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Diffraction from random alloys
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We calculate the diffraction from a random alloy, consisting of bonds of different natural lengths.
The resulting structure is a distorted crystal with strong correlations between displacements at
different sites. The diffraction pattern is dominated by a set of Bragg peaks whose intensity is
modulated by a Debye-Wailer factor. At the base of each of these Bragg peaks, we find divergent
Huang scattering due to the second-order correlations between displacements. Higher-order corre-
lations produce a negligible nondivergent background. Results are obtained in closed form and
compared with computer simulations.

I. INTRODUCTION

The elastic scattering (diffraction) from a random alloy
is a complex problem that has received considerable at-
tention over the years. In this paper, we describe the
diffraction pattern caused by the correlated static dis-
placements from an underlying crystalline structure. We
find a set of Bragg peaks (determined by the average lat-
tice), modified by an appropriate Debye-Wailer factor.
Eacll Blagg pcRk llas solllc dlffllsc (H11RIlg) scattcllllg Rs-

sociated with it. To quote from Huang, "Considering a
crystal lattice formed of randomly distributed atoms of
two kinds mixed in comparable proportions, it must obvi-
ously be extremely difticult to describe qualitatively the
distorted configuration, " and he goes on to consider the
case of lso1ated lmpufltles. Model n analytic techniques
and computer simulations now allow us to treat the con-

centrated alloy. Although the example worked through
here is simple, we have found it instructive and we hope
the reader will too.

We use the model alloy of Thorpe and Garboczi
(henceforth referred to as I) for an A1 „B„alloy. This
consists of a crystalline lattice containing two kinds of
bonds, 3 and 8 which are randomly positioned
throughout the lattice with probabilities 1 —x and x, re-
spectively. The static structure is obtained by minimiz-
ing the energy associated with the potential

Here L; can take on the values L„and I.~ with proba-
bility 1 —x and x, respectively. The summation goes over
all nearest-neighbor bonds ij and the angular brackets
denote that nearest-neighbor bonds are only counted
once. The vector R, goes to the site i at the end of the
bond ij from some (arbitrary) origin. The potential (1)
can be minimized with respect to the R; to give

0 =+I(R;—R, ) —l.;,R; ] . (2)
J

Here R, is a unit vector along the relaxed bond direc-
tion. These equations determine the equilibrium posi-
tions of all the sites, as described fully in I. An example
is shown in Fig. 1, which can be visualized as static con-
centration waves of all wavelengths freezing out from a
perfect crystalline lattice. We will take all the spring
constants to be equal in this paper as it simplifies the ana-
lytic treatment as discussed in I, and does not qualitative-
ly effect the result.

II. COMPUTER SIMULATIONS

FIG. 1. A piece of a relaxed random triangular network.
This figure is reproduced from I. The short bonds are shown as
dashes and the long bonds by solid lines. The sample shown has
equal numbers of short and long bonds (x =0.5) and the natural
length of the long bonds is 30%%u~ greater than the natural length
of the short bonds. The two spring constants are equal.

We have used a fcc lattice rather than the triangular
net as in I. This is because of the well-known instability
of two-dimensional lattice ordering to fluctuations.
While this does not effect quantities like the mean bond
length, it does have a profound effect on the diffraction
pattern, which is very sensitive to long-range order. The
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general formalism of I, which is geared towards the cal-
culation of local distances, applies equally well in any di-
mension. We have used MXM XM fcc samples (with
M=20) and periodic boundary conditions containing
N =4M =32000 atoms and 24M =192000 bonds,
which were randomly assigned to be A or B with proba-
bility 1 —x or x, respectively. The simu1ation program,
which uses a variant of the conjugate gradient method,
adjusted the positions of all the atoms and the size of the
supercell to minimize the energy. The simulation was
terminated when the energy agreed with the exact energy
3%x(1—x)(L~ L„)—/2 as given in I, to better than 1%.
A11 other quantities, in particular, mean lengths and Auc-

tuations in the lengths, agreed with the exact results in I
to better than a percent, so that we had confidence that
the samples were fully relaxed. The supercell was kept
strictly cubic to facilitate the analysis. The mean bond
length (L ), which is proportional to the sample size, is
given by Vegard's law as discussed in I,

(L ) =(1 x)L„+—xL~ . (3)

where I ( g) is the scattered intensity per site, and Q is the
scattering vector.

