function of parameters A,
B, and D. We may study three-dimensional version by
the molecular-dynamics technique. Another choice could
be to simulate the well-known ANNNI model,?! but since
it is an Ising-spinlike model, its dynamics is not uniquely
determined.

The harmonic part of the potential energy (2.1) can be
transformed into a diagonal form® and its corresponding
dispersion curve is given by

w*k)= A +2B cos(2mk,c)+2D cos(4mk,c)

+2C[cos(27ka)+cos(2mk,a)] . (2.2)

Here k=(k,,k,,k,) is the wave vector in three-
dimensional reciprocal space and a and c are lattice con-
stants. The model possesses one single branch with
nonzero frequency at the Brillouin-zone center. In order
to form a one-dimensional incommensurate modulation
in the z direction, the minimum of the dispersion curve
0*(k) should occur along the [001] direction. Let us
denote the wave vector of this minimum by (0,0,kp). The
incommensurate or commensurate modulation is charac-
terized by the wave vector (0,0,k,, ), where k,, usually
differs slightly from k, because the incommensurate
modulation is also influence by the presence of the
higher-order spatial harmonics and because the com-
mensurate phases are additionally stabilized by the um-
klapp terms.?

When C <0, the minimum of the dispersion curve
(k) occurs along the [001] direction. Then, the ground
state of the three-dimensional model (2.1) with C <0 and
D >0 is equivalent to the ground state of the one-
dimensional model analyzed in Refs. 19 and 20 with obvi-
ous substitution k, =ky =0, which makes the dispersion

2.1

-

curve w*(k), Eq. (2.2), dependent on the sum 4 +4C, B,
and D.

The ground state of the three-dimensional model (2.1)
shows either commensurate or incommensurate one-
dimensional modulation in the z direction. Figure 1
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FIG. 1. Phase diagram of the three-dimensional system for
D >0. Each point of this diagram corresponds to a ground state
of the system. By the wave vectors are indicated short-period
commensurate phases. The hatched regions correspond to in-
commensurate phases and to long-period commensurate phases.
N denotes the normal phase. Dashed lines are the paths of the

incommensurate (I) and commensurate (C) cases of our model in
the space of parameters, see Egs. (2.3a)—(2.3d).
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shows the phase diagram of that system at zero tempera-
ture as a function of (4 +4C)/|D| and B/|D| for the
case of C <0 and D >0. The incommensurate phases ap-
pear only if |B/D| < 4.

We may represent the parameters of the model by
more convenient quantities. This procedure will allow us
to change the parameters of the potential energy so that a
desired wave vector k, of the dispersion-curve minimum
can be obtained. For that we introduce the following as-
sumptions: (i) the minimum of ©*(k) should occur at the
wave vector k, along [001]; (ii) the value of the dispersion
curve at its minimum, w,, is known; (iii) the curvatures
R,, R, (=R,), R, in x,y,z directions, respectively, are
given and are constants, i.e.,

3w’ (k,) A ;
ok, =0, (2.3a)
w*(k,)=wj, (2.3b)
w( k,) azaﬂ(k,, )
= =R, , (2.3¢)
ok}? ok}
Fortky) _ (2.3d)
ok? 2 '

The four parameters 4, B, C, and D of the harmonic part
of the potential energy can now be determined through
the four conditions (2.3a)-(2.3d) for given k,, ®j, R, , and
R,. Changing within these confinements the wave vector
kp of the minimum of w?*(k) one changes 4, B, and D
while C is fixed by R,. The anharmonic parameter G is
fixed by the value of the mean displacement
{u(i,j,1)) = —w3/(2G), which should be taken much less
than the lattice constants. The anharmonic parameter G
does not have any influence on the ground-state phase di-
agram.

