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An alternative mathematical description of thermally stimulated luminescence (TL) and ther-
mally stimulated conductivity (TSC) is presented without the restrictions of the quasiequilib-
rium (QE) and kinetic-order (KO) approximations. The development is carried out within the
framework of a model consisting of a single active trap in the presence of a large concentration
of deep, thermally disconnected traps and recombination centers. The QE and KO approxima-
tions are removed and replaced by two new functions, q(T) and P(T), both rigorously defined
in terms of trap emptying and filling processes. The resulting generalized equations are capable
of continuously describing the behavior of systems over a wide range of kinetic cases and very
far from QE. From these, generalized initial-rise and Hoogenstraaten equations are derived from
which previously unknown correction terms are identified. In addition, a modified version of the
initial-rise analysis is presented and its range of validity addressed. The formalism presented
provides much insight in that one may describe clearly the effects of common approximations
and estimate if such approximations are warranted. Other results include a physical justification
for why first-order (slow-retrapping) processes dominate in nature, a general TL-TSC relation-
ship, the realization that the QE approximation is only valid at the temperature of the TSC
peak maximum, and an experimental method for determining the shape of the Q(T) function.
The applicability of this analysis is illustrated using numerical solutions of the differential rate
equations.

I. INTRODUCTION

The usual analysis of thermally stimulated lumines-
cence (or thermoluminescence, TL) and thermally stimu-
lated conductivity (TSC) are based on the traditional de-
scription of these processes discussed more than 40 years
ago by Randall and Wilkinsi and Garlick and Gibson. s

The simplest model of the type discussed by these au-
thors consists of a single localized state for electrons and
one for holes. Charge trapped at these levels may be
thermally freed and eventually undergo recombination.
While in the delocalized bands, the free carriers give rise
to transient conductivity (TSC) and during recombina-
tion they may yield luminescence (TL). Electrons are
normally assumed to be the thermally freed carriers and
to recombine with trapped holes in a ShocI ley-Read pro-
cess, although the concept of free holes recombining with
trapped electrons is equally acceptable.

Several theoretical exercises have been undertaken to
examine the expected TL and TSC profiles. Early theo-
ries dealt only with the simplistic model described above
(e.g. , Haering and Adams and Halperin and Braner~),
but later analysis introduced an extra, thermally discon-
nected electron energy level (e.g. , Dussel and Bube5 and
Saunderss) and continuous distributions of traps. 7 The
work in TL and TSC theory is extensive with much work
presented in the literature and extensive review arti-
cles published. Essentially, however, the fundamen-
tal approach has remained unchanged.

Conunon to all the above treatments is the establish-
ing of models consisting of various traps and recombi-
nation centers consistent with charge neutrality. Models
such as these provide a framework from which a phe-
nomenological theory of TL and TSC can be presented,
and thus one may qualitatively understand complicated
TL and TSC spectra How.ever, it has been the quan-
titative understanding that has thus far been elusive.
Once a model has been assumed, rate equations are de-
veloped that describe, in terms of the fundamental sys-
tem parameters, the traKc of charge out of and into the
various traps and delocalized bands. In principle, the
solution of these equations may lead to expressions for
the TL and TSC curves, comparison of which with ex-
perimental data may provide information concerning the
fundamental trapping parameters. In practice, however,
the rate equations usually become intractable (i.e. , can-
not be decoupled) so that exact analytical solutions are
unobtainable for even the simplest of systems. Conse-
quently, in all previous treatments approximations were
used to obtain analytical solutions. From these approxi-
mate solutions, procedures were developed to determine
the trapping parameters. The most common of these
are the initial-rise analysis, the heating rate method
of Hoogenstraatenis and direct peak fitting (e.g. , Mo-
han and Chenis). A whole array of other procedures
involving the use of peak symmetries, inflection points,
half-peak values, etc. , have also been developed and have
been reported in the literature. 5 The motivation for
the development of these various procedures has been to
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obtain information concerning the fundamental trapping
parameters from experimental TSC and/or TL spectra.

