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Experiments are proposed to test the degree of universality in the long-distance and long-time
growth characteristics of ordering unstable systems. Theoretical predictions are also o6'ered that
can be scrutinized in these tests.

I. INTRODUCTION

In the area of growth kinetics' there has been con-
siderable speculation about the existence of universality
with respect to the long-distance and long-time growth
characteristics. In this article I propose some experimen-
tal tests which I believe can help to sort out this question.
I also o6'er some theoretical predictions which can be
scrutinized in these tests.

If the ordering in a unstable system is governed by a
single scalar order-parameter field %(R, t), the physically
relevant observable is the order-parameter correlation
function

C~(R, t)= &%(R,t)%(o, t) &,
where t is the time after a rapid quench from a stable
disordered region of the phase diagram to an unstable re-
gion of the phase diagram. In particular, the structure
factor Cq, (q, t), which is just the spatial Fourier trans-
form of Cq, (R, t), is measured in scattering (x-ray or neu-
tron) experiments. The first interesting qualitative piece
of information which came out of simulations and experi-
ments' ' was that Cq, (R, t) and Cq, (q, t) satisfy the scal-
ing relations

For pure systems with a nonconserved order parameter
(NCOP), the domain growth is curvature driven and the
growth law is given by the Lifshitz-Cahn-Allen ' " result
L -t' . For pure systems with a conserved order pa-
rameter (COP) but no hydrodynamic couplings, the
growth law is given by the classical Lifshitz-Slyozov re-
sult L -t'". If the system is impure then one can
have logarithmic growth.

In the absence of general analytic methods, much less
has been done on quantitatively analyzing the scaling
function F(x). Gunton and his group have carried out
simulations on a variety of systems, compared the struc-
ture factors, and found qualitative similarity. Ohta,
Jasnow, and Kawasaki (OJK) carried out a very clever
approximate calculation for F(x) for a NCOP system but
it has not, to my knowledge, been used to determine
F(x) for a COP system and it appears difficult to general-
ize since it contained an uncontrolled approximation in-
volving the statistical distribution of interfaces.

The question remains: What does the scaling function
F(x) depend upon? If it is universal we should determine
it once and for all and move on to a new set of problems.
However, if there are various parametric dependences,
then this might be used to extract some interesting infor-
mation about various ordering systems.

Cq, (R, t) =Fq, (R/L (t)),
Cq, (q, t)=L "(t)fq, (qL(t)),

(1.2)

(1.3)
II. DIRECT VISUAL MEASUREMENT OF I' (x )

where d is the spatial dimensionality of the system. The
scaling function f is found experimentally to be approxi-
mately independent of t and the final temperature TF for
a variety of systems' including liquid mixtures, glassy
systems, and binary alloys. The physics of this problem
is that there is a single length L (t) which dominates at
long time and distances. It is natural to associate L(t)
with the average domain size which increases steadily as
the system equilibrates.

The key questions are the following.
(1) What are the "growth laws" L (t) and scaling func-

tion F (x) for various particular systems?
(2) Are there groups of systems which share the same

growth law and scaling functions? Is there a degree of
universality?

A simple and rather universal picture has emerged for
the growth law L(t) as confirmed by numerous simula-

4o —65 of kinetic Ising and Langevin models.

Most of the experimental work on growth-kinetics
problems have involved scattering experiments which
directly measure the structure factor C(q, t). Given the
development of modern direct visualization techniques, it
seems worthwhile to try and motivate some direct mea-
surements of C(R, t) In this pape. r, I discuss the type of
information one can access in such measurements and
how they can be definitive with regards to the question of
universality.

The measurements are simple in principle. If one can
"see" the contrast between ordering phases, then one can
make a "picture" of 4'(R, t) which assigns an amplitude
to a discrete set of X points R in space. These variables
can then be correlated to obtain, at a particular time,

The main technical problem is to obtain three-
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dimensional snapshots of %(R, t) or to properly analyze
two-dimensional slices. For discussion of "direct obser-
vation" in the case of a phase-separating Quid see Ref. 38.

Let us suppose, and I leave it to the experimentalist to
devise the most clever technique for such an observation,
that one can determine C(R, t) as a function of R and t in
this manner. I want to focus on the particular spatial re-
gime where this data can be represented as a power series
inR:

C(R, t)=CD+CiR+C2R +C3R + (2.1)

The main point I want to make here is that there is con-
clusive information contained in the time-dependent
coe%cients Co, C&, C2, and C3 concerning the growth-
kinetic class of a system.

