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Optical absorption, magnetic circular dichroism, and reduction factors
in the Jahn-Teller system Ee Exact solution with the continued-fraction forma&ism
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We consider the Jahn-Teller system Ee consisting of an orbital doublet coupled with a two-
dimensional phonon. We attack the problem within the continued-fraction formalism, and we pro-
vide exact solutions for the optical absorption, the magnetic circular dichroism, and the reduction
factors of the electronic orbital angular momentum. The elegant solutions provided by the
continued-fraction formalism allow us to study the system in any range of coupling, where other
methods in the literature would be inadequate. In particular, Slonczewsky resonances are clearly
established in the strong-coupling case.

I. INTRODUCTION

The Jahn-Teller effect in localized systems has been the
subject of many investigations in recent years (see, for in-
stance, the comprehensive book of Perlin and Wagner'
and references quoted therein). In general, a vibronic
system includes a huge number of electronic-vibrational
states, and several approaches have been developed in the
literature to treat such large numbers of degrees of free-
dom. Among them, the continued fraction approach is
having an increasing interest as a very flexible tool to
treat the problem.

The Ee vibronic system is of particular importance
for its prototype character. The system includes any or-
bital non-Kramers doublets belonging to the doubly de-
generate irreducible representation both of the cubic,
tetrahedral point groups as well as the point groups hav-
ing nonvanishing angular momentum (D6&, D6, C6h, C6„

D„C„,C3„, C3h C3) interacting with a
two-dimensional mode of e symmetry.

The purpose of this paper is to examine the Ee
Jahn-Teller system by systematically applying the power-
ful tool of iterative procedures. ' In the literature there
are only some preliminary attempts in this direction,
especially for what concerns the optical properties. The
main result of this work is to provide a continued-
fraction solution not only for the optical absorption, but
also for the angular momentum reduction values and for
the magnetic circular dichroism, because we can con-
struct a continued fraction whose coe%cients are analyt-
ic. We can thus calculate, without restrictions, all the
physical quantities of interest.

In Sec. II we briefly outline some relevant concepts of
the adiabatic principle, in order to make our paper
reasonably self-contained and to show explicitly why and
where to apply the continued-fraction procedure. As a
specific example we consider the system of E symmetry
interacting with a two-dimensional vibration of e syra. me-
try. In Sec. III, we consider the Ee Jahn-Teller system
adopting the continued-fraction procedure. We give the
explicit continued-fraction expression of all relevant

physical quantities, including magnetic field effects, for
any values of the coupling constants. We then calculate
for a number of situations the absorption spectrum, the
magnetic circular dichroism, and the Slonczewsky oscil-
lations. Section IV contains the conclusions.

II. OUTLINE OF THE ADIABATIC
APPROXIMATION AND STANDARD TREATMENT

OF THE JAHN-TELLER Ee MODEL

In this section we briefly discuss the adiabatic approxi-
mation and the traditional treatment of the Jahn-Teller
E@emodel by means of the coupled differential equation
formulation; this summary is done in order to allow a
useful comparison with the continued-fraction method,
which is exploited in the next section.

The Hamiltonian of a general polyatomic system (mol-
ecules, clusters, or crystals) constitutes a formidable
problem whose solution goes through the adiabatic ap-
proximation, completely discussed, for instance, in Ref.
9; a very detailed analysis of the concepts and the pro-
cedures is also provided in Ref. 10, with attention to the
approximations, and consequent terminologies, usually
adopted. Here we only remind the leading role of the two
basic approaches known as the "moving-basis approach, "
and the "fixed-basis approach"; in the former the vibron-
ic system is expressed in terms of the electronic wave
functions depending parametrically on the nuclear coor-
dinates, while in the latter the basis wave functions are
eigenfunctions of the Hamiltonian with the nuclei fixed in
a given configuration, usually a high symmetry one.

