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In switching charge-density-wave (CDW) conductors, a voltage pulse greater than threshold
causes the CDW to slide only after a delay ~. For identical experimental conditions, we have found
a class of delays as long as 5 s with fluctuations as large as 5 orders of magnitude. For large ~, the
distribution of delays N(~) ~ ~ ~, with 0.8 & y & 1.3. We argue that ~ measures the time at which
the internal strain somewhere in the CDW exceeds the threshold for phase slippage. The electronic
history of the sample, and hence the distribution of initial configurations of the CDW, determines
X(~).

Sliding charge-density-wave (CDW) conductors have
now been established as models for the study of dissipa-
tive nonlinear dynamical systems with many equally im-
portant degrees of freedom. ' The CDW in conventional
samples depins smoothly at a threshold ET. Classical
models with many degrees of freedom have been success-
ful in explaining the critical behavior of the depinning in
conventional samples, hysteresis, and nonexponential re-
laxations of the CDW polarization, and other observed
phenomena. A central feature of these models is the ex-
istence of an exponentially large number of metastable
states for a pinned CDW.

Switching samples depin abruptly and hysteretically.
Zettl and Griiner observed that, on applying current
pulses larger than threshold, the CDW began to slide
only after a time delay between 1 and 100 psec, with fIkuc-

tuations of smaller than 100%%uo from pulse to pulse. We
report detailed Ineasurements of the delays near thresh-
old. We find a new class of long switching delays clearly
separated from the shorter ones observed by Zettl and
Griiner. These long delays may be of order seconds, and
fIuctuate up to 5 orders of magnitude from one pulse to
the next for identical external experimental conditions.

Delayed transitions occur in many driven dynamical
systems, from lasers to convecting fluids. However, we
know of no physical system exhibiting delays with varia-
bility comparable to the long delays in switching CDW's.
Our results rule out several theories of switching-CDW
conduction. We propose the following mechanism: the
switching delay is the time during which the CDW
evolves from one of a large number of initial
configurations to a configuration in which the internal
strain is sufficiently large to tear the CDW.

Samples of freshly grown, nominally pure NbSe3 were
mounted in a standard two-probe configuration. The
samples were cooled in a helium exchange gas to between
25 and 30 K in a temperature-controlled closed-cycle re-
frigerator. The rms temperature fIuctuations were +10
mK over an indefinite period of time. Details of the ex-
perimental procedure will be published elsewhere.

In initial experiments we applied a train of square
pulses to a sample and measured the switching delay for
each pulse. For voltages V near the threshold V, the first
delay was between 1 ms and 100 ms, but every subsequent
delay was of order 1 ps. The CDW began in an unpolar-
ized state. The first pulse polarized the sample, and for
every subsequent pulse the initial state of the sample was
highly polarized. This behavior is reminiscent of the
pulse sign memory effect. The initial state of the sample
in large part determines the switching delay time. For all
data presented here, the remanent polarization was
erased before each square voltage pulse with a 3-s erasing
pulse (discussed below) of the form V(t) = Vo( —,

' )(1
—cosset)cos(2srft), with V0=185 mV )2V„2sr/
0=3 s, and f=1 kHz.

Figure 1 shows the amplified CDW current response to
four identical voltage pulses applied to a single sample.
In order to use the full dynamic range of our digitizer,
the ohmic current has been subtracted using a standard
bridge circuit. Because the switching delays ranged from
1 ps to 1 s, the current was measured in logarithmic time
intervals. The switching time was determined in software
after each pulse. After the beginning of each pulse, a dis-
placement current Aows as the CDW polarizes, decreas-
ing roughly logarithmically until the abrupt switch. The
current traces are nearly identical before the abrupt
switches. Thus the macroscopic CDW polarization
P = f IcDw(t)dt just prior to a switch depends on the
switching delay ~. Switches do not always occur at the
same macroscopic polarization of the CDW.

In presenting distributions which vary over many or-
ders of magnitude, logarithmic binning in a histogram
N'(w =logs) is preferable to conventional linear binning
in a histogram N(r). Figure 2 shows the distribution of
delays for a single sample under different experimental
conditions. Figure 2(a) shows the shift of N'(w) from
long to short delays as Vis increased above the threshold
V, . ( V, was defined as the voltage at which 50% of the
delays were less than 1 s, 87.8 mV for these data. Chang-
ing the percentage criterion from 30% to 70% of the
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formed on a single sample 0.4 mm long with resistance
630 Q at 25 K and 3.81 kQ, at 295 K. A temperature of
30 K was convenient because switching does not occur
much above 30 K in virgin samples, ' and at much lower
temperatures heating becomes a problem. Lowering the
temperature to 25 K did not qualitatively change the ob-
served behavior. Measurements were also performed on
other samples from two growths. All samples we mea-
sured showed long and short delays with a gap in N(r) in
the range 10 ps —1 ms, a power-law tail in N(r) for long
delay times, and (r) decreasing faster than e for small

FIG. 1. CDW current response to four identical voltage
pulses.

time shifted Vc less than +0.5%.) For the smallest volt-
age V=88.6 mV, the delays are between 100 ps and 1 s.
At an intermediate value V=89.4 mV, the distribution is
bimodal with a peak at a few microseconds, a gap be-
tween 10 ps and 100 ps, and a broader peak between 100
ps and 100 ms. For the highest value of V=90.2 mV,
most of the weight is in the peak near a few mi-
croseconds.