It should be clear that the expansion (2.1) is valid only
over a certain restricted set of length scales. Let us as-
sume that we are working at a time after a quench t
which is suKciently large that the typical domain size
L(t) is very large compared to the interfacial width g.
The expansion (2.1) will then hold for distances R small
compared to L (t). From an experimental point of view,
this is convenient since the range of interest will grow as
time evolves and L (t) increases. Let us, for now, assume
that we restrict the analysis to the case where R is large
compared to the interfacial width g. What, then, does
one expect for the coeScients C, '? Let me begin with
general comments and then be more specific with predic-
tions from a recently developed theory.

III. GENERAL BEHAVIOR OF THE C„

If, as a quenched system evolves, one develops a set of
sharp interfaces, then general arguments indicate
that the linear coefficient in (2.1) will be nonzero. This is
a nonanalytic contribution which leads to Porod's law
for the Fourier transform of (2.1)

C (q, t)-q (3.1)

C(R, t) =CDF (x), (3.2)

where x=R/L. Then, for x «1, (2.1) can be rewritten
as

F (x)= 1 —ax (1+P2x +P3x + .
) .

If the "Tomita9 sum rule" holds, then p2=0.

(3.3)

IV. THEORETICAL PREDICTIONS

Let me turn next to the results of a recent theory
which gives detailed predictions for the scaling function

If there is scaling then C& must be inversely proportional
to L (t). On generalizing Porod's law, Tomita has
speculated that the coefficient Cz (and all higher-order
even-numbered coefficients) vanishes in this regime. If
scaling holds then C„ is proportional to J ". It has been
speculated that these results hold independent of the
type of dynamics driving the system.

In the scaling regime the scaling function can be
defined by

F(x) and the coefficients p; defined by (3.3). The theoret-
ical model analyzed in this work is the time-dependent
Ginzburg-Landau (TDGL) equation

r) Ir(R t) I, 5F[% ]
Bt 2 5%'(R, t)

(4.1)

where, on the right-hand side of (4.1), F is an effective
Ginzburg-Landau-Wilson Hamiltonian or free-energy
functional and I sets the time scale. For definiteness, as-
sume F is of the "squared-gradient" form

F =f d"R —(V~%') + V(V) (4.2)

where V(ip) is the potential, d is the spatial dimension,
and c )0. In a growth-kinetics context, V(0) is chosen
to be a degenerate double-well potential. A simple reali-
zation of Vis the 4 potential V= —,'(1 —~Ir ) . For p =0
in (4.1), ( —Vz ) = 1 and this is a form of model A used in
dynamic critical phenomena. ' ' In this case, the order
parameter is not conserved (NCOP) and the model corre-
sponds to, for example, the kinetics of an order-disorder
transition in a binary alloy or of an Ising antiferromag-
net. For p = 1 the order parameter is conserved (COP)

dt f ddR%'(R, t) =0, (4.3)

and the kinetics correspond to model B in critical phe-
nomena' ' or the Cahn-Hilliard' model in the meta1-
lurgica1 literature. This equation describes spinodal
decomposition (phase separation) in binary alloys and Is-
ing ferromagnets. Equation (4.1) is to be supplemented
by random initial conditions typically taken to be un-
correlated from site to site and uniformly distributed
such that (%'(R, ta)) =0 and

(4(R, ta)+(R', t0)) =6it it er . (4.4)

I am assuming in this development that the quench at
time to=0 is to zero temperature where the usual noise
term on the right-hand side of (4.1) can be set to zero.

Let me discuss first the results for the NCOP case
since it is simpler. Consider the case of quenches to very
low temperatures where thermal Auctuations of the order
parameter can be ignored. The first important result is
that one can express the growth law in the form

L (t) = —[1—S(t)/0'0] (4.5)

where S(t)= (%' (R, t) ) is the order-parameter auto-
correlation function, %'0 is the ordered equilibrium value
of the field 4, and g is a measure of the interfacial width

f [%0—cr (x)]dx . (4.6)

In (4.6), cr(x) is the exact interfacial profile and %0 and
o (x) can be determined from equilibrium considerations.
As the system orders S (t)~qr0, and L (t) increases.

Let us consider the long-time regime where L ))g.
The theory gives that the correlation function can be
written in a scaling form
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Cq, (R, t) =(P()F(R/L) . (4.7)

When x =R /J is small, the scaling function can be writ-
ten in form (3.3) and the theory gives explicit expressions
for a and the P, :

still the same as in the NCOP case and given by (4.8).
However, in this case the coefficient pz is nonzero in or-
der to satisfy a nontrivial set of boundary conditions
obeyed by the scaling function:

2
ir(d —1)

q=0,

where

p+ 7T/6

2(2d +1)

1//2

(4.8)

(4.10)

and

—0.0778, d =2,
—0.0356, d =3,

2(2d +1) 6

V. SHORT-DISTANCE BEHAVIOR

(4.13)

(4.14)

1 ~ 104,
p= 0.592,

0.414,

d=2,
0 =3
8=4.