In the following two cases of the model— an incom-
mensurate and commensurate one—are studied. For
both the parameters are wig=-—4.0, C=—4.0 (or
R, =327?%), and G=1000. However, the curvatures of
the dispersion curve along the modulation direction are
taken to be different: they are R, =64m* and R, =87 for
the incommensurate and commensurate cases, respective-
ly. A large curvature R, causes the umklapp terms of
commensurate phase, characterized by a wave vector lo-
cated away from the minimum, kp, to be unable, to stabi-
lize the commensurate phase. A small curvature R, as-
sures that the contributions of umklapp terms of a simple
commensurate phase always win the competition with the
free energy of the pure incommensurate phase. Hence, a
large or small curvature R, increases the range of stabili-
ty of incommensurate or commensurate phase, respec-
tively. The dashed lines in Fig. 1 indicate the paths along
which the system moves while k, changes from O to ;.
In the incommensurate case the ground-state devil’s-
staircase curve, k,, = f(k,), which is just the relation be-
tween the modulation wave vector k,, at the equilibrium
of the system and the parameter kp, contains pieces of the
incommensurate phases, and therefore, according to*
should be called an incomplete-devil’s-staircase curve. In
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FIG. 2. The parameters 4,B,D of the potential energy as a
function of k, which follows from Egs. (2.3a)—(2.3d) for the in-
commensurate (I) and commensurate (C) cases.

the commensurate case, k,, = f(k,) consists of commens-
urate phases 2,1,+,1,1 only and is thus called complete.
Figure 2 displays the variation of the model parameters
A, B, and D as a function of the wave vector kp. Note
that in the incommensurate case the couplings B and D
between the first- and second-nearest neighbors remain
almost an order of magnitude larger than in the com-
mensurate model. Moreover, in our case the coupling B
vanishes at k,=1. Singular values of the parameters
close to k, =0 and 0.5 severely diminish the accuracy of
the calculations in this region and thereby preclude cal-
culations with wave-vector modulation close to the zone
center or zone boundary.

The model has been studied by molecular-dynamics
simulations using the technique previously described in
Refs. 3 and 15. Each particle has fixed neighbors, in con-
trast to other molecular-dynamics simulations of incom-
mensurate phases,24 where diffusion of particles was al-
lowed. Our simulated crystallite consisted of
N=40X40X60=96000 unit cells. The Newtonian
equations of motion were solved by a simple difference
scheme, using the microcanonical ensemble with total en-
ergy conserved. In order to remove the surface effects
periodic boundary conditions were used, although these
conditions and the finite size of the crystallite?> cause two
effects: (i) The finite crystallite can admit only wave vec-
tors k,, =n /N,, which correspond to an integer number
n of the modulation periods inserted into the system,
where N, is the number of unit cells in the modulation
direction; thus the allowed wave vectors are separated by
Ak,,=1/N,. (ii) Periodic boundary conditions prevent
nucleation of stripples at the surface of the crystal;!® thus
all stripples have to be nucleated in the bulk. Surfaces,
clusters of defects, and grain boundaries of real crystals
which pin the modulation might behave similarly. On
the other hand, surfaces which do not pin the modulation
may act as an easy place to nucleate a discommensura-
tion and consequently they may lead to a continuous
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change of the modulation wave vector.

We have set the units of length to the lattice constant
¢ =1, the particle mass M,=1, and the dispersion-curve
frequency w,=1. The period 7,=2m/w,, which is of the
order of magnitude of the characteristic period of the
phonon oscillation, plays a role of a time unit for itera-
tion of the Newtonian equations of motion. The iteration
step was chosen to be At =0.04r,. Similarly, the temper-
ature (and energy) unit is T, =Myw3c?.

To describe the modulation state of the system the
elastic diffraction scattering function, as measured in the
diffraction experiment

F(k)=p*(k)p(k) (2.4)

was calculated for the wave vectors k=(0,0,n/N,),
where # is an integer. Here

1
N

and R(i,j,1) and u (i,j,])) are the position of the lattice
site and the time-average displacement of the particle
(i,j,1), respectively. A typical time-average interval used
was (50—-100)7;. Only F (k) along the modulation direc-
tion has been calculated. Periodic boundary conditions
allow us to calculate the intensity of F (k) at the discrete
wave vectors k =n /60. Except the Bragg peaks at the
reciprocal-lattice vectors, only sharp satellites [one point
in the calculated discrete F(k) distribution] have been ob-
served in the incommensurate case.