The problem of determining trapping parameters from
TL and TSC has been the subject of several studies
that employ direct numerical solutions of the rate equa-
tions. The conclusions reached are indeed pessimistic.
The work of the I&e11y, Laubitz, and Braunlich~~ (and
earlier work by Kelly and Braunlich ' ) and also the
work of Shenker and Chen are of particular interest.
Essentially these researchers concluded that as the the-
ory presently stands, isolated measurements of thermally
stimulated processes are valueless for determining trap-
ping parameters. This conclusion was based partly on
the fact that oversimplified models were used in the de-

velopment of standard analysis techniques and partly on
the fact that even within the framework of these simpli-
fied models parameter ranges could be found over which
the approximate solutions simply are not adequate. A
degree of "degeneracy" was also noticed, that is, it was
found possible to analyze TL and TSC spectra based on

any one of several models and obtain parameters that
yield very similar TL or TSC curves. Based on this
evidence they conclude that unless a realistic model is

known beforehand and unless at least some of the as-

sociated parameters are reasonably well known, isolated
measurements of TL and/or TSC will not be very infor-
mative.

Reviewing the literature one finds that essentially the
problem is threefold consisting of the following draw-
backs.

1. The model: The simple model involving a single
electron (or hole) level and a single recombination cen-
ter with constant parameters from which most analysis
techniques are based is inadequate. This model fails to
describe the rich variety of experimentally observed TL
and TSC phenomena.

2. The inability of obtaining exact analytical soln
lions: Because of the nonlinear coupling of the rate equa-
tions, exact analytical solutions have not been possible
for even the simplest of models. Numerical studies have
called into question the validity of the quasiequilibrium

(QE) approximation which, when applied, eff'ectively de-
couples the rate equations. The QE approximation is
difIicult to justify physically and, in fact, has never been
shown to be rigorously applicable to any known system.
In addition to this approximation, traditional presen-
tations usually develop the equations into very specific
cases in which one expresses the degree by which re-
combination processes dominate over retrapping (or vice
versa) and in this way introduce the concept of kinetic
order (I&O). While it may be true for a particular TL or
TSC peak that recombination or retrapping dominates
over certain temperature ranges, this condition cannot
be made a priori. Attempts have been made to gen-
eralize the concept of kinetic order by the introduction
of a kinetic-order parameter or by the introduction
of mixed-order solutions that contain parameters to be
adjusted so as to achieve an optimal fit of experimen-

tal data. ' While this approach has been successful in
the fitting of certain peak shapes, all physical meaning
is lost. The concept of kinetic order may be of some use
by itself, however, when used in conjunction with the QE
approximation it serves only to compound the problem,
since it is not at all clear whether these approximations
are self consistant for any given system or over the entire
temperature range of trap emptying.

3. Analysis procedures: Finally, since the analysis pro-
cedures used to obtain trapping parameters are derived
from within the context of the QE and/or kinetic-order
(I&O) approximations, the validity of these approxima-
tions calls into question the validity of the analysis pro-
cedures. All methods that are developed from approxi-
mate solutions are susceptible to the breakdown of these
approximations to one degree or another, and, since no
truly general formal description exists, the degree of this
breakdown has yet to be firmly established. This eRect
is no doubt responsible, in many cases, for the large vari-
ation in parameter values obtained from the diferent an-
alytical methods. A possible exception is the initial-rise
procedure, which has been shown in numerical studies
to be widely applicable and somewhat consistent. It is
known that the initial-rise method is independent of KO
and why this is so. ~ However, it is not known if this
method is dependent on the QE approximation.

Clearly, if the problem is to be understood to any ac-
ceptable degree a truly general, formal description must
be made available. In order to achieve this one must
abandon the rigidity of the QE and KO approximations
and present a mathematical description that is capable
of dealing with intermediate cases. Any general descrip-
tion must be developed within the framework of a model
that is flexible enough to support a wide variety of TL
and TSC phenomena and would thus be capable of ade-
quately predicting TL and TSC curves over wide varia-
tions of the fundamental parameters. It is to be accepted,
however, that no single model exists that will explain all
TL and TSC phenomena.

The purpose of this paper is to present an alternative
mathematical description by the development of gener-
alized forms of the TL and TSC equations. Instead of
dealing only with the specific cases that the QE and I&O

approximations necessarily require, solution forms will be
arrived at without these restrictions. Abandoned is the
rigid concept of QE as an approximation. Its replace-
ment consists of a physically meaningful and, in principle,
experimentally measurable function [the Q(T) function]
rigorously defined in terms of trap emptying and filling
processes. A kinetic-order function [the P(T) function] is
introduced and also defined in terms of physically mean-
ingful processes. It significance as a measure of the degree
of retrapping is retained; however, its generalization to a
function allows for the kinetic order of a process to vary
as traps are emptied. The removal of these approxima-
tions results in generalized equation forms that are ca-
pable of continuously describing a wide range of kinetic
cases. From these, generalized initial-rise and Hoogen-
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straaten equations are derived. The approach is to first
derive generalized expressions and then show that they
reduce to the more familiar equations under various com-
mon approximation sets. In this way one is able to de-
scribe clearly the eA'ects of certain approximations and
estimate if such approximations are warranted, thus pro-
viding insight as to the range of validity of the simplified
forms.

