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Spin glass with two replicas on a Bethe lattice
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We consider a mechanism in a spin-glass system with two interacting replicas in which the two
replicas interact via a hypothetical replica coupling field that is set to be zero after thermodynamic
quantities are evaluated. A symmetry-breaking role of the replica coupling field is manifested by
appearance of a negative overlap. Calculation on a Bethe lattice shows that a negative overlap is
possible even for a nonzero magnetic field. The result, however, leads to negative entropy at zero
temperature on the Bethe lattice with infinite coordination number, presumably due to the assump-
tion of uncorrelated boundary condition. However, the study in this paper opens an interesting
question about existence of a negative overlap for a nonzero magnetic field.

I. INTRODUCTION

The infinite-range spin-glass model, known as the
Sherrington-Kirkpatrick (SK) model, ' is well under-
stood. In studies using the replica trick the replica-
symmetry breaking was recognized as the signal of the
spin-glass phase transition at the de Almeida —Thouless
(AT) line. The Parisi solution q(x) was obtained by a
replica-symmetry-breaking scheme and has passed all
stability tests. But the physical meaning of the replica-
symmetry breaking and the abstract Parisi solution was
not understood at first. An alternative mean-field theory
was developed by Thouless, Anderson, and Palmer
(TAP) without using the replica trick. Later it was found
that the TAP equation has infinitely many solutions. It
is believed that the spin-glass phase has infinitely many
pure states, identified as the TAP solutions with the
lowest free energy. With this astonishing discovery the
Parisi solution gained a proper physical interpretation,
q(x) is the order parameter function for an overlap be-
tween two pure states and P(q) =dx/dq is the probabili-
ty distribution function for overlap q. It was found that
the Parisi solution leads to a hierarchical structure of
pure states, ultrametricity. A relaxation dynamics of the
SK model was developed by Sompolinsky and Zip-
pelius. ' Sompolinsky's assumption of hierarchy of many
long-time scales were crucial to find the solution with
long-time behavior due to relaxation through many pure
states" and the result was found to be equivalent to
Parisi's' except for a discrepancy in interpreting the
mathematically identical q (x) between the two theories. '

Let us consider a system with two real replicas, say o.'

and P, with an interaction energy, —u g; S; SP, added to
the Hamiltonian for two independent replicas. The limit
of the hypothetical replica coupling field u is eventually
taken to be zero. Then a spin-glass order parameter is
given as —t)F/t)u ~„o for the free energy F, where the
overbar denotes a random bond average. This system
was studied by Blandin and his collaborators, and also by
Toulouse. ' Earlier Blandin et al. recognized that u
plays the role of symmetry-breaking field in that the solu-
tion in the limit of u ~0 is different from that for zero u,

the SK solution. As the Parisi solution had been well
known, Toulouse considered this two-replica system to
project the moments of the Parisi order parameter,

f dx [q(x)]", in the limit of u ~0, where the above spin-

glass order parameter becomes f dx q (x).
In this paper we discuss that the introduction of repli-

ca coupling might give rise to a different projection; the
order parameter obtained from the first derivative of the
free energy with respect to u is not f q (x)dx but a max-
imum overlap q(l). This does not mean that the process
in u —+0 distorts the problem, but that it forces the two
replicas into a single pure state. A more interesting
consequence of the replica coupling is that the spin-glass
order parameter can have a negative value. This is not a
new fact for zero magnetic field where the system
possesses the spin reversal symmetry. A similar symme-
try breaking can be seen in a ferromagnet where magneti-
zation is either positive or negative for zero magnetic
field and its sign is determined according to how a mag-
netic field approaches zero. In the two-replica system
u —+0+ leads to a positive spin-glass order parameter and
u —+0 to a negative one. This was also observed by
Blandin and his collaborators. ' A new consequence
found from the study on a Bethe lattice in this paper is
that a negative overlap is seen even for a nonzero mag-
netic field. In previous studies a negative overlap for a
nonzero field is implicitly neglected, but a thorough
justification is not provided and there is no systematic
scheme to observe a negative overlap and examine its sta-
bility. The study of two interacting replicas might be a
proper approach to reexamine this problem.

The spin glass on a Bethe lattice has been extensively
studied. ' ' It may serve as a more realistic mean-field
theory than the SK model since a Bethe lattice has the
same local lattice structure as the real lattice with the
same coordination number has and the effect of boundary
conditions can be examined. ' ' Also the replica trick
can be avoided because thermodynamic quantities can be
expressed for an arbitrary distribution of exchange cou-
pling J; .. Equivalence to the Bethe approximation, ' to
the TAP approach, ' ' and to the dynamic theory in
infinite dimension has been found. The replica-
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symmetry-breaking with the identical AT line was satis-
factorily found in the study of two noninteracting repli-
cas by Thouless. ' But the order parameter of a single
system, (S; ), was found to be identical to the SK
replica-symmetric solution. One of the motivations of
this paper is to find a new solution from the interacting
two-replica system in the limit of zero replica coupling
field and, in fact, there are new solutions found in this pa-
per. One of them is in good agreement with our expecta-
tion of a physical solution based on the symmetry-
breaking mechanism in the system of interacting two re-
plicas. Unfortunately the property at low temperature
presents an unphysical result, negative entropy which is
equal to that obtained by Blandin and his collaborators. '"
It is noted that they assumed the replica symmetry in ob-
taining a solution using the replica trick. Throughout
this paper we use the assumption that thermodynamic
quantities between different subtrees of a Bethe lattice are
not correlated which is presumably equivalent to the as-
sumption of replica symmetry. ' However, we expect
that the result in this paper may bring us a qualitative un-
derstanding of the interacting two-replica problem.

In Sec. II effective fields for the two replicas on a Bethe
lattice are defined and the recursive relation for the
effective fields at a site and its outer sites is derived. A
solution is considered to be a fixed point in the iterative
process given by the recursive relation. There are various
solutions found below the critical temperature including
those for noninteracting two replicas. In Sec. III the sta-
bility for the fixed points in the iterative process is exam-
ined. Below the AT line every solution except the replica
symmetric solution is found to be a stable fixed point. In
Sec. IV a new mechanism of the interacting two replicas
is discussed. Especially one of various solutions found in
Sec. III is found to support our argument. In Sec. V the
free energy density in a translationally invariant deep re-
gion of a Bethe lattice is derived. In Sec. VI the exact
probability distribution for effective fields in the limit of
infinite coordination number is derived. Using this result
the free-energy densities for various solutions are com-
pared. The solution in in agreement with our argument
in Sec. IV is found to have the lowest free-energy density,
but also to have negative entropy at zero temperature.
Section VII is for summary of our work and suggestion of
future study of the interacting two replicas.