The static modulation in the system depends on the
wave vector k,, potential parameters, and temperature.
At low temperatures, the crystallite is in well-defined
modulated state. At sufficiently high temperatures, fluc-
tuations destroy the modulation and the system trans-
forms into the normal phase. The order parameter of
such phase transition is proportional to the average am-
plitude of the modulation wave which is, in turn, related
to the satellite intensity. The point at which the intensity
of satellite vanishes defines the transition temperature
from the modulated to the normal phase. Many such
runs allowed us to establish the transition temperature,
which is T=0.005 50 and 0.003 80 for kp =0.25, increas-
ing as k,—0, reaching 7=0.00625 and 0.00440 at
kp=0.10, for the incommensurate and commensurate
cases, respectively.

p(k)=—F exp[ —2m(kR(i, j,1)+k,{u(i,j,1)))]

Ljl

(2.5)

III. KINETIC PROCESS

In real incommensurate crystals the wave vector of the
modulation shifts under varying temperature, pressure,
or external field. This behavior is a consequence of a shift
of the minimum of the soft mode w?(k) caused by the re-
normalization of the parameters of the effective potential
energy by thermal fluctuations of degrees of freedom that
otherwise are irrelevant for the incommensurate modula-
tion. In the computer simulation one disregards the ir-
relevant degrees of freedom and mimics the above-
mentioned behavior by simply changing the model pa-
rameters of the potential.

Each kinetic run started from an equilibrated system.
The rearrangement of the particle configuration has been
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achieved by changing in time the model parameters A4, B,
and D of the potential energy (2.1) and (2.3), so that the
wave vector k, changes with time at a constant rate
dk, /dt. During this process the kinetic energy T, which
represents temperature, the average potential energy
(V') and the total energy E =T+ ( V'), the maps of aver-
age particle configurations, diffuse scattering function
(2.4), and hence the wave-vector position k,, of the satel-
lite were calculated. We note here that in our calcula-
tions the total energy remains constant only if the param-
eters of the potential are kept constant. However, in or-
der to study kinetic effects we have to change the model
parameters and hence k, and, in consequence, the total
energy of the system.

A. The incommensurate case

The initial temperature of that run was about 0.267,,
where T, is the transition temperature from the incom-
mensurate to the normal phase and the initial parameters
of the potential were fixed by k,=0.40. Figure 3 shows
some results of the kinetic process which started from the
initial state and was continued at a constant rate of
change, dk,/dt=—1.5X 107575 1. Effects related with
different rates of change, dkp /dt, have been discussed in
a previous paper.'® We see in Fig. 3(a) that the average
total energy changes continuously but the temperature
and average potential energy show several sharp discon-
tinuities, Fig. 3(b), although the overall behavior remains
similar to that of E. The satellite position k,,, Fig. 3(c) as
given by the maximum of the diffraction scattering func-

260

240
220

10°E

200
180

10°T
=~
o
105¢V)

SN
o

. 1 1
035 030 ko 0.25 0.20

o

1 1
5000 10000
t/ T,
FIG. 3. (a) Total energy E, (b) temperature T and average po-
tential energy { V), (c) diffraction satellite position k,, as a
function of the wave vector k, and time ¢ for the incommensu-
rate case and for a kinetic run from k, =0.4 to 0.2 at the rate of
change dk, /dt=—1.5X107%75 '. The line k,, =k, is the equi-
librium line of the incommensurate phase.
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tion F(k), changes stepwise at the same instants as those
of Tand (V). Within the resolution Ak =} =0.0167 no
broadening of the satellites was observed. Inspecting de-
tails of the maps of particle configurations we could es-
tablish that along each plateau of Fig. 3(c) the crystallite
was free of stripples. Each discontinuity in the satellite
position k,, was related with nucleation and growth of a
stripple. The steps in Fig. 3(c) can give an erroneous im-
pression that the model possesses commensurate phases
only. In fact, these plateaus arise because of the discreti-
zation of wave vectors introduced by the finite size of the
system and periodic boundary conditions.