Both the approaches lead to a system of coupled
differential equations, completely equivalent from a for-
mal point of view, because a unitary transformation can
be found to pass from a basis to another. However, the
moving-basis approach is particularly useful in the situa-
tions where the electronic wave functions are smooth
functions of the nuclear coordinates, otherwise their first
and second derivatives, with respect to the nuclear coor-
dinates, may introduce strong "effective" potentials in
the differential equations. Near the connection of two (or
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more) surface potential sheets, it can be convenient to use
the alternative fixed-basis approach; this avoids the expli-
cit appearance of derivatives of the wave function with
respect to nuclear coordinates and instead a well-behaved
potential function matrix element couple the difFerent de-
generate (or quasidegenerate) electronic states.

The general equations corresponding to the different
approach can be specified to our case of interest, i.e., a
double degenerate electronic system of symmetry E in-
teracting with a vibrational mode of symmetry e, a prob-
lem considered under one or another of its several and in-
teresting aspects by a number of authors. '" ' The
standard treatment with coupled difFerential equations,
leads through a quite laborious procedure, to the well-
known results provided in Ref. 12. Looking back to
these results and noticing how relatively complicated the
procedure was to obtain them, our inkling was that a
much simpler road should be available to arrive at them.
It is evident that it is important to find it, both for its in-
trinsic interest and for the possibility of appropriate gen-
eralization (for instance, the inclusion of magnetic field
effects).

III. CONTINUED FRACTION SOLUTION
OF THE E e SYSTEM

of the electronic states as the reference energy. By ex-
panding the Hamiltonian up to the second order in the
normal symmetrized coordinates Q, and Q2, we obtain

+ + VE2M gQ', ()Q,'~ Q2 Qi

+—,'Mco, (Q, +Q~) .

In Eq. (1) Vz is the linear coupling constant, co, is the an-
gular frequency of the e mode, and the operators that are
not written explicitly in matrix form, are intended to be
multiplied by the identity 2 X2 unit matrix.

It is convenient to introduce the phonon creation and
annihilation operators a„a, and a2, a2 for the two
partner modes of symmetry e; the corresponding states
can be labeled by the occupation numbers 1 and m, re-
spectively. The basis functions chosen are thus the direct
product of the two degenerate electronic functions I i', &,

I/2& and of the vibrational functions Ilm &. In such a
basis, the total Hamiltonian (1), which is the sum of the
electronic and of the vibrational parts (H, +HL ) and of
the coupling part (H, L ), can be written as

Lead by some formal similarities with recent treat-
ments of Jahn-Teller systems, we decided to study the
Hamiltonian of the Es e system directly, with the recur-
sion method. For this purpose we use the fixed-basis ap-
proach. Let us indicate with $„$2 the degenerate elec-
tronic states of symmetry E for the nuclei fixed in the
symmetry position. We consider a linear coupling with a
vibrational mode of symmetry e, and we take the energy

with

H, +HL =A'co,

and

i =1,2
l, m =0, oo

(2a)

Iitr, ;lm &(i+m+1)(P;;lm
I

(2b)

H, z =kzA'co, g I

—I/i, lm &(itti', lm I(ai+a i )+ If'., lm &(gz, lm I(ai+a
&

)
I, m =0, oo

+
I pi, lm & ( $2', lm I ( a 2 +a 2 ) + I g2,

' 1m & ( pi, lm
I ( a 2 +a t2)], (2c)

here Am, is the energy of the mode e and kE is an
adimensional coupling constant related to VE in the form

VE

(2M') '
co

=—kE

It is now straightforward to apply the general con-
cepts and methodology of the recursion method. ' '

Starting from an appropriate initial state we can generate
a hierarchical chain of states according to the standard
three terms recursion relations, which we can briefly
summarize as follows. Let

Ifo &, If, &,
.

I f„& indicate
the first n + I normalized functions of the recursion
hierarchy and a„,b„ the corresponding parameters; let
IF„+,& be the (unnormalized) function defined as

IF„+i& =H lf„&—a„ ff„&—&„If„ i & .

The next pairs of parameters b„+1 and a„+, is given by
the normalization of the state IF„+,& and by the expecta-
tion value of the Hamiltonian on it, namely,

&F„+,IHIF„+, &

&„'+,——& F„+i IF„+,&, a„+,——

n+1I n+1~
(4)

IF„ &
=

i =1,2
I, m =0, oo

c,'",.' Iq, ;~m & .