II. SOLUTIONS FOR RECURSIVE EQUATIONS

where a and p label two replicas. For a spin glass the J,
are randomly distributed with probability P (J; ) given as

1/2

( )
K+I
2mJ

(K+ 1)J;,
exp

2J
(2.2)

A different type of P (J; ), for example, +J distribution,
can be used and the formalism does not depend on any
specific P(J; ). In this paper Ising spins are considered.
The angular brackets ( ) appearing on spin variables
denote the ensemble average due to the given Hamiltoni-
an and the overbar on the ensemble averaged quantities
denotes the average over random bond J, . u is a replica
coupling field, generates an order parameter

q p=N 'g; (S; SP), and will be set to be zero at the
final step of calculation.

The partition function can be written in terms of con-
ditional partition functions which satisfy the recursive
equations

u +2h+2J~, . u —2h + 2JI„.z, =~( + "z„+ 'z,
J

+e "Z~+ +e "Z, + ),
Z —=~ (

u +2hZ + u —2hZ

J

(2.3)

2(g +~ ) Z;+
Z-—

where k denotes the inner neighboring site of a site i, the
j denotes the E outer neighboring sites, and Z, ++ is the
conditional partition function for S~ =+1 and Sk~=+1,
Z, for S& = —1 and Sk~= —1, and so forth. Effective
fields are defined from the ratios of conditional partition
functions. For a single system there is one effective field
due to Z;+/Z; . For two replicas there are three in-
dependent ratios of conditional partition functions. Then
three effective fields g;, il;, and g,. are defined such that

Let us consider two replicas on a Bethe lattice with
coordination number E 11. The Hamiltonian is written
as

2(g+g ~ Z;

Zi —+

2(g +g ) Zi++
i+—

(2.4)

H = —g J;,(S; S. +SOS~)—h g (S; +Sf)
I,

—u gS;SP, (2.1)

g; and il, are effective magnetic fields acting from a site i
to its inner site k for the two replicas a and /3. g; is the
effective replica coupling field acting from a site i to its
inner site k. g; is equal to zero for noninteracting two re-
plicas. If x, =g, +rj,. and y, =g', —il, are used, the recur-
sive equations for x, , y, , and g, can be written as
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U,.
e 'sinh(2Jk, )sinh(X, )

tanhx; =
e 'cosh(2Jk;)cosh(X;)+e 'cosh(Y;)

(2.5a)

—
U,.

e 'sinh2Jk; sinh Y;
tanhy; =

e 'cosh(X;)+e 'cosh(2J&, )cosh(Y;)
(2.5b)

4g.1—
—2U,'cosh ( Y, )+2 cosh(2J&; )cosh(X; )cosh( Y; )

2U,.
e ' [cosh (2Jk; )+sinh (X,. ) ]+e

e 'cosh (X;)+e '[cosh (2J&;)+sinh (Y;)]+2cosh(2Jk, )cosh(X;)cosh(Y;)
(2.5c)

where U, =u +g. gj, X, =2h +g x, and Y; =g y. .
In order to have thermodynamic quantities which are

translationally invariant, we are only interested in a deep
region of a Bethe lattice far from the boundary. In this
region the iterative process given by the set of recursive
equations for effective fields in Eqs. (2.5a) —(2.5c) will
yield a fixed point probability distribution for the
effective fields. As Bowman and Levin noticed an
effective field cannot have a fixed point value but a fixed
point probability distribution due to a given probability
distribution for J, . ' In Sec. VI the probability distribu-
tion for effective fields will be exactly obtained in the lim-
it of infinite K. For a general K where the probability
distribution for effective fields cannot be calculated exact-
ly, the moment expansion can be used near the critical
temperature. Then a fixed point can be represented by a
set of the moments of effective fields instead of the proba-
bility distribution for them.

Throughout this paper we assume that the effective
fields at different subtrees, which are not located on the
same path from the central site to a site at boundary, are
not correlated. As seen in Eqs. (2.5a) —(2.5c) the effective
fields at site i are determined by the effective fields at its
outer neighboring sites j. Two different subtrees have no
outer neighboring sites in common. So this assumption
seems to be reasonable and most of the studies on the
spin glass on a Bethe lattice have used this assumption.
When an iterative process has multiple fixed points
different fixed points are mapped into by different classes
of initial conditions. On a Bethe lattice boundary condi-
tions play the role of initial conditions and are given by
distributions of unrecognizable random external fields on
boundary sites. ' ' An uncorrelated boundary condition
in which a random external field at each site of the
boundary is given independently of other sites leads to
uncorrelated effective fields at different subtrees inside.

Mottishaw pointed out that this assumption might be
equivalent to the assumption of the replica symmetry. '

Recently Lai and Goldschmidt found in a numerical
study that a correlated boundary condition leads to a
solution which is in qualitative agreement with the Parisi
solution. But as far as we know no analytic method has
been developed to find a fixed point solution with correla-
tion among different subtrees. In Sec. VI it will be found
that the result with this assumption of unco rrelated
boundary condition leads to an unphysical result. An im-

portant purpose of this paper is to present a possible new
mechanism of the interacting two replicas which is absent
in the previous theories for a single system. We expect
that the solution obtained with this assumption might
bring us an interesting result in the qualitative level.

Near critical temperature Eqs. (2.5a) —(2.5c) can be ex-
panded in terms of various powers of effective fields.
Then powers of effective fields at site i can also be written
recursively in terms of those at its outer neighboring sites
j. When the random bond average is executed on the
powers of effective fields the odd powers of x;,y; vanish
due to the symmetric bond distribution. The moments of
effective fields are the bond-averaged powers of effective
fields such as x;, y;, g;, x, y, , g, x, , and so forth where
the overbar denotes the random bond average. As a re-
sult the infinite set of recursive equations for the mo-
ments of effective fields can in principle be obtained. A
fixed point is then a solution for those recursive equations
where the moments at site i and sites j are set to be equal,
i.e., x =x; =x~, y =y; =y~, g=g, =g, and so forth.
The assumption of uncorrelated moments at different
subtrees can break coupled moments between difterent
subtrees into moments at the same subtrees, for example,
xjxj x xj for sites j,j ' at different subtrees. Then for a
fixed point the moments of higher orders can be written
in terms of powers of the moments of the lower order
such as x,y, and g.