The discontinuities observed in T and V'), Fig. 3(b)
are of the following origin. Changing k, and the parame-
ters of the potential energy but not the number of the
modulation periods in the crystallite, one increases the
average potential energy { V'), because the current modu-
lation k,, is no longer at the minimum of the potential.
When thermal fluctuations nucleate a stripple, this meta-
stable state is changed by one period of the modulation
and it relaxes to a state characterized by a different al-
lowed wave vector. Simultaneously, the excess potential
energy is converted into kinetic energy which causes a
sudden increase in temperature. A similar effect has been
observed in the reverse process when the wave vector k,
increased from 0.25 to 0.40.

The plateaus of the satellite positions, Fig. 3(c),
significantly deviate from the equilibrium line. This line
describes the modulation wave vector in an infinite in-
commensurate system except in the vicinity of the com-
mensurate wave vector k, =0 and ;. The deviation leads
to a so-called global hysteresis and is caused by the criti-
cal energy needed to nucleate a stripple. We recall that
in a three-dimensional system the stripple must exceed a
critical size and critical energy before it can grow.

Below we discuss the events which occur at the discon-
tinuities a, B, ¥ in Fig. 3(c). The maps of these events,
namely, some X-Z and X-Y planes of the crystallite, are
shown in Figs. 4, 5, and 6, respectively. The maps have
been made from square and triangle symbols, sizes of
which are proportional to the positive or negative aver-
age displacements {u(i,j,I)), respectively. Because of a
large number of particles and consequently small avail-
able space for representing one symbol, one can see on
the maps only the magnitude of the particle-displacement
amplitudes. Due to that, however, one can recognize
dark and white regions, which correspond to large and
small particle displacements or, in other words, to
domains and domain walls (discommensuration planes),
respectively. The X-Z planes cross the center of the crys-
tallite and show the particle configurations along the
modulation direction z. The X-Y maps visualize the
stripple evolution in planes perpendicular to the modula-
tion direction and lay at the level indicated by the side
marks on the X-Z maps. Notice that the time period of
(10-12)7,, during which the stripple evolves, is related to
the velocity of the deperiodization line and is very short
in comparison to the total time of duration 12 5007, of
the whole kinetic process.

Consider the defect appearing at the discontinuity a,
Fig. 3(c). On the first map, Fig. 4(a), the incommensurate
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FIG. 4. Maps of particle configurations of the incommensu-
rate case around k, =0.3731 at the discontinuity & in Figs. 3(b)
and 3(c), which demonstrate the nucleation and growth of the
stripple within a region of a commensurate phase k=1. The

time increment between maps is At =47,

and commensurate k =1 phases coexist and the moment
of stripple nucleation is seen. It grows in lateral direc-
tions as seen in the maps, Figs. 4(b) and 4(c). Its
deperiodization line, a closed circle, is visible in the X-Y
planes. The structure of this stripple is very simple. In-
side, it possesses a domain opposite to the one which fills
the space outside the stripple. Its reference commensu-
rate phase, which in this case is the phase k =1, has two
domains only. Notice that the stripple, Fig. 4, has ap-
peared close to the incommensurate region at the top of
the X-Z plane (we recall that the bottom of the crystallite
is close to its top because of periodic boundary condi-
tions) and not at the middle part of the commensurate
domain, preserving in this way the correct separation be-
tween the discommensuration planes. Another stripple,
already noticed in Fig. 4(c), has grown a moment later
and it has filled the remaining region of the commensu-
rate domain k =4. Thus, the discontinuity a is attribut-
ed to two stripples. The radial velocity of the deperiodi-
zation line, estimated from the X-Y maps of Fig. 4, is
dr/dt=1.8a /7,. This value can be compared with the
phason velocity v, =2.8a /7, inferred from the theoreti-
cal slope of the phason dispersion branch of our model
[see Eq. (8.8) of Ref. 3]. In an order-disorder system the
velocity of the deperiodization line, described then by a
local relaxation processes, can be orders of magnitude
slower. A discussion of physical consequences of these
effects can be found in.?