A. Bragg scattering

The diffraction pattern is dominated by the Bragg
peaks shown in Fig. 2 for different directions in recipro-
cal space and for different values of the length mismatch

~.00!~-

The diffraction pattern was computed from the relaxed
coordinates using

I(Q)= —+exp(iQ R;)1
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FIG. 3. The Huang scattering in the 100 direction for a ran-
dom fcc alloy with two kinds of bond lengths. The length
mismatch parameter is 4% and the concentration x =0.5. This
figure is a magnified version of the Bragg peaks shown in Fig. 2
and is averaged over the different [100] directions for nine satn-
ples. The solid line is the theory {16)given in the text and the
vertical bars mark the positions of the Bragg peaks shown in

Fig. 2.

parameter (L~ L„)/L —The B.ragg peaks are Kroneck-
er 6 functions, rather than Dirac 5 functions, because of
the finite size of the supercell. We have taken out a fac-
tor X from the computed intensity to make the connec-
tion between the computed Kronecker 5 functions and
the calculated Dirac 6 functions, used in the next section.
These Bragg peaks have no width and are associated with
a single superlattice point in reciprocal space. It can be
seen that the diffracted intensity falls off as a Gaussian in
all three cubic directions. This is certainly what would
be naively expected, and is similar to the situation with
dynamic disorder caused by phonons that produces a
Debye-Wailer factor.
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B. Huang scattering

The computed background is artificially reduced by a
factor X with respect to the Bragg peaks because of the
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FIG. 2. The Bragg scattering for a random fcc alloy with two
kinds of bond lengths, similar to that shown in Fig. 1. The
length mismatch parameters are 4% {upper curve), 8% (rniddle
curve), and 16% (lower curve) and the concentration x =0.5.
The symbols indicate the different cubic directions and the solid
line is the Debye-&aller factor calculated in the text. The in-
tensity is averaged over the different equivalent directions of a
single sample. The solid line is the theory (8) using the Debye-
Waller factor (12).

FICx. 4. The same as Fig. 3, except that the lattice mismatch

parameter has been increased to 16%.
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Kronecker 5 functions caused by the supercell, and there-
fore cannot be seen in Fig. 2. The background scattering
is shown in Figs. 3 and 4 for different values of the length
mismatch parameter. The noise in the results was greater
than for the Bragg peaks and so we have averaged over
nine samples. The scattering intensity is shown at the
2M —1 =39 superlattice points between pairs of Bragg
peaks in the [100] direction. This Huang scattering' is
seen to be largest in the vicinity of the Bragg peaks in the
[100] direction. Similar results are found around all the
Bragg peaks.

III. THEORY

It is convenient to separate the scattering into two
parts: the Bragg scattering Iii(Q), and the remainder
that we will refer to as the Huang scattering IH(Q), so
that

I(Q) =Iii(Q)+IH(Q) .

A. Bragg scattering

The cmss section (4) can be conveniently rewritten as

I(Q) = gexp[iQ. (R, —R, )](exp[iQ. (u; —
u~ )]),

i,j
(6)

where R, =R;+u, , and the R; define the underlying
mean lattice and the u, represent the (small) displace-
ments from it. The angular brackets ( ) in (6) denote
an ensemble average over different static configurations.

=exp( —2 W),

which assumes that the displacements at each site are in-
dependent, as with "frozen Einstein oscillators, " where
the displacement at each site is chosen independently.
This is manifestly not the case here, as we will discuss
later. Nevertheless, the assumption (7) leads to excellent
answers In. serting (7) into (6), we find that

Iii(Q) =exp( —2W)5(Q —g), (8)

where g=(&2ir/L )(n i, n2, n3) with the integers n i, n2, n3
either all even or all odd, are the reciprocal-lattice vec-
tors for the fcc lattice with a mean lattice spacing L given
by Vegard's law (3).

In I, it was shown that the displacements u; could be
expanded in terms of the Green functions G, of the per-
fect lattice, the various natural bond lengths L, , and the
nearest-neighbor vector directions R; of the perfect lat-
tice

l, m

After some manipulation, of the kind discussed in I, and
involving doing the statistical averaging over the (ran-
dom) bonds, we may write the full Debye-Wailer factor
as

The size of the mean lattice is given by Vegard's law (3).
Inasmuch as the diffraction pattern is dominated by the
Bragg peaks as shown in Fig. 2, it is suggestive that we
should make the conventional approximation

(exp[iQ. (u; —u )])=(exp(iQ. u;))(exp( —iQ u ))

W= —
—,'gin{1 —4x(1 —x)sin PEQ G,&.R& (Lz —Lo )]}

l, m
(10)

For reasonable values of the length mismatch parameter
(Lii Lz )/L, the argum—ent of the sine term in (10) is
small and so, to leading order,

W= —,'E x (1 x)(Lii L„)$(Q.G—;i.—Ri )

l, m

2

(u')
6

which is the conventional Debye-Wailer factor. We have
dropped the site label from (u ) since it is the same for
all sites. After some manipulation, we find the result,

KW= (u ) =—Q x(1—x)(Ls L„) (1/co ), (—12)

K, and we find, by numerical integration, that
( 1/co ) ' =2. 38 K.