Resultant equations for a fixed point are three equa-
tions for x, y, and g, and can be expressed in terms of

and g by use of g =(x +y )/4 and
grl=(x —y )/4. When the three equations for g, gq,
and g for h =u =0 are expanded up to second order in

themselves, using t2„=K tanh "2J;j as parameters, it can
be shown that for t2 & 1 there exists a unique paramag-
netic solution where g =(i)=/=0, and that for t2) 1

there are various solutions with nonzero g where g is
the same to the first order in t2 —1, given as
(t2 —1)/2(K —1), and g is exactly equal to zero or van-
ishes to first order in t2 —1. The critical temperature T,
is determined from the condition t2=1. In the limit of
infinite K, T, =J and Kg = 1 —T/T, to the lowest order.

22Treating+ to be of order of g, the three equations for
g, P, and gq for nonzero h and u are written to next or-
der as
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2(ti t—
4 )(K —1)

0=(t2 —1 g— g' /+4~( —,'g + —,'gi) )g+—
4

2(t2 —&4)(K —1) i2 2(&z —&4)(K —1) 17 —230=(t2 —1)$2— ( + gr)g+ a.g +
(1 r, )

— (1 r, )— 3 E
2(r, —r, )(K —1), 2(r, —t, )(K —1) ~0=(t2 —1)gil —

g gr)+ pg+S~p gr)+ —', a/i) +
4 4

(2.6a)

(2.6b)

(2.6c)

where a = (K —1)(K 2+2K—t~ t„)/—( 1 t4 ) is—used.
From these equations the three moments can be calculat-
ed up to the lowest orders in t2 —1, equivalently in
1 —T/T„ from which each solution starts to differ. u is
kept nonzero for the derivatives of the moments with
respect to u required to evaluate a spin-glass susceptibili-
ty defined as Bq &/Bu.

For t2 ) 1 and u =0 there are two solutions with /=0
which are nothing but the solutions for noninteracting
two r~elicas. ' One is the replica-symmetric solution
with g =fr). It will be shown in Sec. VI that this solu-
tion becomes identical to the SK replica-symmetric solu-
tion in the limit of infinite K. The other is a replica-
symmetry-breaking solution with g Agr) (gil =0 for
h =0). The two solutions become the same for a magnet-
ic field given by h~T =4aKg /3 to the lowest order in
1 —T/T, . In fact this line given by h~T is identical to
the AT line in the limit of infinite E. Hereafter we call
this line the AT line even for a finite E.

For t2 ) 1 there are also two nontrivial solutions
with (WO even for u =0. For both solutions gi) can
be negative for 0 h ~ h' & h~T where
h

' = (5/&10 —14)h ~~ /54. One gives rise to
gr)=+/ /&2 for h =0. The other solution looks most
interesting. A positive gi) is equal to g2 for every h below
the AT line. A negative gr), which is equal to —g for
h =0, has less magnitude than g for a nonzero h, which
shows an agreement with the argument about the mecha-
nism of the interacting two replicas discussed in the next
section. At the AT line both solutions with positive gr)
also coincides with the replica-symmetric solution.

The various solutions for t2 & 1 can be grouped into
two classes. One is replica symmetric in that g =fr) and
(=0, where introduction of two replicas is meaningless
and only the replica-symmetric solution belongs to this
class. The other is replica symmetry breaking in that

g Wgil or /%0. The rest of the solutions belong to this
class. All the replica-symmetry-breaking solutions be-
come equal to the replica-symmetric solution at the AT
line. Above the AT line they give rise to a seemingly un-

physical result that gi) ) g' . So we can say, at least, that
only the replica-symmetric solution is acceptable above
the AT line. In the next section the stability analysis for
these various fixed point solutions can show that the re-
plica symmetric solution is unstable below the AT line.

III. STABILITY ANALYSIS FOR FIXED POINTS

The stability analysis for the fixed point solutions ob-
tained in Sec. II can be examined by studying how a vari-

ation from its fixed point solution in a shell affects a vari-
ation in its inner shell. ' Using a vector notation, the re-
cursive equation for the moments of effective fields can be
written as

CO;
—JY [co& ]

with

(3.1)

(3.2)

where M, an ao X ~ matrix, is called the stability matrix.
If all the eigenvalues of M are less than unity, then varia-
tion at the boundary causes an exponentially decaying
response deep inside the tree; the fixed point is then a
stable solution of the iterative process, otherwise the fixed
point is not stable. The correlation length gL associated
with the eigenvalue A, can be defined' ' as

1
A, =exp 1or gL=—

ink,
(3.3)

can measure the characteristic steps of iteration re-
quired to reach a fixed point. At the critical line (AT
line) gL diverges, which resembles the critical slowing
down in relaxation of a thermodynamic system toward an
equilibrium state.

There are three relevant eigenvalues close to unity and
others are order of t4, t6, . . . , which are order of
K ',K, . . . , in the limit of large K. g is a moment of
the lowest order in 1 —T/T, and the relevant eigenvalues
can be obtained to first order in g by solving an eigenval-
ue equation for an 8X8 matrix which is a small block
matrix out of the original ao X ao stability matrix M. To
this order the relevant eigenvalues depend only on g .
Above the critical temperature (t2 & 1) the paramagnetic
solution is unique and stable; for u =h =0, g =g'i) =/=0
and the three relevant eigenvalues are all equal to t2
which is less than unity. This paramagnetic solution is

co; =(x;,y;, x;,y;, x;y;, g;, g, x;,g,.y;, . . . ),
where i denotes the inner site of site j, m, is the vector no-
tation of moments of effective fields at site i, and A
denotes the recursive relation provided by the infinite set
of recursive equations for the moments of effective fields.
The linear expansion of Eq. (3.1) due to small variations
6m;, 6~ of co;, co from a fixed point co satisfying
co =%[co], leads to
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unstable below the critical temperature where t2 ) 1.
Below the critical temperature (tz) 1), as already no-
ticed, every fixed point solution other than the paramag-
netic solution has the same g to order of 1 —T/T, . To
this order every solution for t2) 1 has two marginal ei-
genvalues which are double rooted with the value of uni-
ty and the other is 1 —2(K —1)P=2—t2 which is less
than unity. The two double-rooted eigenvalues differ in
higher orders in P. The stability of the various fixed
point solutions for t2 ) 1 will be determined by correction
to the two eigenvalues in higher orders.