The discontinuity 8 in Fig. 3(c) is caused by two antis-
tripples, which pass the crystallite one after another.
They transform the incommensurate phase k,, =0.367
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FIG. 5. Maps of particle configurations of the incommensurate case around k,=0.3174 at the discontinuity 3 in Figs. 3(b) and

3(c), which demonstrate the nucleation of a partial antistripple I —

terns is given in Fig. 7.

into a domain of commensurate phase k =1. The maps
of evolution of the second antistripple at the discontinui-
ty B are shown in Fig. 5. The closed discommensuration
line of the antistripple is seen in the X-Y maps. The an-
tistripple has nucleated close to the edges of the X-Z

(a) (b)

X X

%. The time increment is At =67,. The scheme of domain pat-

map, Fig. 7(a), and then it propagates. The radial veloci-
ty of the deperiodization line, as inferred from X-Y maps
of Fig. 5,is dr /dt=1.3a /7.

The phase k =1 may exist in six domains.’ If we de-

scribe the periodic modulation as

(c) (d) (e)

X X X

FIG. 6. Maps of particle configuration of the incommensurate case around k, =0.2562 at the discontinuity y in Figs. 3(b) and 3(c),
which demonstrate the existence of defects in the lattice during its reconstruction from phase k = % to k=1. The time increment is

At=27,. The scheme of domain patterns is given in Fig. 8.
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(a) (b) (c)
d3 d2 d2

6P
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d1

 —33 | d2 d2

X X X

FIG. 7. Scheme of the domain patterns at the transition from
the incommensurate to the commensurate phase k =§ demon-
strating an evolution of partial antistripple. The patterns
represent the particle configurations on the X-Z maps of Fig. 5.
The particle displacements +——, ++—, —+—, —++,
— — +, + — + are the characteristic patterns of d1, d2, d3, d4,
d5, and d 6 domains of commensurate phase k = 3, respectively.

(uli,j,))= A cos[2mk-R(i,j,])—€] , (3.1)
where A is the amplitude of the modulation, then the
phase shifts of the six domains of the commensurate
phase k 2% are €=0, 7/3, 2w /3, 7, 47w /3, and 57 /3. We
denote these domains by d 1, d2, d3, d4, d5, and d6, re-
spectively. The domain walls or discommensuration
planes between domains with the smallest difference in
phase Ae=m/3 are expected to have the lowest energy.
Figure 7 shows hand-drawn schematic pictures of the se-
quence of domains made in a simplified way, namely, by
comparing the sequence of signs of particle displacements
of the X-Z map of Fig. 5 with the standard sequence of
signs of displacements of domains of the phase k=1. A
full antistripple imbedded into domain d 1 should consist
of six discommensuration planes which separates the
remaining five domains d2, d3, d4, d5, d6, and all the
discommensuration planes should meet at the deperiodi-
zation line. In our case, however, the system has pro-
duced a partial antistripple, Figs. 5(b) and 5(c) and Figs.
7(b) and 7(c), which consists of only four domains d 3, d4,
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d5, d6, and reduces five discommensuration planes to one
d2/d1. Indeed, for wave vectors k, > ¢ the antistripple
structure requires an ordered sequence of domains d1,
d2,...,d6. Discommensuration plane with the reverse
order of domains, like d2/d 1, then has higher energy and
in normal conditions should not appear. However, at the
moment of 3 discontinuity, our model is already in state
k, <, where stripples with reverse sequence of domains
d6, d5,...,d2, d1 are energetically favored. In these
circumstances the system prefers to nucleate a partial an-
tistripple, which produces finally one discommensuration
plane d2/d1 and which already satisfies the order of
domain sequence required at k, <.