II. THE MODEL

The choice of a model places restrictions on the type
and variety of TL and TSC phenomena that are possible
and in itself represents a significant assumption. How-

ever, since it is impossible to develop any analysis proce-
dure independent of the framework of a model, its choice
becomes vitally important.

The model chosen here closely resembles one first con-
sidered by Dussel and Bubes and later by Saunders and
is shown schematically as Fig. 1. A model of this type
was chosen because it has been used in the past to develop
the traditional TL and TSC equations and, therefore, al-
lows for the direct comparison of the results obtained
here with those of previous authors. The model consists
of the following types of levels: (1) the active electron
traps (AT' s), (2) a distribution of shallow electron traps
(ST's), (3) a distribution of deep, thermally disconnected
electron traps (DET's), and (4) a distribution of deep,
thermally disconnected hole traps (DHT's).

The top of the valence band is denoted E, , the con-
centration of free holes is h„(T),the bottom of the can-

n (T)

duction band is denoted E„and the concentration of
free electrons is n, (T). The Fermi energy, E~, is located
schematically in the center of the band gap.

The active electron traps are assumed to be of one
defect type. They exist in concentration N and are lo-
cated at energy E~, thus having activation energy E,
where E = E, —E . Both E and N are assumed to
be singular and temperature independent. The active
temperature range (To Tf) —is defined as the tempera-
ture range over which these traps are thermally active,
meaning that thermally induced transitions out of these
traps are highly probable. Transitions taking place over
the active temperature range will be the ones of primary
interest in this paper. These traps are further character-
ized by the temperature-dependent functions n(T) and

S(T), where the former represents the concentration of
full traps and the latter represents the electron-capture
cross section at any temperature T.

Shallow electron traps may exist as several defect
types, but since the activation energies of these levels
are less than E, these traps are empty over the active
temperature range and do not constitute stable retrap-
ping centers. For this reason they play little or no role
in the later thermally induced redistribution of charge.

The remaining traps constitute all the remaining de-
fect types responsible for the introduction of levels far-
ther into the band gap. Over the active temperature
range these levels are thermally disconnected, meaning
that the probability of carrier release from these traps is

negligible. Those levels having energies less than some
energy Ey„where Ep & E, but greater than E~, form
a distribution of levels collectively labeled as the deep
thermally disconnected electron traps. II characterizes
the total concentration of these levels and is defined by

G(E)dE,

E
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where G(E) is the density of states function. Those levels
with energy less than E~ but greater than some energy
E„form a distribution of levels collectively labeled as the
deep thermally disconnected hole traps. M is the total
concentration of these levels and is defined by the relation

G(E)dE

E-
M, R(T), h(T)

FIG. 1. Energy level diagram of the model under consid-
eration. The model consists of a distribution of shallow levels
(ST's), the active level (AT) at energy E, a distribution of
deep thermally disconnected electron traps (DET's) from en-
ergies E& to Ep„and a distribution of thermally disconnected
hole traps (DHT's) from energies E„to Ey.

It will be assumed that E, —E~ is less than E„—E„,
so that over the active temperature range little or no
simultaneous hole release is possible. By excluding di-

rect band-to-band recombination as well, these hole traps
function as the recombination centers for the system dur-

ing the trap emptying process. These centers are fur-
ther characterized by the temperature-dependent func-
tions h(T), the total concentration of full hole traps and

R(T), the average capture cross-section for electrons (i.e. ,

the recombination cross-section). Formally R(T) is given

by
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where M; is the concentration of hole traps of defect type
i, , and r, (T) is the capture cross section for electrons of
a hole trap of defect type i. The sum is over all defect
types that lead to energy levels less than E~. Finally, this
model requires that the concentration of trapped holes be
somewhat greater than the concentration of trapped elec-
trons so that over the active temperature range the deep
electron traps remain full and therefore do not constitute
retrapping centers for free electrons. This configuration
means that the existence of deep electron traps enters the
formalism only through the neutrality condition.

