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Square-lattice Heisenberg antiferromagnet at T =0

Zheng Weihong, J. Oitmaa, and C. J. Hamer
School of Physics, University of New South Wales, P.O. Box 1, Kensington, New South Wales 2033, Australia

(Received 8 November 1990; revised manuscript received 11 January 1991)

The spin- —and spin-1 Heisenberg antiferromagnets on a square lattice are studied via series ex-

pansions around the Ising limit. Series are calculated for the ground-state energy, staggered magne-

tization, transverse susceptibility, staggered parallel susceptibility, and mass gap. Extrapolating
these series to the isotropic limit, we find extremely good agreement with the predictions of spin-
wave theory.

I. INTRODUCTION

The discovery of high-T, superconductivity in materi-
als containing two-dimensional Cu-0 planes has generat-
ed a surge of interest in two-dimensional models which
may be relevant, particularly the Hubbard model, and the
Heisenberg antiferromagnet. The square-lattice Heisen-
berg antiferromagnet, which we consider here, has a long
history. A recent review has been given by Barnes. ' A
spin-wave theory was developed for it by Andersen,
Kubo, Oguchi, and Stinchcombe, among others.
Variational calculations have been presented by
Marshall, and Huse and Elser. Series expansions about
the Ising limit have been studied by Davis, Parrinello
and Arai, Huse, ' Singh, "' and Singh and Huse. ' An
early finite-ce11 calculation was performed by Oitmaa and
Betts, ' see also Dagotto and Moreo' and Tang and
Hirsch. ' More recently, large-scale Monte Carlo simu-
lations have been carried out by Barnes and Swanson, '

Manousakis and Salvador, ' Reger and Young, ' Barnes,
Kotchan, and Swanson, Barnes et al. , ' Gross,
Sanchez-Velasco, and Sjggja, ' Okabe and Kjku-
chi, ' Carlson, Trivedi and Ceperley, Liang, and
Barnes and Kovarik.

The general conclusion has been that at zero tempera-
ture the isotropic Heisenberg antiferromagnet is in an or-
dered state, with a nonzero staggered magnetization, and
is quite well described by spin-wave theory. Liang,
Doucot, and Anderson have suggested, however, that a
singlet "resonating-valence-bond" state may exist very
close to the ground state in energy, so that even a small
amount of doping can destroy the Neel order.

In the present paper, we extend the series results for
the model using a cluster expansion technique. This is an
efficient method of series expansion for quantum Hamil-
tonian lattice models, which was originally proposed by
Nickel, ' and further elaborated in papers by Marland,
Irving and Hamer, and Hamer and Irving. We have
recently reviewed the technique in He, Hamer, and Oit-
maa. A very similar method seems to have been
discovered independently by Singh, Gelfand, and Huse
(see also Gelfand, Singh, and Huse ), and has been ap-
plied by them to the square-lattice Heisenberg antifer-
romagnet in the works mentioned above. We are able to

II. SPIN-WAVE THEORY

The spin-wave (SW) theory has proved to be quite suc-
cessful in predicting the properties of the ground state
(and even low excited states) of spin models such as the
Heisenberg antiferromagnet. In this section we present,
for comparison with our series expansion results, a spin-
wave analysis (to second order in 1/S) of the anisotropic
Heisenberg antiferromagnet, closely following Oguchi.
The system of interest is described by the following Ham-
iltonian:

H = y [S;S'+x(S,"S +SiSY )j
(Im )

+h, +St'+h2 gS'
I m

(2.1)

where we have divided the lattice sites into even and odd
sublattices, denoted by I and I, respectively, and the sum
over ( 1m ) denotes a sum over all nearest-neighbor pairs.
The limits x=O and x=1 correspond to the antiferro-
magnetic Ising model and isotropic Heisenberg model,
respectively.

add several terms to the series for the ground-state ener-

gy, staggered magnetization, and perpendicular suscepti-
bility calculated by Singh. "' We have also calculated
series for the mass gap and staggered parallel susceptibili-
ty which are entirely new, as far as we are aware.
Analysis of these series gives estimates for the behavior of
isotropic models which are substantially more accurate
than any previous treatment.