When the value of k,=0.276 is reached, two stripples,
based on the commensurate phase k =1, are generated.
As a result, a perfect commensurate phase kK = - is pro-
duced. Later on, at the y discontinuity when k,=0.256,
a topological defect, shown on the maps of Figs. 6 and 8,
passed through the crystallite. In X-Y maps, Fig. 6, the
evolutions of the deperiodization lines are clearly seen.
The analysis of the domain pattern is, however, not so
straightforward. At Figs. 8(a) and 8(b) and Figs.
8(c)-8(e) the hand-drawn scheme of the domain se-
quences are described by comparing the signs of the par-
ticle displacments with the signs of the domain patterns
of the commensurate phases k =1 and k =1, respective-
ly. The commensurate phase k=1 may exist in four
domains described by the phase shift e=wn/4, 37/4,
57/4 , and 77 /4. We denote the corresponding domains
by D1, D2, D3, and D4, respectively. In Fig. 8(a) the se-
quence of domains corresponds to phase k =2. A strip-
ple based on the commensurate phase kK =1 starts to nu-
cleate at the edges of the crystallite. However, this strip-
ple does not encompass yet all domains. A moment later
a little modification of particle displacements within the
stripple allows one to recognize the domains D3 and D4
of the commensurate phase k =1, Fig. 8(c). The domain
D4 is confined between two D3 domains. Normally, the
domains must form a directed sequence in order to
achieve the minimum in potential energy. That means
the discommensurations D3/D4 and D4/D3 are of
different energies. In our case, however, the wave vector

(a) (b) (c) (d) (e)
% LY ——— S

D3
r—— ——1 o2 D2
7 [ gc 0 — | [;1 D1
I db D4 Db D&
a3 D3 D3 D3
d2 d? D2 D2 D2
. D1 D1 D1
D4 D4 D&

X X X X X

FIG. 8. Scheme of the domain patterns at the transition from phase k :% toward the commensurate phase k=1

7+ The patterns

reflect the particle configurations on the X-Z maps of Fig. 6 and are described in terms of domains d1-d 6 and D 1-D4 of commensu-
rate phases % and 1, respectively. The particle displacements ++——, —++—, ——++, +— — + are the characteristic pat-

terns for D1, D2, D3, and D4, domains of phase k = %, respectively.
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k, is close to +, and at kPZ% the discommensuration
planes becomes energetically equivalent.

Later on the island of the domain D4 disappears due to
the typical antistripple mechanism and finally a region of
single commensurate domain of the phase k=1 is
formed. The lifetime of the region of a single domain is
rather short since the remaining discommensurations
planes shift into the z direction in order to achieve an
equidistance separation.

The discontinuity ¥ is an example of topological de-
fects within the intermediate region between two simple
commensurate phases, where stripple structure based on
one reference commensurate phase, say k=1, becomes
imperfect and description of the same region of the crys-
tal, by domains of another reference commensurate
phase, say k =1, becomes more appropriate. It is obvi-
ous that such a change in description must occur some-
where when the wave vector changes from one commens-
urate phase to another.

B. The commensurate case

In the commensurate case the model is strongly aniso-
tropic. The interaction between particles in the z direc-
tion is an order of magnitude smaller than in x and y.
The kinetic process, which started from an initial single
domain of commensurate phase k =1 being at tempera-
ture 0.667,, was continued at a constant rate of change,
dk,/dt=—5.0X10"ry'. The average total energy
remained almost constant, Fig. 9(a), and the temperature
and average potential energy, Fig. 9(b) exhibit changes
around k,=0.25 correlated with the coexistence of two
satellites at k,, =1 and k,, =1, Fig. 9(c). Here, the

3 £y
commensurate-commensurate phase transition 1-—1

3 7
takes place. Note that in spite of more than three times
faster rate then used in the run of the incommensurate
case, this phase transition requires a considerably longer
time of 2107, to complete. In Fig. 12 we present maps of
particle configurations taken during this process. We
have tried as before, to assign to the signs of particle dis-
placements of the X-Z maps of Fig. 10, the signs of the
domain pattern of the commensurate phases k=1 and
k=1. And indeed one sees that the first X-Z map be-
longs 90% to a single domain of phase kK =1. This can be
shown in spite of rather large fluctuations which diminish
the averaged values of particle displacements in random
parts of the crystallite. In the course of time, however,
many new domains arise but they do not form a sequence
expected for a stripple.