B. Huang scattering

By subtracting the Bragg scattering (8) from the total
scattering (4), we find the Huang scattering' ' is given
by

IH(Q) =exp( —2 W)

X —gexp[iQ (R, —Ro)]
1&J

&& I ( exp [iQ ( u; —
u~ ) ] )exp(2 W) —1 }

(13)

where (1/co ) is the mean inverse squared frequency of
the fcc lattice with nearest-neighbor springs E. The
"phonon" band is defined by the frequencies 0(co (8

This is as hard as the original expression to evaluate, and
so we approximate (13) by expanding the terms in the
final square bracket. The approximation (7) is replaced
by the improved approximation
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exp( —2W)[1+((Q u;)(Q u. ))+O(Q )] for i',
(exp[iQ. (u; —uj)]) = (14)

Note that, because of inversion symmetry, the correction terms to (14) are 0 (Q ). Doing the summations, we are led to
the result

I~(Q) = 1 —(1+2W)exp( —2W)+exp( —2W) —gexp[iQ (R,. —R. ) ]((Q.u; )(Q u. ) )
l,J

=1—(1+2W)exp( —2W)+exp( —2W)((Q.u )(Q u ))

=[1—(1+2W)exp( —2W)] —exp( —2W)Ex(1 x)(L~—L„—) Q G(q) Q . (15)

Here u is the Fourier transform of the displacements u, , and q=Q —g is the reduced scattering vector that is mea-

sured from the nearest Bragg point. The Green function G(q) is periodic in reciprocal space and is the Fourier trans-
form of G;, which diverges at small q as q . The term

[ 1 —( 1+2 W)exp —(2 W) ]

in (15) is small and accounts for most of the background away from the Bragg peaks. For this reason, it is important to
include the higher-order diagona1 terms, even though the higher-order o+ diagonal terms are neglected in (14). The last
term in expression (15) does not lead to large scattering near the origin because the q divergence is cancelled by the

Q factor in (15). However, this divergence remains at all Bragg peaks. Note that this divergence is integrable because
of the phase-space factor in three dimensions. We have lumped together all the non-Bragg terms into (15) for conveni-

ence, although they could have been separated into a diffuse background term (the first term in square brackets) and the
divergent scattering (last term). The result (15) along the principal cubic directions becomes

I~(Q) =1—(1+2W')exp( —2W)+ —,'exp( —2W)x (1—x)[Q (L8 L„)] /si—n P, (16)

where P=qL/&8 in the [100] direction and P=qL/&6
in the [111]direction. The divergences in (16) occur at
the Bragg peaks (P =nn, where n. is any nonzero integer).
We show the results along the [100) direction in Figs. 3
and 4 for different values of the length mismatch parame-
ter (Lz L„)/L. A—lthough the Huang scattering falls

away from the Bragg peak as q in all directions, it is
not isotropic around the Bragg peak as can be seen from
(15). In some directions, as in Figs. 3 and 4, the coupling
is entirely to the longitudinal phonon modes, while in
others it is entirely to the transverse modes. This is
different from the scattering from single isolated site im-
purities where the spherically symmetric strain field
leads to only a longitudinal coupling. The difference
arises because we are alloying bonds and not sites in our
model system.

To estimate the total integrated strength, we make the
rough assumption that the scattering is isotropic around
each Bragg peak, and integrate the last term in (16) inside
a sphere of radius equal to half the spacing to the nearest
Bragg peak in the same principal direction. This leads to
the ratio of intensities

2 W =x ( 1 —x ) [g (L~ L„)] K ( 1—/co )

=0.42x (1 —x)[g (L~ L„)]—
appears at the base of the Bragg peak as the Huang
scattering. These estimates are in agreement apart from
a numerical factor of about 4, due to the rough integra-
tion that was done to obtain (17). Note that the back-
ground term 1 —(1+2W)exp( —2W) in (16) is O(Q ).
The Q dependence of the Huang scattering

g exp( —(u )g /3) means that it is absolute maximum
at g =3/( u ) when the Debye-Wailer factor is down by
a factor e '=0.368. However, relative to the Bragg
peak, the Huang scattering keeps on increasing in intensi-

ty as Q increases as given in (15).
The q divergence of the Huang scattering at the

Bragg peaks is due entirely to the correlations between
the displacements u, . When the displacements at each
site are independent, as with "frozen Einstein oscilla-
tors, " the expression (14) leads to an intensity
1 —exp( —2W) for the Huang scattering which is just a
nondivergent background.