A careful comparison is made between the series re-
sults and the predictions of spin-wave theory. The origi-
nal spin-wave theory of Anderson was extended to
second order by Kubo and Oguchi; and the singular be-
havior of the anisotropic model was further discussed by
Stinchcombe. The results are not comprehensive
enough for our purposes, however, and so in Sec. II of
the paper we extend the spin-wave calculations for the
anisotropic model, following, in the main, the treatment
of Oguchi. In Sec. III the series results are analyzed and
compared with spin-wave theory. Overall, they agree ex-
tremely well —so well, in fact, that an effort to push the
spin-wave theory to higher order seems called for.
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Si+ =(2$)' f/(S)a/,

S, =(2S) ' a,*f,(S),
S, =S—a

for an "up77 spin on the l sublattice, and

(2.2)

The application of spin-wave theory to the above Ham-
iltonian is accomplished by the three following transfor-
mations. Firstly, we introduce boson creation and an-
nihilation operators for the "spin deviations" on the two
sublattices by means of the Holstein-PrimakoA transfor-
mation. Let 2ak—

2
b k

1/2

ikl

I

ikm—b

(2.7)

where X is the total number of lattice sites, and ak, bk
satisfy again the boson commutation rules:

is reasonable to neglect the higher-order terms in the ex-
pansion.

Secondly, we introduce Bloch-type operators ak, bk by
the Fourier transformation

S+ (2S)1/2b *f (S)

S =(2S)' f (S)b

S' = —S+b*b
(2.3)

[~k ak' ] ~kk' (2.&)

Finally, the terms in the Hamiltonian up to second or-
der in boson operators can be diagonalized by a Bogo-
liubov transformation:

for a "down" spin on the m sublattice, where
' 1/2

71Ifi(S)= 1— (2.4)

i/k akcosh—8k /8k»nh8k,

bk = ak

sin
h�—

8k +Pk cosh 8k,
(2.9)

and ni =a&'al is the "spin deviation operator, " and simi-
larly for the m sublattice. The operators a/' and a/ (or
b *,b ) satisfy the boson commutation rule

[~l ~/*]=&// . (2.5)

fl (S)= 1 n//4S . — (2.6)

The Pock space of the new boson operators includes both
unphysical states with occupation number nI )2S, and
physical states O~n& 2S. They are not mixed by the
Hamiltonian if we use Eq. (2.4). In our calculation, how-
ever, we employ only the first two terms in an expansion
of f,(S):

y eikp=1
z

P

The Hamiltonian now becomes (to second order in an
expansion in 1/5, and keeping only diagonal terms in this
bais)

+h+ X ~k nk+ ~k nk )
k

(2.10)

+ g [B' ( nln+2n ln)2+B nl n2]+ .
ki, k~

where tanh28k =xyk/D, D =1—
—,'(I/1 —

h & ), h ', =bl/
zS, h 2 =h2/ZS, z is the coordination number of the lattice
(i.e., 4 for the square lattice), and yk is the structure fac-
tor:

If the occupation number ( nl ) is small, the main contri-
bution comes from the physical subspace (nl ~ 2S), and it where nl, = a/*, a/„n/', =/3kPk,

(2.11)

Eh = S2zN(1 —h1+—
h 2)/2+zS g [(D xyk )' —D]—

k

Z

2X
D —x yk —1

(D 2 x 2y2 )1/2

2
2 2 yk+x(1—x )

2

(2.12)

2 2 D —x y2
2 2

x (1—x )yk y2

(D2 2 2 )1/2 (D2 2 2)1/2
y2

(2.13)

~(2) Z

D —2x D3 2+x y&j 2y
1 7

(D 2 2 2)1/2(D 2 2 2)1/2X X

D —2x Dy2+x yjy2y
(D2 2 2)1/2(D2 2 2)1/2 + 1

X X

(2.14)
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where y, 2=yk k, etc. These expressions reduce to those of Oguchi in the isotropic limit x=1, if one were to make
1 2

his assumption y, 2 =y, y2 (which seems to be unjustified).
Setting the external magnetic field to zero (i.e., h i

=hz =0), one can derive from Eq. (2.11) the ground-state energy E„
aIld mass gap I:

1 — 2

(2.15)

m =z(1—x )'~ (S —C, /2),
where

C„=—g [(1—x yk )" —1] .=2

(2.16)

(2.17)

Let h
&

= —h2 =h, and differentiate Eq. (2.12) with respect to h, then one finds the staggered magnetization M+ and
parallel staggered susceptibility y~~

..