Near V„ the distribution N(r) of long delays obeys a
power law with a cutoff at short times. Figure 2(b) plots
P ( w)=l og bNI'( w)/10 ] for 4000 long delays at V= 89.3
mV. It can easily be shown that, if N(w) ~r r, then
N'(w) o-10" r'" and P(w)= —yw+cons. P(w) in Fig.
2(b) is clearly well fit by a straight line over at least 4 or
ders of magnitude Aleas. t-squares fit of a line to P(w),
with points weighted by &N'( w ) and including only
points with —0.02) w ) —4. 1 (100 ps & r & 1 s), gave us
y. The inset shows the variation of y from 0.8 to 1.2 as V
was varied from 88 to 90 mV (sufftciently close to Vc that
few short delays appeared).

The form of N'( w) depends critically on the erasing fre-
quency f. For 50 Hz &f & 5 kHz, delays were uncorre-
lated, ' indicating that the erasing procedure was
effective. With all other experimental parameters (in-
cluding any thermal or other noise) fixed, the width of
N'(w) for the long delays drops from 4 to 2 orders of
magnitude as f is increased from 50 Hz to 5 kHz. s Forf) 5 kHz, correlations develop between successive de-
lays. The sensitive dependence of N'(w) on f shows that
external noise is not the dominant cause of fluctuations in
~, in conAict with the explanation of Joos and Murray. "

Figure 3 shows the dependence of the average ( r ) and
the standard deviation o on the pulse height V with f=1
kHz. Between V=88 mV and 92 mV, the average delay
decreases by 3 orders of magnitude and o. is larger than
(r). Near 92 mV, the gap evident in Fig. 2(b) appears.
Above 92 mV, only short delays are observed, with
o & (r) Note that the .voltage at which the gap occurs is
different in Figs. 3 and 2(b). We attribute this to an ob-
served extremely long-term (weeks) drift in the threshold
voltage.

Thin, short samples of uniform cross section from
freshly grown batches of NbSe3 are most likely to have a
single switch. All measurements reported here were per-
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FIG. 2. Distributions of delays. (a) Dependence on V: Three
distributions N'{ w) {where w =log~) of 1024 delays each, binned
in logarithmic increments. The distribution shifts to shorter
times as Vis increased. A gap in N'(w) appears between 10 and
100 ps. {b) Power law: For ~&10 s, N(~) ~~ ~. This is evi-
dent here because P(w) =log, o[N'lw)/10"] lies on a straight
line over 4 orders of magnitude (see text). Inset graph shows the
dependence of the exponent y on the pulse height V. Standard
error on y was of order 5%.
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FICr. 3. Average (r ) (squares) and standard deviation o {tri-
angles). Only distributions with fewer than 10% of delays
longer than 1 second are included. The o. and (7) represented
by hollow symbols are systematically low: some of these delays
were longer than 1 s but are included in the average as 1-s de-
lays. Each (r) is the average of 1024 delays. The solid line
represents (r){e)o-e ' (for V, =87.8 mV) predicted for the
model of Strogatz et al. (Ref. 16).

e, where e=( V —V, )/V, . The exact position of the gap
and the exact form of ( r) (e) vary from sample to sample.
Initial observations by Zettl and Gruner are consistent
with the short delays we have observed.

Several theories have been proposed to explain CDW
conduction in switching samples. Hall et al. ' have pro-
posed that switching samples contain a few "ultrastrong
pinning centers"' which prevent the intact CDW from
sliding. The CDW can slide only when the internal
strains become sufficiently large to cause tears, or phase
slips, in the fabric of the condensate. Inui et al. ' pro-
posed a many-body Hamiltonian embodying these ideas,
and they numerically investigated a 1-degree-of-freedom
version. Strogatz et al. ' have proposed a different, ex-
actly soluble many-body Hamiltonian that is isomorphic
to the mean-field x-y model. Each of these models shows
delayed switching, ' with r o- e ~, where e=( V
—V, )/V, . For the model of Strogatz et al. , p= 1 (solid

