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Using Monte Carlo simulations, we have studied the question of phase separation and pairing in
the doped two-dimensional Hubbard model. For a range of U/t values greater than as well as less
than the bandwidth, we find no evidence for phase separation when the system is doped away from
half filling. In agreement with previous work, we find that the d-wave and extended s-wave pairing
correlations are enhanced by the interaction vertex but that none of the eight different pairing
correlations that we studied increases as a function of lattice size. We have also examined the
dependence of the kinetic energy, which determines the total optical spectral weight, on U/t and

filling {n ).

The two-dimensional Hubbard model on a square lat-
tice with a nearest-neighbor hopping represents one of
the most basic unsolved many-body problems. The na-
ture of the dominant correlations depends on the band
filling (n)={(n;;+n;;) and the ratio of the on-site
Coulomb interaction to the hopping U /t. Various types
of correlations ranging from antiferromagnetic to fer-
romagnetic, from incommensurate and spiral spin-
density-wave states to superconducting phases have been
suggested.! In addition, the possibility of phase separa-
tion has recently been raised.> Here we discuss what has
been learned from numerical simulations, presenting re-
sults which explore the question of phase separation and
give further information regarding the apparent absence
of long-range pairing correlations.3>™> We also examine
the pairing correlations when a next-nearest-neighbor
hopping ¢’ is present. %’

The Hubbard model is defined by the Hamiltonian

H=—t 3 (clyc;otc]ci )+ U S (i), (D
(ij),o i

where c,-Ta creates an electron at site i/ with spin projection
o, n;, is the number operator, and the sum {ij) is over
pairs of nearest-neighbor lattice sites. Here, ¢ is the hop-
ping parameter and U the Coulombic repulsion, and we
will add a chemical potential u to fix the average value
(n). Later we will also include a next-nearest-neighbor
hopping along the diagonals ¢'.

At half filling {n ) =1, Monte Carlo simulations have
shown that the ground state has long-range antiferromag-
netic correlations®® for a range of U/t values, and it is
believed that this is the case for all U /¢ >0. For infinite
U /t, when one electron is added or removed from the
half-filled band, the ground state becomes ferromagnetic,
as originally proposed by Nagaoka.® However, when a
finite density of electrons or holes is added to systems
with U less than several times the bandwidth, simulations
give no indication of ferromagnetism. Now, as is well
known, numerical simulations of systems doped away
from half filling are presently limited in lattice size and
inverse temperature 3 by fluctuations in the sign of the
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fermion determinant.'® Thus while at half filling we have
simulated lattices up to 16X 16 with =12, in the in-
teresting region near half filling, 0.7 < {(n ) <0.95, it is
very time consuming to go beyond 8X8 lattices with
B=28/t. However, within these constraints, one can ex-
plore the nature of the correlations on 4 X4 and 6 X6 lat-
tices at temperatures of order % of the bandwidth for
various U/t and {n ) values.

Previous work has shown that the {(n)=1 antiferro-
magnetic correlations rapidly decrease with doping.5!!
For weak (U /t=2) to moderate (U /t=28) values of U /t,
where simulations have been carried out, it appears that
the (m,7) peak at half filling splits into (7—8,7) and
(m,7m—38) peaks with doping.®!> However, over the ac-
cessible lattice size and temperature regime, there is no
indication that the resulting spin-spin correlations scale
with lattice size. Naturally, because of the commensura-
bility problem posed by such correlations, the present
limitations on lattice size represent a particularly serious
obstacle, and we are unable to determine if an incom-
mensurate spin-density-wave or spiral spin-density-wave
phase may occur. At present, the simulations are con-
sistent with a disordered spin system.

An alternative scenario, in which a phase separation
occurs as the system is doped away from half filling, has
been suggested.? In order to explore this possibility, we
have calculated {n) versus u. Phase separation would
manifest itself as a discontinuity in {» ) as a function of
p. This first-order phase transition indicates the separa-
tion between a phase poor in holes with {n)=1, and
another one rich in holes with (n)=n,. Results for
U/t=4 on a 4X4, 6 X6, and 8 X8 lattice and U/t=10
on a 4X4 lattice are presented in Figs. 1(a) and 1(b). In
both cases {n ) remains equal to 1 up to a finite value of
u due to the existence of the antiferromagnetic gap and
then begins to change very smoothly, giving no indication
of phase separation. '3