1 BEJM+=—
X Bh g o

C=S—
2

1 —x (C, —C, )(C 3
—C, ),

4Sx
(2.18)

s 1(C 3
—C, )+ C, (C 3

—C, )
N gg 2

I, 2zS 4zS

2

+ [(C 3
—C, ) +(C, —C, )(C, +3C, —4C 3)]

(2.19)

In order to derive the perpendicular susceptibility, we
set hi =h2 =0 in Eq. (2.1), and add an external magnetic
field directed along the x axis:

N~&V i uz)=
4z(1 —x )

xp&pz pi pz)

P, g Si +Pz g S"
I m

(2.20) x(&i+&2) 2pipz (C, —C, )

Perform the Holstein-Primako6' and Fourier transforma-
tions as before, and then shift the origin of the Bloch
operators ao and bo by

(2.23)

Hence the uniform perpendicular susceptibility can be
obtained by setting p1 =p2 =p and diA'erentiating:

aIld

1/2
1 X XS'2 P1

1 2z S 1 x2 (2.21) 1 BEE
p

1—1

z(1+x)
(C, —C, )

2Sx

(2.24)

1t2=
2z S

1/2
&P1 P2

1 —x2
(2.22)

Xi(x) =Xi( —x) . (2.25)

The staggered perpendicular susceptibility y~ can be ob-
tained similarly, and one finds

respectively, so as to cancel linear terms in (ao+ao ),
(ho+ho ). The terms up to second order in the Hamil-
tonian can be diagonalized by the Bogoliubov transfor-
mation as before, and one finds the shift in the ground-
state energy caused by the external transverse magnetic
field is

This result also reduces to that of Oguchi if x= l.
Hitherto, the results have been applicable to any bipar-

tite lattice. We now restrict ourselves to the two-
dimensional square lattice (the application of our
second-order spin-wave analysis to other lattices will be
given elsewhere ). Following Kubo and Stinchcombe,
we find the following asymptotic expansions for the quan-
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tities C„defined by Eq. (2.17) near x= 1:

C, = —0. 1579474+0.275 575 6(1—x )

(1 —x )
/ —0, 1741(1—x )

3&

7
(1—x')'"+

15m

C, = 0.393 203 9——( 1 —x )
'2

III. SERIES RESULTS AND ANALYSIS

Series expansions have been obtained for the thermo-
dynamic functions in this model using Nickel s cluster ex-
pansion method. By a simple similarity transformation
with 5" on every site of the odd sublattice, one can trans-
form

(3.1)

+0.4210(1—x ) ——(1—x )
/

+0.2577(1 —x ) + .

3= —(1—x )
'/ —0.4488

7T

——(1—x ) +0.2323(1—x )+2 i)2 2

(2.26)

and obtain a ferromagnetic Hamiltonian equivalent to
Eq. (2.1):

H'= —g [St'S' —x (Si"S St"S~—)]
(Im }

+h, QSI' h2 g—S'
I m

( 1 2) —3/2+ ( 1 2) —i/2
3~ 3~

—0.603 64+ (1 —x )' +
4~

SfS' ——(Si+S++SI S )
(1m }

+h, +Sf—h2 QS~
1 m

(3.2)

The coefficients of the analytic terms were found by
performing numerical summations of series Eq. (2.17), or
its derivatives, while the coefficients of the singular terms
can be obtained by the following method. Consider C& as
an example.

The functions C, and a ( 1 x) / +b —( 1 —x )
/ can

be expanded as series in x:
C, = g d„x'"

k=1
(2.27)

a(1 x2)3/2+b(1 x2)5/2 g f x2k
k=0

where

dk = —[(2k)!/(2"k! ) ]
1

2k —1

(2.28)

(2.29)

15b (2k)!
2k 5 (2"k!) (2k —1)(2k —3)

(2.30)

If k ~~, using Stirling s approximation:

k!=V2irk k "e " 1+ +1

12k
(2.31)

we find

1
dk 1+ +.