It should be noted that the establishment of a model
that makes electrons the freed carrier during the trap
emptying process in no way reduces the generality of the
theoretical results as it pertains to carrier type. The the-
ory of TL and TSC is essentially symmetric with respect
to carrier type, and one could therefore define an anal-
ogous model making holes the freed carrier type during
trap emptying.

III. THE THEORY

The particular scenario of interest is the following. The
system, held at a temperature lower than Tp, is subjected
to external excitation (illumination or radiation) of en-

ergy greater than the band gap. This excitation induces
transitions across the band gap creating a large concen-
tration of free electrons and holes, which then relax into
the various traps. Trap filling is continued in this way
until equilibrium is achieved (this ensures complete fill-

ing of the deep electron traps). The excitation is then
removed and the system is heated according to a linear
heating profile, dT/dt—:P, in the dark.

During heating the trap emptying process begins as
electrons are thermally excited out of the shallow lev-

els. However, over the active temperature range, the al-
lowed transitions, as indicated in Fig. 1, show that elec-
trons are excited into the conduction band from the ac-
tive level with free carrier removal proceeding along two
possible pathways, recombination and retrapping. Since
the deeper electron traps do not empty until tempera-
tures well past the active range, these traps remain full

and therefore do not constitute potential trapping sites.
Hence, transitions into these traps are forbidden. The
thermal release probability function per unit time, 'P(T),
is given by~

(4)

where s(T) is the frequency factor, E is the previously
defined trap depth, T is the absolute temperature, and k

is Boltzmann's constant.
In general, for any temperature range, the concentra-

tion of free and trapped electrons must equal the concen-
tration of free and trapped holes, that is, charge neutral-
ity must be preserved. For temperatures greater than Tp
this condition is expressed

n, +n+H = h+ h„, (5)

where all terms except II are temperature dependent.
For convenience, notation expressing explicit tempera-
ture dependence has been suppressed. This practice will

be used throughout the paper except when a symbol is
first introduced or where it is necessary to avoid confusion
or to highlight arguments where temperature dependency
is explicitly being addressed.

If attention is restricted to include only the active tem-
perature range, then a final assumption can be made.
One may assume that

since, in the active temperature range h„=Q, this ap-
proximation consists of assuming that over this range the
concentration of trapped electrons is always much greater
than the concentration of free electrons. This approxi-
mation does not severely limit the applicability of this
model, since in most physical systems the concentration
of traps actually active at any temperature is small com-
pared with the concentration of deeper inactive traps.
With this approximation, Eq. (5) becomes

meaning that the concentration of available hole centers
must at least be equal to N + H. The recombination
lifetime, 7, is then given by

where rn* is the efI'ective electron mass.
The rate equations governing the detrapping of charge

over the active temperature range are3

lA
nN, (T)Sv, exp —— + n, (N —n) Sv,

(10)

and

dn, dn n,
dt Ch r '

where N, is the effective density of states for the conduc-
tion band and is given by

(12)

where h is Planck's constant divided by 2~.
Equations (10) and (11) form a set of first-order, non-

linear, coupled differential equations. Since it is not pos-
sible to decouple them, these equations have no known,

i (T)
= v, (T)hR v, (T)R(n+ H),

where v, is the thermal velocity of an electron in the
conduction band and is given approximately by
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dn n
(14)

meaning that the overall rate of change of the concen-
tration of free electrons is small compared to the rate of
recombination. With this approximation one arrives at

n(T) (N, Sv, ) ( E
1/r + [N —n(T)]Sv, ( kT

from which, using I~s c (T) = AF e p(T) n, (T) anc'

closed-form, analytical solution. At this point it will be
worthwhile to briefly summarize the approximate solu-tionss.