It is also interesting to examine the dependence of the
kinetic energy on the filling {n ), Fig. 2. At U/t=0, the
kinetic energy (K ) becomes more negative as electrons
are added, until it reaches a minimum at half filling and
then increases again as the number of holes begins to de-
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crease. For finite values of U, the minimum in the kinetic
energy curve shifts away from half filling. A particle-hole
transformation of the Hamiltonian maps the kinetic ener-
gy at filling {(n ) below half filling, into the kinetic energy
at filling 2—(n ). This means that at half filling the
curve has a relative maximum. In Fig. 2 we have used
particle-hole symmetry to obtain the kinetic energy for
values of (n ) larger than one. The existence of this sym-
metry allows us to use each Monte Carlo run to get two
points on our plot. To check this, we made runs for {n)
both below and above half filling and determined that the
results were the same within error bars. The error bars
are smaller than the points shown in the figure. Thus we
find that the Monte Carlo program fulfills particle-hole
symmetry with the degree of precision shown in the
figure. The average kinetic energy (K ) corresponds to
the mean value of the hopping term in Eq. (1), and
— (K ) /N determines the total optical spectral weight!'*
(2/e*m) [ §o(w)do. In Fig. 2(a) we show (K ) as a func-
tion of the density {n) for different values of U/t at
Bt=6 on a 12X 12 lattice. We were able to reach only in-
termediate values of U/t on these large lattices. To ex-
amine what happens for larger values of U/t, we show
results including U /t=10 for a 4 X4 lattice at Br=6 in
Fig. 2(b). As U/t increases, the positions of the minima
move further away from half filling. Finite-size effects
are considerable for small U/t and decrease when the
coupling increases. However, the qualitative behavior is
similar to the one observed on larger lattices. We know
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FIG. 1. The average site occupation {n) vs u. (a) U/t=4,
Bt=28, on 4X4, 6 X6, and 8 X 8 lattices, and (b) U /t=10, fr=4,
on a 4 X4 lattice.
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that when U/t=0, the particles behave as electrons
below half filling, where (K ) is a decreasing function of
{n ), while they behave as holes beyond half filling where
(K ) is an increasing function of the filling. From this
point of view, it would appear that for finite U /¢t the par-
ticles behave as holes (electrons) immediately below
(above) half filling.

In order to investigate the possibility of superconduct-
ing pairing, here we examine various equal-time pair-field
correlation functions

P,=(AlA,) , (2)
obtained from the pair-field operators
1
ALZW %ga(v)chch . (3)

Here, Al adds a pair of electrons in a state whose struc-
ture is specified by g,(v). N is the number of sites, v runs
over selected neighbors of site /, and g,(v) is a function
that determines the symmetry a of the pairs and takes
values =1. In Fig. 3 we show the different pairing sym-
metries that we have considered: local s (s); extended s
(S); extended s along the diagonals (Sp ) , py,, and D; and
extended D along the diagonals (D), p,,, and p, .

To determine whether the interaction between particles
is attractive or repulsive, we have compared P, with the
corresponding nonvertex correlation function
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FIG. 2. (a) The kinetic energy { K ) as a function of the filling
(n) for different values of U/t on a 12X 12 lattice. (b) The ki-
netic energy (K ) as a function of the filling {n ) for U/t values
up to 10 on a 4 X 4 lattice.
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FIG. 3. Pairing symmetries considered in this work. The in-
dex a in Eq. (3) can take the values s, S, Sp, p,, D, Dp, Py, and
Px- The + and — signs are placed on the links that connect site
I (solid circle) with sites v (open circles), and they represent the
values of the function g, (v).

Fﬁﬁ%% G '+, +)
XG(I',1)g,(v)ga(v') . (4)
Here,
G, (I'\D=Ccl,c10) » (5)

is a dressed single-particle equal-time correlation func-
tion. If P is larger than P, then the effective particle-
particle interaction enhances the pairing correlations.

We have studied 4 X4 and 6 X 6 lattices for U/t=4 and
10. We find that the only correlations for which P, is
enhanced relative to P, are the ones associated with D-
and extended S-wave pairing. In Figs. 4(a) and 4(b), we
show Pg and P, as a function of the inverse temperature
. We observe the enhancement of both correlations rel-
ative to their nonvertex parts and we can see that in both
cases the zero-temperature plateau is reached when
Bz 6/t. In Fig. 5 we show P, and P, as a function of
filling for U/t=4 at Bt=6 on a 4X4 lattice. Naturally,
at low filling P, goes to zero. It appears that the only
enhancement of P, relative to its nonzero correlations
occurs near half filling; however, P¢ remains enhanced
away from (n ) =1.