(4.11)

The theory therefore does lead to Porod's law, it does
give pz=0, and it also gives explicit expressions for the
coeScients.

It is nontrivial to obtain even the linear term in (3.3)
from a first-principles theory —indeed, with the excep-
tion of OJK (Ref. 88) for the NCOP case, no theory up
to the present work has been able to reproduce this re-
sult. The reason is simply that any mean-field'
theory is incapable of producing such a nonanalytic re-
sult. Such theories all give a form

(5.1)

where

8'(R) = — 1+ + .R K)

4d
(5.2)

and
2

The results in the last section assumed that one works
in the distance regime g(&R «L (t). The theory is also
capable of treating the short-distance behavior. Consider
the short-distance region R & g &(L, in this case the
theory gives the analytic result

Cq, (R, t)='P()[1 D(t)R +— ] . (4.12) 1 J+~ dx do. (x)
—co g dx

(5.3)

It is also true that no first-principles theory, including
OJK, has been able to quantitatively reproduce the ex-
pected t' growth law for the COP case. The recent
work of Bray" producing the t' growth law contains
assumptions which have been questioned by Goldenfeld
and Oono. ' Bray's method cannot, in any event, be
used to extract the scaling function. It is worth pointing
out that the results stated above do not depend on the
form of the potential, the type of underlying lattice, or
the nature of the initial conditions [et in (4.4)].

Let me turn next to the more challenging' COP case.
There turns out to be an important physical difference be-
tween the NCOP case and the COP case which leads to a
subtle theoretical point. In the NCOP case the eventual
motion of the interfaces is completely decoupled from the
ordered regions in the problem. In the COP case one ex-
pects that domain growth is facilitated by the diffusion of
material of opposite orientation across ordered domains.
Protuburances on an interface serve as a source for Auc-
tuations which break off and propagate across an ordered
region. Thus, unlike the NCOP case, one can have Auc-
tuations inside domains which are generated and persist
for very long times. This coupling between the interfacial
motion and bulk diffusion is necessary to obtain the
Lifshitz-Slyozov t ' growth law.

The determination of the scaling function F is similar
to, but more involved than, the NCOP case for what
turns out to be interesting theoretical reasons. In the
end, the scaling function is again of the form (3.3) with a

is proportional to the surface tension for the system.
Thus, the short-distance behavior of the correlation func-
tion C~(R, t) are governed by detailed properties of the
interface which are characterized by the value of the or-
der parameter, the interfacial width, and the surface ten-
sion. In this regime, C+(R, t) is a smooth analytic func-
tion of R. This result holds for both the NCOP and COP
cases.

The theory can treat the entire R range and as R in-
creases one finds for g&(R «L that (5.1) still holds but
W has crossed over from (5.2) to

W(R) =a IRI (5.4)

where a is the same a given by (4.8) and one matches
onto the scaling form (3.3).

VI. LARGE-x LIMIT

F (x)—F x
—(d —m/2P)e —(P/2)x

0 (6.1)

While the emphasis in this paper has been on the
small-x behavior of the scaling function, one can also
work out the large-x behavior. It is, however, probably
more dificult to measure this behavior accurately experi-
mentally since it is in this region where F(x) is small.
The result of the theory in Refs. 99 and 100 is that F(x)
can be determined analytically for large x. For a NCOP
system one has a Gaussian form
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where p, is given by (4.11) and Fo is a constant that has
been determined numerically. For the COP case one ob-
tains the more involved oscillatory form

F F —d/
P

Xcos &3—3v' ' x' '+ x' '+P
2/3 (6.2)

where Fo and P are constants which have been deter-
mined numerically and, as in the NCOP case, the final re-
sults depend only on d with

0.3376, d =2,
0. 1752, d =3 . (6.3)

VII. PERTURBATIONS

The theoretical results described above are for the
specific class of models defined by (4.1). There are a num-
ber of possible perturbations which might change the
scaling properties and the coefficients a and P;. Since
most of these possible changes are, as yet, unexplored
theoretically, I can only raise a warning signal that these
effects may change the scaling function.

lute set of such compact objects is given by the Lifshitz-
Slyozov theory and the growth law is t' for all values
of M. It is clear that F does depend on M, but theoretical
results in the literature' ' do not make strong state-
ments about the variation of F with M. In the simulation
work of Rogers and Desai" they find a rather weak
dependence of F on M for M ranging from 0 to 0.4. The
main change they find is a lowering of F/(1 —M ) for
small x for the M =0.4 case relative to the M =0 case.
They claim that this may be a nonscaling effect which
may diminish for longer times. It is worth noting that,
for M=0.4, the system has already crossed over to a
final morphology of compact structures embedded in a
majority phase matrix.