Out of the huge stability matrix M only a small block
matrix contributes to corrections to second order in g to
the two eigenvalues. It can also be decomposed into two
parts; Mo for which eigenvalues are known to first order
in g and M which gives second-order corrections to ei-
genvalues. Mo and M' are 15 X 15 matrices. Variations
of moments involved are components of a vector given as

for e2=1

O=det

for e Wl

M'» —A,
'

M2)

M)2

M22 —A,
' (3.5a)

M 11 ™22 (Ml1 M22 ) +4cM21
2

1/2
4cM3iM23

1 —A, 3

(3.5b)

k,„= 1 —4(K —1 )eg — +~ 2(i) ——2g
E

where M„' =U„.M' ~ U . It is found that M» =M22,
M2, =0, and M&3 = —M3, /2. A,

' for both Eqs. (3.5a) and
(3.5b) can be written in a common expression. So the ei-
genvalue A, „closest to unity is given as

5', = (5x 2, 5y 2, 5x, y, , 5x4, 5y;, 5g;, 5g;x;, 5g;y; +2& (K 1)
I (I&1—~' . (3.6)

5x, , 5y, , 5x, y, , 5x;y;, 5g;x;, 5g;y;, 5g;x;y; ) .

(3.4)

It is hardly appropriate to write down the matrix ele-
ments of the 15 X 15 matrices except noting that the sta-
bility matrix is not symmetric so that the perturbation
theory used for a Hermitian matrix cannot be applied un-
less the completeness of eigenvectors is guaranteed.

For a nonsymmetric matrix A, when eigenvalues are
not distinct, as is the case of Mo, eigenvectors may not be
complete. In this case the incomplete eigenvector space
can be extended to a complete vector space which is the
eigenvector space associated with ( A —

A. I)" where A,

is an eigenvalue of A with multiplicity m. In our prob-
lem m =2 and A, =1. It is found that the completeness
of the eigenvectors of Mo depends on a parameter E

defined as E=gi)/gWh' e.n e = 1 there exist two
diff'erent right (left) eigenvectors with the double-rooted
eigenvalue so that eigenvectors of Mo are complete.
When e Wl there exists only one right (left) eigenvector,
called u, (v, ), so that eigenvectors of Mo are not com-
plete. However, there exists U 2 satisfying
(Mo —I) v2 =cu& with c =4(1—e )(K —1)g . Therefore
the right eigenvectors of (Mo —I) are complete. This is
also true for left eigenvectors. Let v, and u2 (v, and uz )

be the two right (left) eigenvectors of either Mo for e = 1

or (Mo —I) for E Wl, and u3 (v3 ) be the right (left)
eigenvector of Mo whose eigenvalue is one of the three
relevant eigenvalues equal to 1 —2(K —1)g, called A, 3.
As in a symmetric matrix the orthogonality of eigenvec-
tors holds; U .u„=6 „where v and p are indices for
different eigenvectors.

An eigenvector of Mo+M' can now be expanded in
terms of the complete set of eigenvectors of either Mo or
(Mo —I) . After a similar perturbation expansion used
for a Hermitian matrix it can be shown that the second-
order correction A.

' to the two larger eigenvalues is given
as follows:

h' 4
A, „=1+

Kg
(3.7)

which is less than unity below the AT line. A negative gi)
yields complex A. „the magnitude of which is less than
unity, so is also stable.

Equation (3.6) reduces to the eigenvalue obtained in the
noninteracting two-replica theory' when /=0, as expect-
ed.

Above the AT line only the replica-symmetric solution
with g =pi) and (=0 has the eigenvalue A, ,„ less than
unity. At the AT line this solution has k „equal to uni-

ty, so has the correlation length gL divergent. However,
k „is bigger than unity below the AT line. The replica
symmetric solution is the unique stable solution above the
AT line but unstable below it.

A replica-symmetry-breaking solution with /=0 is al-

ready known to be a stable fixed point below the AT
line' in noninteracting two-replica theory. This solution
is still stable even in the interacting two-replica theory
because every term dependent on g in Eq. (3.6), which is
only different in A. ,„between the two theories, vanishes.

Another replica-symmetry-breaking solution with

grI =+/ /&2 for h =0 can be easily found in Eq. (3.6) to
have complex eigenvalues below the AT line because
e (1 and (%0. The two complex eigenvalues are com-
plex conjugate to each other and so are the eigenvectors
since the stability matrix is real. Then a real vector
representing a set of the moments of effective fields has
complex conjugate coefficients for these complex eigen-
vectors. Each step of iteration simply gives complex con-
jugate multiplicative factors, which are the two complex
eigenvalues, to each of the two coefficients. Therefore no
complex moments of effective fields can be generated if
the moments at the boundary are real. The magnitudes
of the complex eigenvalues are less than unity below the
AT line, so this solution is also a stable fixed point.

In the remaining replica-symmetry-breaking solution a
positive gi) leads to real A, ,„since e = 1,
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IV. THE ROLE OF REPLICA COUPLING FIELD

The replica coupling field u plays the same role of gen-
erating field of the spin-glass order parameter q

~
as the

magnetic field does in a ferromagnet; q &=N BF/Bu.
What q & really measures is, however, not so obvious. As
Toulouse suggested this two-replica system, q & was con-
sidered to be the Parisi order parameter f dx q(x), '

which is true for noninteracting two replicas if the Parisi
solution and its interpretation are accepted. But for the
two interacting replicas even in the limit of u ~0q &

might be different from its value for the two noninteract-
ing replicas.

We conjecture that q p be a maximum overlap rather
than the average of all possible overlaps. For a small u,
expanding the free energy density for two replicas,

f(u)=f(0) —
q &(0)u+ (4.1)

Since every pure state has the same free-energy density,
f (0) is the same for any combination among pure states
with an arbitrary overlap and is equal to two times the
free-energy density of a single pure state. But for a small
u a maximum overlap has the lowest free-energy density
and the others become metastable. In fact in the absence
of a magnetic field q E3

=q (1) for u ~0+ and

q 13= —q(1) for u —+0 in terms of the Parisi solution.
A similar argument holds in a ferromagnet where the
magnetic field h replaces u so for h ~0+ the state with a
positive Inagnetization is stable and vice versa. The sign
of the order parameter depends on how u approaches
zero, so u plays the role of symmetry-breaking field.
Since u is not a realistic field, this mathematical resem-
blance to ferromagnetism alone might not confirm our
conjecture, an explicit calculation must be provided. The
result in the last section supports our argument. Let us
return to this problem later in this section.