Under a particle-hole transformation, {n) goes to
2—(n) and P,=(AlA,) goes to (A,Al). Note that
since

1
([aLAD) =55 S ebp)nyrtn_y —1),
p

the difference between (AlAa) and (AaAD at a given
filling simply reflects short-range correlations. From now
on we will only give results for P, in the region
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FIG. 4. (a) P, with its nonvertex counterpart P, as a func-
tion of the inverse temperature 3, for U=4, t=1 on a_4><4 and
6X 6 lattice at {n ) =1. (b) Same as above for Ps and Ps.
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FIG. 5. (a) P, with its nonvertex counterpart P, as a func-
tion of the filling for U=4, t=1 and B=6 on a 4 X4 lattice. (b)
P with its nonvertex counterpart P as a function of the filling
for U=4, t=1, and =6 on a 4 X 4 lattice.
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1.0 T T — T size. On the other hand, long-range order in the extend-
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FIG. 6. (a) P, and its nonvertex counterpart as a function of
the filling for U=4 and t=1, for different values of 3 and lattice
sizes. (b) Ps and its nonvertex counterpart as a function of the
filling for U=4 and t=1, for different values of 8 and lattice
sizes. (c) Pp and its nonvertex counterpart as a function of the
filling for U=10, B=4, and =1, on a 4X4 lattice. (d) Py and
its nonvertex counterpart as a function of the filling for U=10,
B=4,and t=1, on a 4 X4 lattice.

singularity away from half filling. Following similar steps
to those of Ref. 16, we found that

([H,A,])=0=(Ag) +f(Ut,u){A,)
Th(nt)(Ag ) . (7)

Here, (ASD> is the operator that destroys a pair of elec-

trons with extended S symmetry along the diagonals (see
Fig. 3), and 4 is a function of ¢ and #’. This means that
the extended S channel may have LRO even if the local S
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FIG. 7. (a) Pp with its nonvertex counterpart as a function of
B for t=1, t'=0.15, U=4, and (n)=1 on a 4X4 and 6 X6 lat-
tice. (b) Same as above for Pg.

does not. But if this happens, one has to observe LRO in
the Sj channel as well.

In Fig. 7 we show results with U /t=4, t'/t=0.15 ob-
tained on 4 X4 and 6 X6 lattices with {(n)=1.0. In this
case, the extended S- and D-wave pair fields appear to
reach their low-temperature plateaus by St=6. In Fig. 8
we fix Bt at 6 and 8 and plot P, versus {n ) in the regime
where the Van Hove singularity in the density of states
occurs. As for the previous case in which ¢'=0, both the
D- and extended S-wave pairing are attractive with the
S-wave pairing showing a wider doping region over
which it is enhanced. However, as before, we do not ob-
serve the pairing correlations to increase with the lattice
size, and S|, correlations do not show any attraction. We
found similar results for ¢’ /t = +0.3 and —0.15.

In this paper we have continued a numerical study of
the Hubbard model. From calculations of {n ) versus p
for U/t=4 and 10, we found no evidence for phase sepa-
ration. The kinetic energy shows an interesting variation
with doping and U /¢, exhibiting a double-well structure
with minima which move out from {n)=1 as U/t in-
creases. We made a detailed study of equal-time pairing
correlations with different symmetries for both the Hub-
bard and the U-t-t' model. For the Hubbard model we
examined values of U /t= 10 larger than the bandwidth 8¢
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FIG. 8. (a) Pp and its nonvertex counterpart as a function of
the filling for U=4, t=1, and ¢'=0.15 for different values of 8
and lattice sizes. (b) Ps and its nonvertex counterpart as a func-
tion of the filling for U=4, t=1, and t'=0.15 for different
values of 8 and lattice sizes.

as well as U/t=4. Although we observed enhancement
of the pair correlations relative to the nonvertex pair
correlations indicating an attractive interaction in both
the D- and extended S-wave channels, we did not find evi-
dence for scaling in going from 4X4 to 6X6 lattices.
Since it appeared that we were able to reach the low-
temperature plateaus for these correlations, our results
suggest that there are only short-range pairing correla-
tions.
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