On the X-Y maps of Fig. 10 which represent layers of
crystallite perpendicular to the modulation direction, one
sees closed line which separate regions with opposite dis-
placements of particles. We call such a line a kink line.
The region confined by a kink line can be called a planar
nucleus. The kink line has properties similar to the
deperiodization line. The planar nucleus grows, in prin-
ciple, within one X-Y layer of the crystal, where the in-
teractions are strong. The nucleation and growth of pla-
nar nuclei in neighboring layers may be correlated.

In this commensurate case the stripple mechanism has
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FIG. 9. (a) Total energy E, (b) temperature 7 and average po-
tential energy  ¥'), (c) position of the diffraction satellite k,, as
a function of the wave vector k, and time ¢ for the commensu-
rate case and for a kinetic run from k, =0.333 to 0.220 at a rate
of change dk,/dt=—5.0X10"%r;'. The line k,=k, is a
guide to the eye.

not been observed. Therefore, we indicate on the

schematic pictures of Fig. 11 only planar nuclei which
have been grown on the maps of Fig. 10 and in which the
average particle displacements are opposite to displace-
ments required by the initial single domain of phase

(a) ~(b)

)

X X X

FIG. 10. Maps of particle configurations of the commensu-
rate case at the discontinuity in Figs. 9(b) and 9(c), which
demonstrate the lattice reconstruction at the transition from
commensurate phase k=1 to commensurate phase k=. The
wave vector k, from (a) to (c) changes from 0.2496 to 0.2481 and
the time increment between maps is Az = 107.



43 MOLECULAR-DYNAMICS STUDY OF INCOMMENSURATE. ..

(a) (b) ()

X X X

FIG. 11. Scheme of the planar nuclei made on the basis of
the X-Z maps of Fig. 10, with the initial domain of phase k 2%
taken as a reference configuration.

k=1. Obviously, the density of planar nuclei increases
with time. These objects form local thin domains which
correspond to the commensurate phase k =1. At this in-
termediate stage the diffraction pattern of the whole sys-
tem consists of two satellites placed at k,, =0.333 and
k,=0.25, and the growing one at k=0.25 was
broadened and reached a maximum width of about
Ak, =0.04. Later on, some of the domains have in-
creased their volumes at the expense of the remaining
domains and the diffraction spectrum coalesced into a
single satellite at k,, =0.25

IV. FINAL REMARKS

The results of simulations confirm the existence of the
stripple mechanism in the incommensurate case of a
three-dimensional model crystal, where the coupling pa-
rameters along the modulation direction are of the same
order of magnitude as the couplings within the plane per-
pendicular to it. Generally, the stripples have a structure
determined by the domains of the reference commensu-
rate phase, similar to the stripples observed experimental-
ly with electron-microscope techniques. In the commens-
urate case, having a weak coupling along the modulation
direction, any attempt to form a stripple is immediately
thwarted by thermal fluctuations. However, the strong
couplings within the plane perpendicular to the modula-
tion direction lead to nucleation and growth of planar nu-
clei.

The kinetic devil’s-staircase curve of the incommensu-
rate case obtained during a single kinetic run, Fig. 3(c),
showed a hysteresis and proved to have some discontinui-
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ties. If in a macroscopic system the stripples will appear
at random, then the discontinuities would occur at ran-
dom as well and consequently the average wave-vector
dependence may prove to behave continuously,® in
agreement with some experimental observations. Howev-
er, a global hysteresis which depends on the critical nu-
cleation energy of the stripple and not on the size of the
system should be observed.