I~(g)/I~(g) = Ax (1—x)[g (L~ L„)]~, —(17)
IV. RESULTS

where A is a constant that is -0.1. This is to be expect-
ed from sum-rule considerations. If the length mismatch
parameter (Lz L„)/L is increase—d slowly from zero,
then the intensity of a Bragg peak is decreased by a factor
exp( —2 W) = 1 —2 W, and the intensity

To make a direct check of the result (12), we have ob-
tained ( u ) from the simulation results. To do this it
was necessary to superimpose and position a perfect fcc
grid of the appropriate size as given by (3). The position-
ing was done by minimizing g, u, with respect to rigid
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(1) which would also modify the Debye-Wailer factor. "
We have computed the displacement-displacement corre-
lation function for nearest-neighbor sites with the result'
that ( u; u ) /( u ) =0.08 and

3((u;.R;J )(u, R;, ) ) /( u ) =0.40 .

While these correlations fall off rapidly with distance, in
no sense are the local displacements associated with the
static concentration wave uncorrelated. Our results show
that these correlations have no effect on the Bragg
scattering.

FIG. 5. Illustrating the parabolic dependence of the mean-
squared displacement ( u') for a random fcc alloy as a function
of the composition. The squares are from the computer simula-
tion and the solid line is the theoretical result (12). The natural
bond lengths are 0.98 and 1.02, so that the length mismatch pa-
rameter is 4%%uo.

motions of the grid to obtain the best registry. The re-
sults are shown in Fig. 5, where the agreement with the
parabolic composition dependence x (1 —x) and overall
magnitude of ( u ) is verified. Note that there are no ad-
justable parameters in (12), as we have calculated the
magnitude via the inverse second-frequency moment of
the fcc lattice.

A. Bragg scattering

We show result (8) for the Bragg scattering I~(Q) in
Figs. 2 and 6, where the Debye-Wailer factor is obtained
from (12). The agreement, involving a total more than 50
separate Bragg peaks, is very good. Some simulation
points lie slightly above the theoretical Debye-Wailer fac-
tor, especially at intermediate Q values for a 4%
mismatch. This small discrepancy at intermediate Q may
be real and due to higher-order terms in Q in the full
Debye-Wailer factor as written in (10). We note that we
have no higher-order anharmonic terms in our potential

B. Huang scattering

We show the result (16) for the Huang scattering IH(Q)
in Figs. 3 and 4 for two different values of the lattice
mismatch parameter. It can be seen that the agreement
between theory and the simulation results is very good,
especially considering that the approximation (14) has
been made in the theory. The fit is equally good at all Q
values, except that, at large Q, the scattering is weak due
to the Debye-Wailer factor (see Fig. 2) and the simula-
tions become noisy. This result pleasantly surprised us
because the approximation (14) is only good to O(Q ) in
the off-diagonal terms. It appears that the higher-order
off-diagonal terms are insignificant and nondivergent.

There is no evidence for any rounding of the peak, as
would occur if the q divergence were associated with
the wings of a Lorentzian. Equally, there is also no evi-
dence for additional divergent terms as might have oc-
curred from the higher-order terms ignored in the ap-
proximation (14). It might have been expected that
differences would appear when the lattice mismatch pa-
rameter was as large as 16%, but the comparison between
theory and simulation is about as good in Fig. 4 as in Fig.
3. In effect, there is a conspiracy so that, when
[g(L& —L„)] is large, the scattering is weak due to the
Debye-Wailer factor. ,

V. MSCUSSION
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FIG. 6. The same as Fig. 2, but shown as the logarithm of the
Bragg intensities plotted against the square of the wave vector.
This is referred to as a Wilson plot when used to analyze experi-
mental data (Ref. 10).