A. Summary of the approximate
TL and TSC solutions

The erst approximation made is that of quasiequilib-
rium. Formally this is expressed as

dna ng

cA

or from Eq. (11) as

I~r,(T) = rtn, (T)/r(T) one gets

AFepns ( E 5

1/r+(N —n)Sv,
' p

& kTr '

'gn8

r(1/r + (N —n) Sv, ) kT

where e is the modulus of the electronic charge, p(T)
is the electron mobility (which in general is temperature
dependent; however, its temperature dependency is often
weak and is usually ignored), A is the effective electrode
area, I" is the magnitude of any applied electric field, and
g is the luminous eKciency of the recombination process
(& 1). Also the frequency factor has been written as

s(T) = N. (T)S(T)"(T)

Further approximations are normally introduced at
this stage concerning the relative rates of retrapping and
recombination. The results for the three cases usually
considered are

(i) Slow retrapping (first order), r )) (N —n)Sv, :

Eb 1 ) El4'sc = AFeprnps(T) exp
I

—
l exp —— s(e) exp I—

kT) P ~, q kO)

E) 1 E)„I~z, ——rtnps(T) exp
l

—
l

exp —— s(O) exp —
l

dO

(ii) retrapping, r ~ = (N —n)Sv, :

s(T) E 5
h'sc = AFeprnp exp —

l exp
1 T

2P
e(8) exp (— ) dB

s(T) /' E 5
I~r, = gnp exp I

—
I

expkT) s(8) exp
l

—
l

d8( El
(22)

and (iii) fast retrapping, r ~
&& (N —n)Sv, .

N,
ITsc = AFepnp '

exp —
l exp — '

exp — dQ

IrL = np exp —
kT l

exp — exp — dQ
N kT) N (24)

In the above equations no is the initial concentration
of electrons trapped at the active level. For the fast-
retrapping case it has to be assumed that np/N « 1.

From these equations further analytical procedures
have been developed to arrive at estimates of the acti-
vation energy. It should be recognized that each of the
above equations reduces to

I = const x exp

I

when T Tp, where I is the TL or TSC intensity during
the initial rise part of the TL or TSC peak. This recog
nition led to the development of the initial-rise analysis,
since a plot of ln(I) versus 1/T over the initial rise part
of the peak would result in a straight line of slope —E/k
(Ref. 2).

Similarly, Hoogenstraaten made use of the observa-
tion that the temperature of the TI or TSC peak max-
imum, T~, shifted to higher values as the heating rate
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is increased . By setting dI(T)/dT = 0 at T for the
slow-retrapping case, he showed that

Using Eq. (10) in Eq. (28), one can solve for n, yield-
ing

(26)
n (N, Sv, ) E )

Q/7. + (N —n)Sv, kT&
(29)

where it was assumed that the frequency factor is con-
stant.

It has been recognized for some time that in reality TL
or TSC signals may not be described adequately by the
set of assumptions described above. The QE approxima-
tion is particularly contentious in that it places stringent
restrictions upon how the model will behave. The con-
clusion of the numerical studies was that the QE approx-
imation is only valid in special sets of circumstances and
does not have any general validity.

B. The general TL and TSC equations

As already mentioned, the QE approximation is dif-
icult to justify physically. Thus, instead of this ap-
proximation, we introduce the quasiequilibrium function,
q(T), defined by the relation

Using Eq. (11), this can be written as

Substituting n, back into Eq. (28) produces,

P(7')—:~(N —n) Sv, (31)

Just as for the Q(T) function, the form and properties
of P(T) will play an important role in the generalized
description of TL and TSC; however a detailed analysis
of the P(T) function will again be left for a later section.

Using the definitions of both Q(T) and P(T) along
with Eq. (8), Eq. (29) can be written as

1 GA E&
[Q+&(N —n)Sv, ] = Q(N—,Sv, ) exp

In dh kTy
'

(30)

which is a differential equation in n(T) only.
It is at this point that one traditionally develops the

equations using specific values for the kinetic order. How-
ever, these separate cases can be unified by the definition
of the kinetic-order function, P(T), defined by the rela-
tion

(28)

where Q(T) = q(T) + 1. The form and properties of the
Q(T) function will be of great importance in the gener-
alized theory of TL and TSC. So as not to disrupt the
continuity of the present derivation, detailed discussion
of the Q(T) function will be left to a later section.