Because of obvious reasons of limited computer time
we have applied periodic boundary conditions to mini-
mize the effect of crystal surfaces. This conditions have
discretize the wave vectors; therefore plateaus of satellite
positions in Fig. 3(c) occur at a well-defined wave vectors
only. The effect of discretization will diminish with in-
creasing crystallite. Another effect of the periodic
boundary conditions seems to be more important. This
conditions prevent the nucleation of stripples at the sur-
face of the crystallite. A strong pinning of the
modulation-wave amplitude at the free surface of the
crystal will cause a similar effect of forcing nucleation in
the bulk, independent of the system size. The influence of
the boundary conditions on stripple nucleation has been
published in a separate paper.!®

Indications that not everything is understood in the
problem of the wave-vector changes in incommensurate
systems come from the dielectric and birefringencey mea-
surements made on the thiourea doped with 3% of urea®
and quartz,?’ respectively, at an extremely slow heating
rate. The data show that the modulation wave vector
changes not in a continuous way, as the majority of ex-
periments would suggest, but in a stepwise way and that
the steps have nothing to do with the commensurability
of the lattice. This behavior is usually attributed to de-
fects which might imitate in an extremely crude way the
effect of periodic or fixed boundary conditions.

ACKNOWLEDGMENTS

The authors wish to thank U. Buchenau and H.
Grimm for numerous and valuable discussions. Fruitful
comments on the computer program by H. Gerlach and
K. Wingerath are gratefully acknowledged. One of us
(K.P) would like to thank the staff of the Institut fiir
Festkorperforschung, Kernforschungsanlage, Jiilich, and
Laboratoire de Physique des Solides, Université de
Paris—Sud, Orsay, for their hospitality and assistance.

*Permanent  address: Institute of Nuclear Physics,
ul.Radzikowskiego 152, PL-31-342 Krakéw, Poland.

1y. Janovec, Phys. Lett. 99, 384 (1983).

2K . Kawasaki, J. Phys. C 16, 6911 (1983).

3K. Parlinski, Comp. Phys. Rep. 8, 153 (1988).

4G. André, D. Durand, F. Dénoyer, R. Currat, and F. Moussa,
Phys. Rev. B 35, 2909 (1987).

SH. G. Unruh, J. Phys. C 16, 3254 (1983).

6J. P. Jamet and P. Lederer, J. Phys. (Paris) 44, 1.257 (1983).

7K. Hamano, H. Sakata, and K. Ema, J. Phys. Soc. Jpn. 56,

3789 (1987).

8H. Sakata, K. Hamano, and K. Ema, J. Phys. Soc. Jpn. 57,
4242 (1988).

9G. Eckold, Nucl. Instrum. Methods Phys. Res. A289, 221
(1990).

10K . K. Fung, S. McKernem, J. W. Steeds, and J. A. Wilson, J.
Phys. C 14, 5417 (1981).

11C. N. Chen, J. M. Gibson, and R. M. Fleming, Phys. Rev. B
26, 184 (1982).

12H. Bestgen, Solid State Commun. 58, 197 (1986).



8420 K. PARLINSKI, F. DENOYER, AND G. ECKOLD 43

135, Barre, H. Mutka, and C. Roucau, Phys. Rev. B 38, 9113
(1988).

14M. Ribet, Ferroelectrics 66, 259 (1986).

I5K. Parlinski, Phys. Rev. B 35, 8680 (1987).

16K . Parlinski, Phys. Rev. B 39, 12 154 (1989).

17A. Joets and R. Ribotta, J. Phys. (Paris) 47, 595 (1986).

18K Parlinski and F. Dénoyer, Phys. Rev. B 41, 11428 (1990).

19T, Janssen and J. A. Tjon, Phys. Rev. B 25, 2245 (1981).

203, J. M. Slot and T. Janssen, Physica D 32, 27 (1988).

21w. Selke, Phys. Rep. 170, 213 (1988).

22K Parlinski and F. Dénoyer, J. Phys. C 18, 293 (1985).

233, Aubry, in Solitons and Condensed Matter Physics, edited by
A. R. Bishop and T.-Schneider (Springer, New York, 1978),
p. 264.

24C. Z. Wang, E. Tosatti, and A. Fasolino, Phys. Rev. Lett. 60,
2661 (1988).

25K. Parlinski, Ferroelectrics 104, 73 (1990).

26A. Onodera, F. Dénoyer, J. Godard, and M. Lambert, J. Phys.
(Paris) 49, 2065 (1988).

27F. Mogeon, G. Dolino, and M. Vallade, Phys. Rev. Lett. 62,
179 (1989).