line in Fig. 3) and for any 1-degree-of-freedom model,
P= —,'. Using our operational definition of V, to define e,
the average ~ decreases faster than e for
0.005&@&0.05, ruling out the model of Strogatz et al.
and all 1-degree-of-freedom models. There are no Auc-

tuations in ~ reported for the model of Strogatz et al.
We analyze our results by modifying successful classi-

cal models of conventional sliding CDW conduction to
include ultrastrong pinning centers. A discretized
phase-dynamical model that has been studied numerically

by a number of authors is

dP,
dt

({);+i
—0;

x;+) x)
+—e (x, +,—x, , )

x; x; i 2

+ V sin(8, +P, ),
where p, is the phase of the CDW at the ith impurity site,
x; is the random dimensionless position of the ith impuri-
ty, e is the dimensionless electric field, V is the strength of
the impurity pinning potential, and 0; is a random phase.

Phase-dynamical models are only valid when the local
strain, or phase gradient P'=dgldx of the CDW is

smaller than a critical value P,'. A phase gradient larger
than P,

' will cause the CDW to tear by nucleating a phase
vortex. ' ' The sparsely distributed, extremely strong
impurities that pin CDW in switching samples prevent
the CDW from sliding even above the critical voltage for
depinning in conventional samples. ' In our picture, as
the voltage across the sample is increased, the local strain
somewhere in the sample will eventually'exceed P,'. At
this point, a large portion of the CDW begins to slide.

We have assumed that, on application of a voltage
pulse, phase-slippage does not occur until t =~. Thus the
details of the dynamics of phase slippage are unimportant
in modeling ~. We can qualitatively explain our data
with two simple modifications to Eq.(l). (1) The presence
of a single extremely strong pinning center is modeled by
changing the boundary condition to fix the phase at one
end of the chain. (2) Each "spring" is assigned a break-
ing threshold (P;+& —P, )t =b,P,'=P,'l, where I, =x, +&—x; is the distance between impurities. The state of a
static CDW in configuration space can be defined by the
vector v=(hg„b, $2, . . . , b,Pz), where bP;=P;+, —P, .
The intersection of the planes defined by b,P; =b.P,'

defines the surface of a "hyperrectangle"' in the
configuration space of the CDW. We call this surface the
phase-slip boundary (PSB). The volume enclosed by the
PSB contains all phase-slip-free configurations of the
CDW. At any point exterior to the PSB, phase slippage
must occur and the CDW must slide. The switching de-
lay ~ is then the time it takes for the CDW to evolve from
one of an exponentially large number of metastable con-
figurations to the PSB.

This simple picture qualitatively explains many of our
observations.

(1) Memory of previous switch: A CDW begins from a
relaxed state. A pulse applied to this CDW will cause a
switch after a relatively long delay ~o and place the CDW
in a highly polarized configuration. A second pulse will
cause a switch in a shorter time ~&, because the highly po-
larized configuration is closer to the PSB.

(2) Displacement current: The current that fiows be-
fore the switch in Fig. 1 is the displacement current of a
polarizing CDW.

(3) r and the microscopic polarization: The switch in
this model will not always occur at the same macroscopic
CDW polarization because the condition for switching is
that the local phase gradient P,' )P,'.

(4) Distribution of delays and erasing pulse: Each of
the exponentially large number of metastable
configurations of the CDW should take a different time to
evolve to the PSB. Contributions to the maximum width
of the distribution of delays come from distributions in
both initial configurations and in b,P, As the erasing fre-
quency f is increased, smaller and smaller subsets of al-
lowed initial configurations are sampled, as shown by the
decreasing width of N'(to).

The erasing frequency at which erasing pulses become
ineffective, 5 kHz, is close to the reciprocal of the posi-
tion of the long-time edge of the gap in Fig. 2(a) r= 10
s. Such high-frequency pulses could induce no long
switches, although with amplitude 2VC they repeatedly
depinned the CDW after short switches. Apparently,
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many long switches are required to access a wide distri-
bution of initial configurations. However, to understand
the central result of this paper, that the switching delay is
extremely sensitive to the initial configuration, requires
dynamical simulations beyond the scope of this paper. A
clarification of dynamic issues will shed light on the dis-
tribution and evolution of internal strains in CDW con-
ductors, quantities that have been inaccessible to previ-
ous experiments.

Our experimental results may also be relevant to other
continuum systems in which large, inhomogeneous inter-
nal strains can build up. The dynamics of earthquake
faults have been modeled by a chain of identical masses

with nonlinear damping coupled by Hooke's law
springs. ' In an earthquake fault, the local response can
be elastic only up to a critical strain. For larger strains,
slippage occurs. The time it takes for such an event to
occur is the time it takes for the earthquake fault to
evolve from its initial configuration to the phase-slip
boundary.
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