As well as the static effects considered here, the
thermal vibrations about the distorted static lattice, such
as shown in Fig. 1, also contribute to the observed
scattering. The cross section in (6) is modified to give

I(Q) =—gexp[iQ (R —Ri~)](exp[iQ (u, —u )] )
1

l, J

X(exp[ig. (u; —u )])T, (18)

where R;=R;+u;+u; and the u, are the thermal dis-
placements. The thermal average' ( ) T is indepen-
dent of the static average, when both the static and dy-
namic displacements are controlled by the potential (1).
The approximation (7), when applied to the expression
(18), means that the total Debye-Wailer factor is a prod-
uct of the static part discussed previously, and a thermal
part which has the form' exp( —2 WT) so that

where



43 DIFFRACTION FROM RANDOM ALLOYS 8287

Wr= &(u')'&7 =
& [n(a~)+ —,']/Co& (19)

king T )x (1 —x)K (Lti L„)— (21)

which compares the thermal energy k~ T to the potential
energy associated with a displacement L~ —L~, weighted
with the usual alloy factor x (1—x). We note from I that
the strain energy/per bond

E =Kx (1 x)(Lii L—„)/4—

and n (ai) = [e xp( irido /k& T )+ 1] ' is the Planck function.
All the expressions in the previous sections must be
modified using the replacement (19). At low tempera-
tures the thermal part of (19) involves only the zero-point
vibrations, which are small except for very light atoms.
At high temperatures (greater than the Debye tempera-
ture), we obtain the classical result

k~T
Wr= &1/co & .

2M

This is the same & I/co & that occurs in the static Debye-
Waller factor (12), except that the mass M is relevant.
For the static distortions, the mass was irrelevant and set
equal to 1. For the fcc lattice, the phonon band is now
defined by 0&co &8K/M so that the thermal Debye-
Waller factor (20) is larger than the static Debye-Wailer
factor (12) if

so that (21) is equivalent to kr T )4E. The condition (21)
is quite general and not lattice specific as all the lattice
effects occur through the common factor & I /ai &.

In thermal neutron scattering, the neutron has a low
energy so that the "transit time" for the neutron is
sufIiciently long that it sees the time-averaged lattice.
The phonon motion leads to Bragg scattering modified by
a Debye-Wailer factor exp [ —2( 8'+ Wr ) ], as discussed
in the previous paragraph. The term involving
& (Q u; )(Q uj ) &z. that arises when (18) is subject to the
approximation (14), leads to one-phonon inelastic scatter-
ing. Thus, there is no thermal equivalent of Huang
scattering and all the elastic q scattering around the
base of the Bragg peaks can be attributed to Huang
scattering from the static distortions.

In x-ray scattering, the high energy of the x-ray leads
to a fast "transit time" so that the structure is effectively
frozen. The x-ray scattering is an average over all such
frozen structures, which means that the diffraction spec-
trum is an integral over all frequencies. The quantity 8'
is replaced by 8'+ 8'z-+ 8'„, where 8'z- is the thermal
part discussed in the previous paragraph and O'F is the
contribution from the atomic form factor. The Bragg
scattering is still modified by the Debye-Wailer factor.
The term involving & (Q u; )(Q uj ) & z. from applying the
approximation (14) to the thermal part of (18), leads to
thermal diffuse scattering, the divergent piece of which
has the form'

exp( —2W)&(Q u )(Q u ) &r = —exp( —2W) —I Im[Q G(q, co) Q]/[1 —exp( fico/kIi T)]—dao . (22)

At zero temperature (22) diverges like q
' around the

Bragg peaks and is generally expected to be weak and
masked by the Huang scattering. At high temperatures
(compared to the Debye temperature), the thermal diffuse
scattering (22) becomes

—exp( —2W)kii TQ G(co=0, q) Q/M . (23)

This has the same form as the divergent part of (15) with
the two Green functions being identical except for a fac-
tor M, so that the thermal diffuse scattering is like the
Huang scattering shown in Fig. 3, including the back-
ground terms. The condition that the divergent q
thermal diffuse scattering is greater than the Huang
scattering is again (21). Note that the q divergence is
obtained at any finite temperature and the q

' diver-
gence is only for strictly zero temperature.

VI. CONCLUSIONS

We have shown that the elastic scattering from a mod-
el alloy consists of two parts: the Bragg scattering and
the Huang scattering. The Bragg scattering is modulated
by a Debye-Wailer factor and the divergent Huang
scattering comes entirely from the second-order
displacement-displacement correlations. Our central ap-
proximation (14) has been shown to be essentially numeri-
cally exact, and can be used with confidence in more
complex alloys and geometries.
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