After normalization, the steps reported above can be re-
peated and further functions of the hierarchy can be ob-
tained.

The above procedure is now applied to our vibronic
model Ee, described by the Hamiltonian (2). In gen-
eral, we may write the expansion
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By means of Eqs. (2), (3), and (4) the explicit recursion re-
lations for the coefficients c I' can be easily obtained,
and the parameters a„and b„determined. If we choose
as an initial state of the hierarchy

~ f0) = ~g, ', 00) (corre-
sponding to the total angular momentum j=—,'), we ob-
tain for the coefficients a„and b„of the recursion the
useful analytic expression

a„=(n+1)A'co@, n =0, 1, . . . ,

b, =2I 7l +1
2

(k~4'co, ), n =1,2, . . . ,

where I( ) indicates the integer part of ( ). We
define the Huang-Rhys factor S in the usual form S=kz
or equivalently SAN@, =EJT (the Jahn-Teller energy) and
we can write a close expression for the Green's function:

Goo(E) =

E 2%co

2S(%co,)

2S(A'co, )

4s (Ace, )E 3%A)z ~

E —4A'a),

The poles of the continued fraction of Eq. (7) give the
eigenvalues of the vibronic system and their residua give
the projected density of states, which is proportional to
the absorption spectrum. The eigenvalues can be deter-
mined with any wished accuracy considering a sufficient
number of steps of the continued fraction (7) (typically
from a few tens to a few thousands, depending on the

coupling kz increasing from kz ~ 1 to k@=30). To have
the residua in the poles we notice that 1/Goo(E) is a
linear function of E in a small interval around the pole (in
the limit of E tending to the eigenvalue) and the angular
coefficients is the inverse of the residuum in the pole. It is
thus straightforward to calculate any property related to
the projected density of states.

We begin to discuss the optical properties of the Ee
vibronic system and the dipole-allowed transition be-
tween a nondegenerate ground state (called A for brevity)
and the double degenerate E states ( A ~E transition).
For increasing values of S, the absorption shape exhibits
two peaks of different height and width, separated by al-
most 2&S A'co„as predicted by the distribution probabili-
ty of a two-dimensional harmonic oscillator in the ground
state. This behavior has been found experimentally in
several systems: for example, in the optical absorption
spectra of Fe + and Ti + in AgC1 and Agar, ' of
Fe + in CdC1 and CdBr (Ref. 24) taken at different tem-
peratures. Increasing the temperature, the separation be-
tween the peaks is increased and also the height of the
second peak, similarly to what expected increasing the
effective value of S.

For very large values of S, other peaks appear, due to a
nonadiabatic mixing of different vibronic states
(Slonczewski resonances between vibrational levels of the
two adiabatic surface sheets). Habitz and Schwarz
calculate these resonance energies near the branching
points by the quasiclassical quantization rule:

PI

J +2M[E —W2(p)]dp=nvrh, n =1,2, . . . . (8)
0

Here p, is one of the turning points [p,
=po( —1+Ql+E/E~T)]; po is the coordinate p at the
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FIT&. 1. Calculated absorption, in arbitrary units, of the transition A ~E for a vibronic Ee system. {a) S=4; (b) S=16; (c)
S= 100; {d)S=900. The energy is in units of Am, .
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minimum of the potential sheet; Wz is the upper branch
of the potential sheet. This calculation gives
E„=( ', n—m.free, ) E,'r .It is easily verified that the
differences between the peaks (for E„)0) found by our
exact calculations with continued fractions, confirm the
qualitative results of the quasiclassical model.

In Fig. 1 we show the typical palisades for the absorp-
tion spectrum obtained with S =4 (case a), S=16 (case
b), S=100 (case c), S=900 (case d). Technically, the
spectra (a) and (b) can be obtained either diagonalizing
the tridiagonal matrix of suitable dimensions or by direct
calculations of the Green's function Goo(E). The spectra
(c) and (d) have been obtained from Goo(E) with a large
number of recursions ( —10 000).