(2irk) k
(2.32)

3 15a —20b
(2.33)

and so by comparing coefficients of k and k in
Eqs. (2.32) and (2.33) one may deduce the values of a and
b in the asymptotic expansion of C, (higher-order singu-
lar terzns do not contribute to these coefficients).

in terms of the spin raising and lowering operators of
Eqs. (2.2) and (2.3). The unperturbed ground state at
x=0 has all spins "up", the operator proportional to x is
treated as a perturbation term, which "Hips" spins on
neighboring pairs of sites (lm ). We have reviewed the
techniques necessary for performing such a perturbation
expansion in He, Hamer, and Oitmaa, and will not re-
peat the details here. The major difference in this case is
that a "low temperature" expansion is involved, requiring
the calculation of "strong" embedding constants for the
clusters (Domb" ). The calculations involved a list of
11 131 linked clusters of up to 14 sites together with their
lattice constants and embedding constants; the mass gap
required a further list of 2525 clusters, both linked and
unlinked, up to 11 sites. Generating the cluster data oc-
cupied some 20 h of CPU time on an IBM3090; Calculat-
ing the contribution of each cluster to various series took
up a further 40 h of CPU time for the spin- —,

' model, and
10 h for the spin-1 model.

The resulting series are listed in Table I and Table II.
They agree with the results of Singh, "' and extend the
series he obtained for the spin- —,

' model by two terms for
E0 and I+, and six terms for y~. The series for mass
gap and staggered parallel susceptibility are new, as far as
we know.

As a first step in the treatment of these series, we have
endeavored to test whether the singularities of these func-
tions at x=1 are of the form predicted by spin-wave
theory, as outlined in Sec. II. The results are shown in
Table III. For the most part, a standard Dlog Pade
analysis in the variable x was performed, after first
differentiating the function where necessary in order to
promote the singular term to leading order in (1 —x ).
In the case of the transverse susceptibility y~„ the series is
dominated by a simple pole at x = —1, corresponding to
the staggered transverse susceptibility, and so we re-
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TABLE I. Series coefficients for the ground-state energy per site E0/N, the staggered magnetization M+, staggered parallel sus-
ceptibility yII, and the mass gap m. Coefficients of x" are listed for both the spin-2 and spin-1 models.

E0/N

Spin- —' model
2

0
2

4
6
8

10
12
14

2
1

0.925 925 925 926[ —3]
—0.158 156 966 490[ —2]—0.825 212 846 235[ —3]—0.311 850 649 269[ —3]—0.241 942 079 720[ —3]—0.151 122 678 477[ —3]

2
1

9—0.177 777 777 778[ —1]
—0.947 129 349 682[ —2]—0.744 291 529 381[—2]—0.437 691 024 484[ —2]—0.360 570 635 434[ —2]—0.280 100 515 146[—2]

0
4

27

0.108 691 358 025
0.798 717 918 565[ —1]
0.774790791 855[ —1]
0.636 977 861 687[—1 ]
0.602 759 642 393[—1 ]
0.558 300 121 347[ —1]

2
5
3

0.317 129 629 630
—0.419233 764 146

0.270 996 990417
—0.389 433 514 875

0
2

4
6
8

10
12

—2
—2

7—0.252 298 721 686[ —1 ]—0.723 812 205 411[—2]—0.328 119045 071 [ —2]—0.179 344 795 467[ —2]—0.110240 947 222[ —2]

Spin-1 model
1

4
49—0.269 590990605[—1]—0.136 997 515 033[—1]—0.880 047 084 950[—2]—0.625 519624 340[ —2]—0.473 924 235 610[—2]

0
160
343

0.373 146 890919[—1]
0.305 409 765 642[ —1]
0.267 818 058 353[—1 ]
0.241 638 397 155[—1]
0.222 072 275 512[—1]

4
50
21—0.401 853 664 099

—0.199264 281 768
—0.129 925 423 262
—0.892 317430 503[—1]

moved this pole by performing an Euler transformation

2x
1+x

before looking for the behavior near x = 1.
The estimates of the singularity parameters in Table

III are not very accurate, because our series are neither
very long nor very smooth. The results are particularly
poor for the ground-state energy, where the singularity is
weakest. There is little room for doubt, however, that the
singular point lies at x = 1; and the index estimates are by
and large consistent with the spin-wave predictions,
within errors of order 10%. Henceforward we assume
that the indices predicted by spin-wave theory are
correct.

At the next stage of the analysis, we have tried to esti-
rnate the coeKcients of the leading order terms in the
asymptotic expansion near x= 1, by extrapolation of the
series. For this purpose, we first transform to a new vari-
able proposed by Huse

(3.4)

so that according to spin-wave theory each function
should be analytic in 5. Next, we have extrapolated each
series to the point 5=1 (or X=1) using three different
methods. In the first method, simple Pade approximants
in 5 were calculated for each series, from which the value
of the function and its derivatives at 5= 1 can be calculat-
ed directly. Secondly, differential approximants ' were

TABLE II. Series coefficients for the perpendicular susceptibility y&. Coefficients of x are listed for
both the spin- —' and spin-1 models.