For zero magnetic field the system possesses spin rever-
sal symmetry, so for a given pure state there always exists
its mirror state obtained by reversing all spins and the
magnetizations for these two mirror states have opposite
signs to each other. Therefore there are the same number
of negative overlaps as of positive overlaps. In the previ-
ous theories this is treated to be a matter of double count-
ing so only positive overlaps are considered but there is a
no systematic way to separate positive and negative over-
laps. A reasonable explanation of this separation can be
seen in the Monte Carlo study by Mackenzie and
Young where it was observed that the excitation from a
pure state to its mirror state is thermodynamically most
improbable, i.e., requires the longest relaxation time. The
replica coupling between two real replicas, even if not
realistic, provides a systematic way to separate the two
distinct classes of overlaps.

This symmetry-breaking role of u might be thought of
nothing but a way to reformulate a trivially understood
property. However, if a negative overlap is found for a
nonzero magnetic field, it would not be trivially under-
stood. The following is a possible explanation of ex-
istence of a negative overlap for a nonzero magnetic field.
In the presence of a sufficiently small magnetic field, spins

start to align with the magnetic field. A pair of two mir-
ror states built in the absence of the magnetic field will
have small droplets with spins aligned with the magnetic
field. If their typical spin configurations are not consider-
ably changed the overlap between these two states is still
negative, but there will be a small positive contribution
due to such droplets. On the other hand the self-overlap
of a single state has a positive value the magnitude of
which is bigger than that of the negative overlap. The
difference in magnitude between the positive and the neg-
ative overlap comes from small droplets excited in the
two states.

There is a big qualitative difference in mirror states be-
tween the spin-glass and the ferromagnetic phase. In the
presence of a magnetic field only the ferromagnetic state
whose magnetization is aligned with the magnetic field is
favorable; its mirror state is unfavorable. But no single
state of two mirror states in the spin-glass phase is favor-
able, both are equally favorable or equally unfavorable.
If they are equally unfavorable in the presence of the
magnetic field they will be suddenly replaced by new pure
states. However it is very hard to imagine this sudden
appearance of new states. Two mirror states in the anti-
ferromagnetic phase have rather similar properties, they
coexist until a suScient magnetic field makes a state with
spins aligned with the magnetic field more stable. But the
spin-glass phase is much more complicated. There are
many pure states, some of them in the vicinity will fall
into a new state, so the number of pure states will de-
crease as a magnetic field is applied. However, the dom-
inant spin configuration and the number pure states will
change continuously, not suddenly. So there might be a
new pair of offsprings of two mirror states. A negative
overlap for a nonzero magnetic field, presumably less
than h AT, cannot be satisfactorily explained by the argu-
ment we have given so far until an explicit calculation
can be performed. However, we might say, at least, that
the widely accepted argument that a negative overlap
suddenly disappears or becomes metastable when a mag-
netic field is turned on is also questionable.

From solutions obtained in the last section new proper-
ties from the interacting two-replica theory can be seen.
First it is noted that there are different expressions for
spin-glass order parameters:

—..=—g (s,')' d q. =—y(s,')(sP) .=1
l E

(4.2)

where the j are the % +1 neighboring sites of the central
site. Then,

Since we are interested in the thermodynamic property in
a translationally invariant deep region of a Bethe lattice,
the three spin-glass order parameters can be evaluated at
the central site. It is convenient to have the following
definition:

K+1 K+1 K+1
H =h+g g, HEi=h+g iE, U=u+g gj,

J J J

(4.3)
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tanhH tanhH&+ tanh U

1+tanh U tanhH tanhH&

2
qua ™ao~

(4.4)

tanhH &+tanhH@ tanh U

1+tanh U tanhH tanhH&
(4.5)

Near T, expanding the order parameters in terms of
effective fields leads to the following result, to the lowest
orders in 1 —T/T, :

q =(%+1)P,
q p=(K+1)gg,

q p
—

q p=(%+1)g .

(4.6)

The solutions with nonzero g show the symmetry break-
ing. gr) and g have the same sign, either positive or nega-
tive, so do q & and q &. Also it can be found that
~q & ~

& ~q & ~, which seems to support the assumption of
the maximum overlap of q &.

The replica coupling is assumed to allow only the com-
binations with maximum overlap among many pure
states. Also in the presence of negative overlaps the
whole phase space, the set of all possible spin
configurations, for a single system can be divided into
two distinct regions associated with positive and negative
overlap, respectively. More precisely, the two distinct re-
gions can be constructed for a given reference pure state
in such a way that all the pure states which yield positive
overlaps with the given state fall into one region and the
rest into the other. The way of partitioning is not unique
because of freedom in choosing reference states. Howev-
er, if every reference pure state is to lead to the same
physical result such partitioning can be well defined.

q p=m om

where magnetizations at the central site m ~= (So'~ )
are given as

Let V and V' be such two distinct regions in phase
space. For zero magnetic field if a pure state belongs to
V, its mirror state belongs to V'. For a nonzero magnetic
field the two states, if a negative overlap still exists, are
no longer Inirror states and the distinction between them
in microscopic level is not clear. But for a given pure
state in V, the other pure state which gives rise to a nega-
tive maximum overlap with the given state can, in princi-
ple, be found in V'.

Let a and a be a pair of states with maximum overlap.
For u ~0+a and a are an identical state. For u ~0
they should be found in different regions, V and V'. With
the assumption of maximum overlap the ensemble aver-
age of a function 6 of spins of two replicas in the limit of
u —+0 can be given as

(6)=—g g g 6 exp[ —& —&~],1

Z a E v
I s. I E a I s~I ca

(4.7)

= g exp[ 2F, ], —
aEV

(4.8)

where F, is the free energy of a pure state a and the fac-
tor 2 is due to the fact that I', =I . F, may be identified

as the TAP free energy. Since the theory has no prefer-
able pure state, the sum over a is performed. The a are
restricted only in one of the two regions, say V, to have
distinct combinations among pure states. More precisely,
there must be a overall multiplicative factor 2, which will
not change the result of ensemble average.