The calculation of the absorption spectrum for whatev-
er value of S is not the only goal achieved by the recur-
sion techniques. It is also possible to evaluate the effect
of an external field, for example, a magnetic field applied
along the trigonal axis of a trigonal-symmetry compound.
The doubly degenerate vibronic levels are split by the ap-
plied magnetic field H, into two Zeeman sublevels. It is

0 —i
H —pH (9)

It is convenient to choose as the initial state of the re-
cursion

Without any approximation, we obtain the following
coefficients of the recursion:

a„=(n +1)fico,+( —1)"pH„n =0, 1,

b„=2I (kzfico, ), n =1,2, . . .
(10)

The calculation of the continued fraction

straightforward to introduce the Zeeman term
H, =pH, L, in the total Hamiltonian (2) of the system
and to construct the recursion coefficients. On the basis
functions P, and fi, previously defined, the Hamiltonian
H, takes the form

E—Ace, —pH, —
E 2Aco~+ pHg

2S ( iiico, )

2S(A'a), )

E—3Acu, —pH, —4S(A'co, )

gives, for any vibronic coupling and Zeeman term, the ei-
genvalues and the intensity of the absorption I+(co) for
the right-hand circularly polarized light. Changing the
polarization [the initial state of the chain is now

lfo &
= I/&2(~g, ;00& i ~gi00& —)] the coefficients a„and

b„are as follows:

a„=(n + 1)Ace,+( —I )"+'pH„n =0, 1,

b„=2I n+1
(kzA'co, ), n = 1,2,

We can calculate the magnetic circular dichroism
(MCD) I+ I (neglecting —the small-energy difference
introduced by the magnetic field). In Fig. 2 we show the
MCD calculated for S =4 and S=16. We observe an os-
cillatory behavior of the MCD, quenched by the vibronic
coupling. We can also calculate the reduction factor y
(see Fig. 3) for the electronic orbital angular momentum
in the p vibronic level, defined as the ratio of the effective
g value in the presence and in the absence of the Jahn-
Teller coupling. In our case yz is given by the ratio

y~ =(E+p E)I(—1Y2pH, . — (13)

E+~ are the eigenvalues in the presence of the vibronic
coupling and the magnetic field. The reduction factors

can now be easily calculated for any coupling S. It is
shown to be oscillating and quenched by the vibronic
coupling, as previously observed in Ref. 28 for small S.

As a final remark we notice that we have considered
the Hamiltonian H, defined by Eqs. (2), in connection
with seed states with j =

—,'. We can derive the general
form of the coefficients a„and b„of the recursion, what-
ever the total angular momentum of the initial state.
Properly choosing the initial state we easily obtain

a„=(j+—,'+n )A'co„n =0, 1,

b,'„,=2(j ,'+ n )(k~A'co, )',——

b i„=2n (k~6'co, )

n=l 2

(14)

IV. CONCLUSIONS

We have examined systematically the Ee vibronic
system in connection with the continued fraction formal-
ism, whose flexibility provides an elegant solution of all
the physical properties of interest. We can obtain an ana-

In the case of j=
—,
' we obtain back the expression (6) of

the recursion parameters.
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FIG. 2. Magnetic circular dichroism, in arbitrary units, of
the transition A ~E for a vibronic Ee system. (a) S=4; (b)
S= 16. The energy is in units of A~, .

FIG. 3. Reduced orbital angular momentum y~ of the vib-
ronic levels with j=—,, (a) S =4; (b) S=16. The energy is in

units of fico, .

lytic expression for the coeKcients of the continued frac-
tion, also in the presence of an external magnetic field.
The vibronic system spectrum can be calculated accurate-
ly for any strength of the electron-phonon coupling pa-
rameter. This study of the absorption spectrum, of the
magnetic dichroism, and of the reduction factors in the
prototype Ee vibronic system, besides its intrinsic in-
terest, should foster a more widespread use of the

continued-fraction apparatus in the study of coupled
electron-boson systems.
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