The extension of the theory in Ref. 100 to the MAO
case is relatively straightforward and involves reformulat-
ing the theory such that the probability distribution
governing the auxiliary field m, appearing in o [m], al-
lows for a nonzero value of m. This complicates the
theory, but not in a prohibitive way. It is clear that the
theory can be developed in much the same way as for
M=0 and that the growth law will still be given by
L -t ' '. It is clear that the scaling function F and the o.
and P coefficients do depend on M. A preliminary
analysis shows a lowering of F for small x in agreement
with Ref. 121. Complete theoretical analysis will be
available in the near future.

A. Thermal e6'ects

In the analysis above it was assumed that the quench
was to zero temperature. If the quench is to a nonzero
temperature Tz, then one can ask how the results for the
scaling function F are modified. One expects" that
thermal effects will have the effect of renormalizing only
the equilibrium properties like the "magnetization" %'0

which goes to %0(T&) and the interfacial profile o.(z) and
the interfacial width g will now depend on T~ However, .
as long as R »g(TF), one expects the coefficients P; and
~ to be independent of T~.

B. OÃ-critical quenches

The discussion of the model given by (4.1) up to this
point has been limited to the case of critical quenches
where, by virtue of symmetry, the average value of the
order parameter is zero,

(7.1)

The case of off-critical quenches for the case of a COP is
of great interest since spinodal decomposition for an alloy
mixture will typically not be for a 50-50 composition. In
this case one has that

(7.2)

and M has a fixed time-independent value. One then has
the problem of treating (4.1) with the constraint (7.2). As
one changes M from 0 to 'Po, one changes the late-time
morphological structure from the ramified structure' "
to a structure of compact objects (spheres) coarsening in
a background of the majority phase. The theory of a di-

C. Strain eft'ects and solid symmetries

For an ordering solid whose elastic properties are not
approximately isotropic, the morphology of the growth
structure will be anisotropic and this anisotropy
will be refiected in the coefficients a and f3, The specific
nature of this dependence is not yet known but under
current theoretical investigation.

D. Role of impurities

If there are quenched impurities in the system then
they have a dramatic effect ont he growth kinetics in the
system. The growth law can be changed to a loga-
rithmic form and, indeed, ordering may be stopped at
some point. The nature of scaling in ordering systems
with quenched disorder is not understood at this point.

E. Multiplicity of order parameter

It is known from the work of Lai' that the scaling
properties may be inAuenced by the existence of a multi-
plicity of competing order parameters which may intro-
duce a competition between different types of interfaces.
The model given by (4.1) and (4.2) shows only one type of
interface. Systems like Cu3Au (Refs. 131 and 132) show
two different types of interfaces and this appears to
inhuence the scaling properties of such systems. Experi-
mentally one finds anisotropy in the scaling properties of
Cu3Au which will be reAected in the coefficients C„. De-
tailed calculations need to be done to determine the
modification of the C„'s due to this anisotropy.
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F. Flow

It is known that Aow in Quid systems and the associ-
ated hydrodynamical couplings change the growth law
from t' to t. It is expected' that there will be associat-
ed crossover effects in the scaling function.

G. Polymers

It has been proposed' that the models (4.1) and (4.2)
can be used to describe phase separation in polymer mix-
tures ifp = 1, V is some variant of the Flory-Huggins free
energy, and c is taken to be %' dependent. Preliminary
calculations seems to indicate that the scaling function
and the P coe%cients are sensitive to the + dependence of
c. This somewhat surprising result must be investigated
further.

VIII. CONCLUSIONS

A direct experimental or numerical determination of
the coeificients defined by (3.2) and (3.3) can be very use-
ful in elucidating the degree of universality in growth-
kinetics problems. For the theoretical model defined by
(4.1) there are definite theoretical predictions which can

NCOP
0

—0.2557

COP
0.0975

—0.0813

NCOP
0

—0.2504

COP
0.0631

—0.1169

be tested. If we define the ratios

R„= lim
f —+ oo

C Cn —i
n 0

where the C„are defined by (2.1) in the spatial regime
g«R « l., then the R„have universal values for the
class of models defined by (4.1). Again, these results do
not depend on the form of the potential, the type of un-
derlying lattice, or the nature of the initial conditions.
The values of R„ for n =2 and 3, d =2 and 3, and for
conserved and nonconserved order parameter are given
in Table I. There are clear differences between the COP
and NCOP cases.

TABLE I. The "universal" ratios R„defined by (8.1) for
d =2 and 3 for conserved (COP) and nonconserved (NCOP) or-
der parameters.
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