The order parameter q &
is given in the limit of u ~0

where the previous two-replica Hamiltonian & is decou-
pled into two parts & '~ each of which is the Hamiltoni-
an for a single system with name a or P. The memory of
u is only contained in the summation over a restricted
phase space. The partition function Z is given as

Z= g g g exp[ —gP —&~]
a E V IS. I &a ISPI Ea

q„&=—g —g g S; exp( —%' ) g SPexp( —&~)= g P, —g m, 'm, ' . .1 1 n n-
i aE VIg Is,~I Ea aEV i

(4.9)

—F
Z, = g exp( —& )=e

Is,. I ea

(4.10)

So P, ~exp( F, ). For u ~0+m =m—
,', so q & can be

identified as q(1) of the Parisi solution. For u ~0 q &
is

equal to —q(1) for h =0. But for h&0 it might have less
magnitude than q(l) due to a partial alignment of spins in

m and m are the magnetizations for states a and a, for
example,

m,'= g S; exp( —& ),= 1

I
g~

I ~ a

the direction of the magnetic field as discussed before.
In a similar way the other two-order parameters q

q & can be expressed as

q = g P.Pb —gm, m,b,
a, bE V 1

(4. 1 la)

q p= g P, Pb —g m, 'm, b .
a, bCV

(4.11b)

For u —+0+q =q &= f odx q (x) for all h below the AT
line. For u ~0 q &= —

q = —f odx q(x) only for
h =0. But for h&O~q &~ & foq(x). q & might also be
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written as fdx q(x), but q(x) is unknown.

Of the various solutions below the AT line found in the
last section only one solution is in agreement with the ar-
gument we have given, which can be seen in Eq. (4.6). In
this solution there are two cases. For a positive g, g =g'g
for every h below the AT line. On the other hand, for a
negative g, gg is negative and ~gg~ ( ~g ~. Also both cases
leads to ~q &~ ) ~q j3~, which supports the assumption of
maximum overlap of q &.

It is tempting to define a susceptibility y„of the spin-
glass order parameter q & as

1 BF
Xf & Bu' u-o

aq.~(u)
Bu

=—y [&s s,j's s» &s s—~&&s s~&j1

l, J

Applying Eq. (4.7), for u ~0+,

(4.12)

(4.14)

This seems to contradict the marginal stability below the
AT line.

The usual spin-glass susceptibility ps' is given as

y, =—g(&s, s, &
—&s, &&s, &)'.

I,J
(4.15)

If it is evaluated in a single pure state, the difference be-

y„= y P.—y [(&S;S,&. )' —(&S;&.&S, &. )'], (4.13)
aEV ij

where the angular brackets & & denote the ensemble aver-
age due to the Hamiltonian of a single system and the
subscript a means that the average is performed in a sin-

gle pure state a. Since the contributions from all a's are
expected to be the same, the order parameter q & and its
susceptibility g, are the quantities in a single pure state.
A similar expression can be obtained for u ~0

This susceptibility can be evaluated by calculating the
derivatives of the moments of effective fields with respect
to u. An interesting result is that g, diverges at the AT
line for every solution found in the last section. The
spin-glass phase is signaled by the divergent susceptibility
as in a ferromagnet.

When the most interesting solution with gg=g and
(&0 is chosen below the AT line and the replica sym-
metric solution above it, near the AT line, g, behaves
symmetrically such that

sG is g'ven as

y„—y, =—y &s, &&s, &(&s,s, &
—&s, &&s, &) . (4.16)

l,J

Since the susceptibility matrix y," given as
&S;Sj &

—&S; & &S & is positive semidefinite, the right-
hand side in Eq. (4.16) becomes positive. So the positivity
of the susceptibility y„can be used as a criterion in select-
ing a physical solution. In fact above the AT line the
unique stable solution, the replica-symmetric solution,
has a positive g, . Below the AT line, the solution with
gg=+g /&2 for h =0 as well as the replica symmetric
solution has a negative g, . But the two remaining replica
symmetry-breaking solutions below the AT line, includ-
ing the solution obtainable from noninteracting two-
replica system, have positive y, 's.

The solution given by gg=g everywhere below the
AT line or gr) &0 up to a nonzero h below the AT line
seems to be in most plausible agreement with our as-
sumption of maximum overlap, a negative overlap for a
nonzero h, positivity of y„. In the following sections it
will be found that even this solution presents serious
problems. However we hope that the above qualitative
agreement is helpful to understand the possible new phys-
ics of the interacting two-replica theory.

V. FREE ENERGY DENSITY

We are interested only in a deep region of a Bethe lat-
tice where the system is translationally invariant. The
free energy in this region must be carefully defined. It
cannot be obtained by directly evaluating the logarithm
of the partition function in which the contribution from
the outside of this region is not negligible. It is noted
that the number of spins at the boundary is comparable
to the number of interior spins.

Peruggi et al. found the expression for the free-energy
density in a deep region of a Bethe lattice with a fer-
romagnetic or an antiferromagnetic interaction. They
expressed the internal energy density and the entropy
density in terms of the probability for spin at a site and
the joint probability for a pair of spins at neighboring
sites. Generalization of their expression to the two-
replica system is made in this paper. An equivalent ex-
pression may be obtained by writing the effective fields

(g, , g, , g, ) in terms of the order parameters (m, , mP, q, P)

in the logarithm of the partition function and by extract-
ing the contribution of a single site and half the contribu-
tion of a single bond without summing all terms. In this
way Bowman and Levin derived the TAP free energy on
the Bethe lattice with infinite coordination number. '

The free energy f; at site i is expressed as f, =e; —s;
where e, is the internal energy assigned to site i and s; the
entropy. More explicitly,

e;= —2h (P ++ —P; ) —u (P +++P, P+ P, +)——
—2 ~ X Ir +IJ' ++,J++ + —,J + — —+,J —+ ——,J —— ++,J —— + —,J —+ —+,J+-

J («)

Pi ——,j++ ) (5.1)
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s;=K g P; lnP; —,
'—g g g P, , lnP. (5.2)

where P,. ~ is the probability for two replica spins at site i given as S; =o., S~=o', and P, , the joint probability
1 1'~ 2 2

for two replica spins at neighboring sites i,j given as S; =0
&
S. =0& S~ =02 S~ =02. + is a simple notation for

cr =+1. g' denotes the sum over the neighboring sites j of site i
The central site can be chosen for i most conveniently. Then the probabilities can be expressed in terms of the condi-

tional partition functions defined in Eqs. (2.3) and (2.4), so in terms of the eff'ective fields. For a simple example,

%+1 K+ 1

Po~~ ~e Q Z ~~~exp 2h+ g (g +g, +g, )

j=1 j=l
(&.3)

and the normalization factor is determined by the condition that g, Po = 1. The joint probabilities between neigh-
boring spins are also given in a more complicated but a similar manner.