0
1

2
3
4
5

6
7
8

9
10
11
12
13

Spin-—
2

1

4
1

3

0.354 166 666 667
—0.379 629 629 630

0.383 522 247 942
—0.393 158 923 672

0.395 868 009 007
—0.402 954 211 929

0.405 315 646 692
—0.409 214 981 572

0.411 027 697 321
—0.414 448 978 063

0.415 617 280 171
—0.418 179085 518

Spin-1

1

4—2
7

0.289 285 714 286
—0.299 831 800 852

0.301 344 414 137
—0.306 189 718 951

0.306 873 914417
—0.309 864 843 278

0.310323 237 180
—0.312 399 393 569

0.312 738 010 344
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TABLE III. Estimates of singularity parameters for the series given in Tables I and II. Both un-
biased estimates (UB), and estimates biased by setting x, =1 (B), are listed. The index values predicted
by spin-wave theory are also given for comparison.

Function
Singular point

xe UB

Singularity
index

B
Spin-wave
prediction

m

&II
dM+
dx
d Eo

d(x')'
XJ

dx
Xl

1.0(1)
1.05(10)

1.0(1)

0.8(5)

x, = 1.03(4)

x, = 1.00(1)

Spin- —' model

0.6(2)
—0.7(2)

—0.5(2)

—0.6(2)

—1.1(1)

0.57(6)
—0.60(10)

—0.49(2)

—0.41(2)'

—1.07(10)

0.5
—0.5
—0.5

—0.5

—0.5

—1.0

XII
dM+
dx
d Eo

d(x )

dXl
dx

Xl

1.00(4)
1.03(2)

1.01(6)

1.07(8)

x, =0.98(10)

x, = 1.00(1)

Spin-1 model

0.55(8)
—0.70(10)

—0.6(1)

—0.95(6)

—0.24(20)

—1.05(8)

0.53(4)
—0.65(10)

—0.58(8)

—0.7(2)

—0.37(15)

—1.04(4)

0.5
—0.5
—0.5

—0.5

—1.0

'All estimates defective.

S~-S + C
(N+a) (3.5)

where S is the sum of the infinite series and C, a are
constants. The sums S~ are plotted against (N+a)
and a is adjusted so as to get the best fit to a straight line:
then S can be estimated by a simple linear extrapola-
tion. The error is gauged by extrapolating with a=0.
Comparing the results of all three methods of extrapola-
tion, one can form good estimates of the extrapolated
values S and its associated error. In cases where the
function is singular at leading order, it was first multi-
plied by the appropriate power of (1—5) in order to esti-
mate the amplitude of the singularity.

The perpendicular susceptibility again requires special
treatment. The effects of the simple pole at x = —1 were
first removed by the Euler transformation [Eq. (3.3)], or
else by multiplying by a factor (1+x); and then we
changed to a new variable 5'=1 —(1—z)'~, or

calculated for each series, from which the value of the
function and its derivatives at 5= 1 can be found by nu-
merical integration. Lastly, we used the technique of
Singh, " whereby partial sums S& are computed at x = 1

for the original series in the variable x . If the leading
singularity is of the form (1—x ), then asymptotically
one expects

5"=1—(1—x)', respectively, before performing the ex-
trapolations. These two methods give consistent results.

The results of these procedures are listed in Table IV.
For each given function f (x), we defined asymptotic am-
plitudes A„via

f (x)= g A„(1—x )"~

n=n 0

(3.6)

Table IV lists our estimates of the leading amplitudes 2„,
as obtained by the procedures outlined above, together
with the predictions of spin-wave theory at first and
second orders in 1/S. For those quantities with a finite
limit at x = 1, the agreement is remarkably good.
Second-order spin-wave theory predicts the leading am-
plitude for the ground-state energy in the spin- —,

' model to
within 0.2%, the magnetization to 1%, and y~ to about
14% (Takahashi has developed a modified spin-wave
theory using the Dyson-Maleev transformation instead of
the Holstein-Primakoff transformation: it predicted
g~=0.06550 for S =

—,', which is in excellent agreement
with our series expansion result). For those quantities
whose leading terms are singular at x=1, and for the
nonleading amplitudes, the agreement is not so nearly ex-
act, as one might expect, but it is still reasonable.