After some lengthy manipulation the complicated expression for the free-energy density can be written in a simplified
form as

fo= —h(m o+mpo)+ ln(1 —tanh Jo )
K+1

2

+K ln [4 cosh U coshH coshH p( 1+tanh U tanhH tanhH p ) ]

—(K + 1)in[4 cosh U'coshH' coshH p( 1+tanh U'tanhH' tanhH p ) ]

2
ln[1+tanhJoJ(m'om'~+m pomp )+tanh JoJ q' poq'p ]—KIH m o+Hpmpo+ Uq po]

+(K+1)[l+tanhJo (m'om'
+m porn p )+tanh JoJ q'poq'p, ]

X [H (m o+tanhJoJ m 1 )+Hp(m po+tanhJo& m pJ )

+ U'(q' po+tanh Jo q'p )+tanhJo. U'(m'om p
+m'

m po)

+tanhJo (H'mp +Hpm' )q'po+tanh Jo.(H'mpo+Hpm' )q'@], (5.4)

where j is one of the nearest-neighboring sites of the cen-
tral site and the final result after the random bond aver-
age does not depend on a specific j. H &, U, m o, m,
and q are defined in the last section. The correspond-
ing primed quantities have the same expressions as the
unprimed except that the site j is not included in the
summation over the neighboring sites of the central site
0. m', m&, and q'& also have the same expressions as
those at site 0 except that the summation over effective
fields is done over the outer neighboring sites of the site j
so the central site is not included. The difference between
the primed and the unprimed quantity is small in the lim-
it of large K, which will be used to calculate the free ener-

gy density in the limit of infinite K in the next section.

VI. IN THE LIMIT OF INFINITE
COORDINATION NUMBER

In the limit of infinite coordination number the fixed
point probability distribution for the three effective fields
can be exactly found by using the method of Oliveira and
Salinas.

In this limit K~ ~ we have

KJ«=J, KJk =0 for n &2, (6.1)

where the overbar denotes the random bond average over
Jk;. Then it is sufficient to expand g;, q; to first order in

Jk; and g; to second order such that

tanhH'; + tanhH&; tanh U,-'

1+tanhH';tanhH&;tanh U
(6.2a)

n =Jk;
tanhH&, + tanhH';tanh U

1+tanhH';tanhH&;tanh U

tanh U,'(1 —tanh H', )(1—tanh H p, )

(1+tanhH', tanhHp, tanhU )

(6.2b)

(6.2c)

4(=JI„m a,

'9; —Jk, m p,

2g;=J (qk' pm';mp;) .

(6.3a)

(6.3b)

(6.3c)

It is noted that in m ',- or the other primed order parame-
ters at site i the contribution from its inner site k is not
included. Under the assumption that the effective fields
at different subtrees are not correlated, Jk, is independent
of H', , H&, , U,', so independent of m', and the other two

where H'; =h+g g, Hp;=h+g~. gJ. , U,'=g~ g, are
used. The j denote K outer neighboring sites of i and k
the inner site. Then, in terms of the primed quantities in

the last section,
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primed order parameters at site i. This property will
yield the exact probability distribution for the effective
fields in the following.

It is more useful to know the probability distribution

for summed effective fields, for example, g,. g, , than for a
single effective field. The probability for x,y, z as general
variables can be expressed in the Fourier representation
as

P (x,y, z) =
3&2 Idk, f dk2 jdk3 P(k „k2,k3 )e (6.4)

Ifx =g; g;, y =g; g;, and z =g, g;, then

K
P(k] k2 k3) Q exp[ ik J m ik2Jk™p ik3Jk'(q.'p;™.';mp;)](2~)'", (6.5)

Then the cumulant expansion gives

1 JP(k„k2, k3)= exp — [q (k, +k2)+2q pk, k2] ik3J—(q p qp)—(2') (6 6)

where it is used that in K ~~ limit q„=(m '; ) = (m p; ) and q p
=m ';m p;. By the Fourier transformation

P (x,y, z) = 6(z —J (q p
—

q p))
exp

2~J'Qq'. . q'.p—
q (x +y ) —2q pxy

2J (q —
q p)

(6.7)

The distribution for g, g; and g; q; is the same as that for two noninteracting replicas. The 6 function distribution
for g, g, is the difference between the interacting and the noninteracting two-replica system. For the noninteracting
case q p

—
q p is equal to zero, i.e., the g, vanish in all equations.

In the limit of infinite K the free-energy density obtained in the last section can be further simplified with the known
probability distribution for effective fields. We will not present the calculation in detail, except mentioning a basic idea.
Since the probability distribution for the summed effective fields over K outer sites is known, for a quantity 6 at the
central site, the following expansion can be used:

QG , 96 , BGG(H, H, U)=G(H', Hp, U')+ Jo m', + Jo mp + . Jo (q'p. —m'~mp. )+ (6.8)

Then the bond averaged free-energy density f, which is equal to f0, can be written as

f= —
—,]J~(1—

q )~+ —,'J (q p
—

q p)(q p+q p) —ln[coshU' coshH' coshHp (1+tanhU' tanhH' Hp )], (6.9)

where

U'=J(q
p
—

q p),
1/2 1/2 (6.10)

H' =h +Ja, P
qz+—
2

Z

1P (z+,z ) = exp[ —
—,'(z+ +z ) ] .

2~
(6.11)

For two noninteracting replicas U' =0. Since the
Gaussian average of a function of either H' or H& alone
over z+, z becomes the Gaussian average of the func-
tion of H =h +2+q z over a single random variable z,

and q+ =q +q & is used. The overbar denotes the aver-
age over z+, z with the Gaussian probability distribu-
tion given as

f l2 leads to the SK replica-symmetric free-energy densi-
ty and q is equal to the SK replica-symmetric solu-
tion. ' Also the replica-symmetry-breaking solution for
noninteracting two replicas, where q &

=0 for h =0,
shares the same unstable rephca-symmetric free energy.

Below the AT line every solution except the replica-
symmetric solution was found to be a stable fixed point.
By comparing the free-energy densities for various stable
fixed pints, we might determine the stability. Only the
solution with the lowest free energy is acceptable. It is
noted that the paramagnetic solution with P=gg=g=O
for h =0 has the lowest free energy, but it is an unstable
fixed point.