The agreement is further illustrated in Figs. 1—3, which
graph the series estimates and spin-wave predictions as
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TABLE IV. Series estimates for the leading order amplitudes A„at x= l [as defined by Eq. i3.6i].
Also listed are the spin-wave predictions at first and second order.

Function

Amplitudes 2„
Spin-wave predictions

First order Second order
Series

estimate

Eo /N

(1—x)y~

0
2
3
0
1

0
1

1

2
—1

0
0
1

Spin- —' model
—0.6579

0.2756
—0.2122

0.3034
0.3183
0.125

0.1592
—0.2105

0.25

—0.6704
0.1672
0.1052
0.3034
0.1429
0.0561
0.0796
1.214
1.273
0.2217

—0.1773
0.388

—0.159

—0.6693(1)
0.188(3)

—0.037(2)
0.307(1)
0.17(1)
0.0659(10)
0.037(3)
1.27(2)
0.46(8)
0.264(10)

—0.230(8)
0.47(1)

—0.24(3)

Eo /N

M+

(1—x)y

0
2
3
0
1

0
1

1

2
—1

0
0
1

Spin-1 model
—2.3159

0.5512
—0.4244

0.8034
0.3183
0.125

0.0796
—0.1053

0.25

—2.3284
0.4428

—0.1071
0.8034
0.2306
0.09055
0.0398
3.2136
1.2732
0.0952

—0.0970
0.319

—0.0796

—2.3279(3)
0.455(2)

—0.195(3)
0.8039(4)
0.241(4)
0.0925(10)
0.031(6)
3.26(4)
0.7(1)
0.098(3)

—0.101(5)
0.333(2)

—0.083(10)

-0.5 0.50

E~
N

0.45

-0.6 0.40

0.35

SW

-0.7
0

I

0.2
I

04 0.6
I

0.8 1.0
0.30

0 0.2 0.4 0.6 0.8 1.0

FIG. 1. Graph of the ground state energy per site Eo/N
against 6 for spin- —'. The three curves shown are the series esti-

mate, and the first- and second-order spin-wave predictions,
marked SW'" and SW' ', respectively.

FIG. 2. Graph of the staggered magnetization M+ against 5
for the spin-2 model. Notation as in Fig. 1.
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0.25 2.0

0.20 ~~sw"' sw"'

0.15 1.0

0.10 0.5

0.05
0 0.2

I

0.4

I I

0 6 0.8 1.0
0—
0.6 0.7 0.8 0.9 1.0

FIG. 3. Graph of the perpendicular susceptibility g& against
5 for the spin- —,

' model. Notation as in Fig. 1.
FIG. 4. Graph of the mass gap m against x for the spin-~

model. Notation as in Fig. 1. The data points are the Monte
Carlo estimates of Barnes et al. I', Ref. 21}.

M+ -Mo(1+ At), t —+0,

y~ —g~(1+Br), t ~0 (3.7)

where t =(1—x )'~, then since the singularities are due
to Cioldstone modes, i.e., long-distance effects, they argue
that the ratio R = A /B should be universal, and indepen-
dent of short-distance properties such as spin. In the
S—+ ~ limit the spin-wave theory gives R =1. From the

functions of 6 for the ground-state energy, the staggered
magnetization, and transverse susceptibility of the spin- —,

model. The series estimates here were obtained by in-
tegrating the differential approximants in 5. For the
spin-1 model the agreement is even better than for the
spin- —,

' model, as one might expect since the spin-wave
theory involves an expansion in 1/S.

In a recent paper, Barnes et al. ' performed a Monte
Carlo calculation of the mass gap near the isotropic
point, and found it to lie about a factor of 2 below
the first-order spin-wave prediction. This apparent
discrepancy with spin-wave theory is largely removed if
one goes to second order: a glance at Table IV shows
that the leading amplitude 3, for the mass gap is then
reduced by 40%. Figure 4 compares the data of Barnes
et al. ' with our series extrapolation, and the spin-wave
prediction. The agreement between the series extrapola-
tion and the Monte Carlo estimates is very good. The
second-order spin-wave theory still runs a little high, but
provides a substantial improvement on first-order theory.