It can be found that the free-energy densities for all
stable fixed point solutions are the same up to fourth or-
der in 1 —T/T, near T, . The expansion of f to fifth or-
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der shows that the solution with q f3
—-+q /V'2 for

h =0 has a higher free energy than the other solutions;
one is the replica-symmetry-breaking solution with
U' =0 and the other is the one with U' %0. It is from
the sixth order that the two begin to differ. This is also
the first order from which the Parisi solution and the
replica-symmetric solution begin to differ. The result is
that the replica-symmetry-breaking solution newly ob-
tained from the interacting two-replica theory has a
lower free energy than the one from the noninteracting
two-replica theory.

In the solution with the lowest free energy, it is in-
teresting to compare the free-energy densities for a posi-
tive and a negative overlap for a nonzero magnetic field.
They are the same for h =0 because of the spin reversal
symmetry. The direct comparison is very involved. But
for a small h &&h', where h' is the limiting field for nega-
tive overlap, we can easily compare them. Renaming the
magnetic fields on the two replicas differently h and h&,
then the free-energy density for a small h =h =h& can
be expanded as

f(h =h, hp=h)

1 a2 a2 a2=f(0,0)+— +
~

+2
2 ah2 ahp2 ah. ahl h=

+ 0 ~ ~

=f(0,0)—(1—
q +q p

—
q p)~„,h'+. . .

(6.12)

where it is used that am /ah = 1 —
q and

am /ah&=q &
—

q &. Since q is the same for the two
cases, the solution with a negative overlap has a higher
free energy for a nonzero h, i.e., becomes metastable. A
similar case can be seen in a ferromagnet where for a
nonzero h the solution with magnetization in opposite
direction to h becomes metastable. It might be said that
the solution with a negative overlap is of no physical in-
terest. However, we will see in the following that it is not
conclusive yet.

The final task in this paper is the extension to zero
temperature. The entropy density can be obtained by
differentiating the free energy with respect to tempera-
ture T and is given as

s= —
—,'J (1—

q )(1+3q )

,'J (q & q— &)(q &—+q &)+ln[4coshU' coshH coshH ~(1+tanhU' tanhH tanh ~)j . (6.13)

kT
&2~ J

1

4m.

kT
J (6.14a)

lq.p
—q.p I

=
2

1 kT 1 kT
+2~ J 4' J (6.14b)

where the conventional unit with /3=kT is recovered to
see dependence on T. Unfortunately, even this replica-
symmetry-breaking solution yields negative entropy at
zero temperature. The entropy density per replica is
equal to —k/4~, has less magnitude than —k/2m for the
SK replica-symmetric solution. The same negative entro-
py was obtained by Blandin et al. '

The problem seems to be in the assumption of uncorre-
lated effective fields at different subtrees. It is noted that
Blandin et al. used the replica-symmetric assumption.
The replica-symmetric assumption in the replica theory
using the replica trick and the assumption of uncorrelat-
ed boundary condition on a Bethe lattice seem to be
equivalent. At the present stage the stability of a nega-
tive overlap for nonzero h cannot be answered because
even the solution with a positive overlap and a lower free
energy presents unphysical property, negative entropy at

A solution with U' =0 (q &=q &) yields negative entro-

py at zero temperature no matter whether it is replica
symmetric or not because the entropy is the same as that
of the SK replica-symmetric solution. It turns out that
the replica-symmetry-breaking solution with U' WO and

q &=+q for h =0 belongs the case for U' ))1, i.e.,
q &

—
q & is of order of T near zero temperature. As a re-

sult, for h =0 near T =0,

zero temperature. It is interesting to see whether there
exists a new solution with a negative overlap for a
nonzero magnetic field, which may be accessible if the
method to deal with correlated boundary condition or
with replica-symmetry breaking is applied, and whether
it is stable.

VII. SUMMARY AND FUTURE

The hypothetical replica coupling between two replicas
is expected to project only maximum overlap. Since the
replica-coupling field is set to be zero in the end, it might
not distort the real physics. Instead it seems to bring us a
mechanism for a possible new vision in the structure of
many pure states in the spin-glass phase.

The system with two interacting replicas opens an in-
teresting question in the spin-glass phase as to whether
there is another party of equilibrium states for a nonzero
magnetic field, i.e., whether a negative overlap is possible
even for a nonzero magnetic field. Understanding within
the half has been extended to a plausible level mainly by
the Parisi static theory and the Sompolinsky dynamic
theory. A negative overlap for zero magnetic field can be
conceived from the spin reversal symmetry but things be-
come not obvious for a nonzero magnetic Geld. A pair of
mirror states for zero field, mapped to each other by
overall spin reversal, are equally favorable or unfavorable
in the presence of a small field. In this sense a simple
thought that half the whole pure states suddenly become
unstable for a small field turned on is not appealing. On
the other hand the argument that the two parties of pure
states coexist and yield negative overlaps with each other
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until a su%cient field is applied is worth being examined.
Unfortunately, the assumption used in this paper that the
eftective fields at difterent subtrees are not correlated has
given rise to an unphysical result, negative entropy at
zero temperature. The question about negative overlap
has not been answered yet.

A study on a Bethe lattice has a seeming advantage
that the replica trick can be avoided and may serve as a
more realistic mean-field theory than the SK model. But
it turns out that there is the same level of problem en-
countered as in the SK model, negative entropy at zero
temperature. If this problem is related to the assumption
of the replica symmetry, it is likely that a theory should
have a symmetry-breaking scheme, a scheme to deal with
many pure states, such as the Parisi replica-symmetry-
breaking scheme and the Sompolinsky assumption of
many long-time scales. The two-replica coupling in this
paper is the scheme to break the whole pure states into
two parties possibly even for a nonzero magnetic field.

We expect that a previous symmetry-breaking scheme,
Parisi's or Sompolinsky's, with the two-replica coupling
scheme might lead to a true answer. The former deals
with overlaps within each of two groups of pure states

and the latter with overlaps between the two. Recently
the dynamic spin glass with two interacting replicas has
been studied. Interestingly, the result without con-
sideration of long-time behavior in relaxation through
many pure states has been found to be exactly equivalent
to the result on a Bethe lattice in this paper and to be
dynamically unstable. The study of long-time behavior
for two interacting replicas is now in progress.
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