A hypothesis of universality for the singularity am-
pltiudes has been discussed by Singh, " and Singh and
Huse. ' For instance, if we write

series estimates in Table IV, we find values

R (S =
—,')=0.98(4),

R (S = 1)=0.88(13),
(3.8)

which are in quite good agreement with this universality
hypothesis. We note, however, that the spin-wave theory
does not exhibit this universality, and predicts an S-
dependent ratio R. At second order, it predicts

R (S = 1)=0.332,

R (S = 1)=0.653 .
(3.9)

Finally, a comparison of our results with some recent
estimates from other sources is presented in Table V. It
can be seen that our results agree with the earlier ones
within errors, but are substantially more accurate in most
cases.

IV. SUMMARY

By extrapolation of our series expansions to the isotro-
pic limit, we have obtained estimates for the behavior of
the Heisenberg antiferromagnet which are generally more
accurate than previous treatments. A detailed compar-
ison has shown excellent agreement between the numeri-
cal results and spin-wave theory. In every case, the
second-order spin-wave theory provides a much more ac-
curate representation than the first-order theory. The
convergence appears so extremely rapid, in fact, that one
is tempted to ask whether it is feasible to push the spin-
wave calculations to third order. This would probably
require the use of a symbolic manipulation package on a
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TABLE V. Comparison of some recent numerical estimates obtained by different authors for the ground-state energy, the stag-
gered magnetization, and the perpendicular susceptibility at x= 1.

Reference

Gross et al. (Ref. 22)
Reger and Young (Ref. 19)
Singh (Ref. 11)
Auerbach and Arovas (Ref. 43)
Liang et al. (Ref. 30)
Tang and Hirsch (Ref. 16)
Okabe et al. {Refs. 24 and 25)
Barnes et al. (Ref. 20)
Gross et al. (Ref. 23)
Carlson (Ref. 26)
Trivedi et al. (Ref. 27)
Liang (Ref. 28)
Barnes et al. (Ref. 29)
Present work

Method

Spin- —' model
2

Monte Carlo
Monte Carlo

Series
Mean field
Variational
Finite cell

Monte Carlo
Monte Carlo
Monte Carlo
Monte Carlo
Monte Carlo
Monte Carlo
Monte Carlo

Series

4EO /X

—2.669(3)
—2.680(8)
—2.6785(10)

—2.6752(16)
—2.688(4)
—2.680(4)
—2.676(4)
—2.6692(12)
—2.6767(4)
—2.6768(8)
—2.6784(32)
—2.6769(5)
—2.6772(4)

0.57{5)
0.60(4)
0.605(15)

0.50(6)

0.68(2)
0.62(4)
0.608(8)

0.614(2)

0.065(3)
0.066(1)

0.0659(10)

Spin-1 model

Lin and Emery {Ref. 44)
Singh (Ref. 12)
Present work

Finite lattice
Series
Series

—2.3323(6)
—2.327(1)
—2.3279(2)

0.767(4)
0.81(1)
0.8039(4)

0.095(2)
0.093(1)

computer, however.
One might object that these conclusions rest on the as-

sumption that the singularity exponents at x = 1 are those
predicted by spin-wave theory [i.e. , powers of
(1—x )'~ ]. Our direct numerical evidence for this as-
sumption is not enormously strong; but once the assump-
tion has been made, the quantitative agreement with
spin-wave theory provides very strong a posteriori evi-
dence that it is correct.

The overall picture that emerges from this work is the
same as in previous treatments. The isotropic model at
x= 1 possesses rotational SU(2) symmetry [rather than
O(3), if we are dealing with spin- —, representations],
which is broken when x%1 into a product of a Z(2) sym-
metry in the z direction times a U(1) symmetry in the x-y
plane. The ground state of the isotropic model exhibits

spontaneous symmetry breaking by the Goldstone mech-
anism, so that if the isotropic limit is approached from
the Ising side (x ~1—) there is long-range antiferromag-
netic order in the z direction, i.e., a finite M value,
which vanishes discontinuously beyond x = 1. The mass
gap, on the other hand, goes to zero in the isotropic limit,
corresponding to the appearance of a massless Goldstone
mode. The system thus possesses an intriguing mixture
of the characteristics of a first-order transition and a
second-order transition. Further discussuion of these
points may be found in Barnes et al. ,

' for example.
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