S N, n ( E)
~ Q+P +H P

~& kTr

and Eq. (30) as

1 dn Q (N, Sv, ) E
n dT P(Q+P) kT

Integration of this equation gives

(32)

(33)

p T. Q(o)+P(e) ko (34)

Substitution of Eq. (34) into Eq. (32) to yield an expres-
sion for n, can now be accomplished. Before this is done,
however, it is useful from an operational standpoint, to
employ the expansion

„,"„=&.(-p) "(
—„")', (35)

j=1
provided H ) n(T). Then with the substitution of Eq.
(34), Eq. (32) becomes

OQ

e,(T) = — *
exp (—

1 ) (
—1) +

(
—

) exp[—3' p(T)],
j=1

where

1
g(T) =— O de, ' Q(o)+p(o) '(')'" ko ~

"'
(36)

Since ITs~ is related to n, (T) by Aep(T)F, Eq. (36)
could be properly referred to as the general form of the
general order TSC equation for a single level system in
the presence of thermally disconnected traps.

The number of terms used in the series to accurately

represent a TSC peak depends on the relative magnitude
of no to H and on the magnitude of g(T) Since g(T).
appears in the exponential, its magnitude is the chief
determining factor in establishing rate of convergence.
The fact that g(T) is evolving in temperature, growing
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larger as T is increased, means that the number of terms
taken to describe the peak shape will change as diA'er-

ent temperature regions are sampled. Generally speak-
ing, however, the lower the temperature, the more terms
will be needed. For example if T is close to Tp, g(T)
is approximately zero, and the expansion will need all
the terms becoming np/(np + H) If .T )) Tp, then g(T)
will take on larger values, meaning that the series could
accurately be approximated by the first term, becoming
(np/H) exp[ —g(T)]. In general, however, one expects this
series to always converge rather quickly.

To arrive at an expression for TL it is unnecessary to
specify 7., and for this reason the general expression for
TL takes on the simpler form

used as fitting equations for TL and TSC curves. They
do, however, represent general solution forms and will
be useful in the understanding of various properties of
the system. They will be used as a starting point in
the derivation of equations relating to the initial-rise and
Hoogenstraaten analysis techniques and in the derivation
of reduced forms of the TL and TSC equations obtained
under various approximation sets. With respect to re-
duction under approximations, Eqs. (36) and (38) will
form the basis from which one could systematically apply
approximations, observe the eA'ects and determine if the
approximations are mathematically warranted.

C. The general TL-TSC relationship

n, ns t' E l
ITL = 'g = 'g exp I

From the results of the preceding section a general re-
lationship between TL and TSC can be obtained. Using
Eqs. (36) and (38) this relationship can be expressed as

then using Eq. (34) results in

s(T) I' E 5
ITL(T) = lnp T exp

I

—
&T I exp[—g(T)].

(38)

AFe p(T)
H R(T),(T)

~ ).(
—~) ex& I

—i g(&)I
g=0

(39)

Equation (38) represents the general form of the general
order TL equation for a single level system in the presence
of thermally disconnected traps. It should be noticed
that, since it is not necessary to specify 7-, the n+ H »
n, —h„approximation is not needed in its derivation;
therefore, this equation is more general than the TSC
equation.

Without explicit knowledge of the Q(T) and P(T)
functions Eqs. (36) and (38) cannot, as they stand, be

I

It should be noted that if H )) np (large numbers of ther-
mally disconnected traps or a small initial trap concen-
tration) then one may approximate the series expansion
by the first term. Furthermore, if one also assumes that
p(T)/[R(T)v, (T)] const then the TL and TSC peaks
will have the same peak temperature and indeed will
have the same shape. This is in agreement with numer-
ical studies. ~P ~~ It should also be noted that Eq. (39)
can be expressed in closed form as

I' AFeP(T)
TL( ) =nHITsc(T) I R(T) (T)

sc(T) (Q(Y') + +(+)'I
)s(T) exp( —E/kT)

(40)

From Eq. (39) one can easily determine the general form
of the recombination lifetime,

OO

()=spitz)(s)cp()g(+)I'
j=p

(41)

Considering the case where T Tp then g(T) —0 so
that the TL-TSC and recombination lifetime expressions
become

1

HR(T), (T)

(43)

Thus for temperatures close to the high and low limits of
the active temperature range, the TL-TSC relationship
takes on a particularly simple form with I~s~ and I~j. be-
ing highly correlated diKering only by a constant and any
temperature dependency p(T)/[R(T) v, (T)] might have.
Notice that these limiting expressions are independent of
Q(T) and P(T).

and (42)
D. The Q(T) and P(T) functions

~(T) = 1

(H + np)R(T)v, (T)
'

If T )) Tp then exp[—g(T)] 0, and these relations
reduce to

AFe p(T)
H R(T) (T)

Before proceeding, it will be necessary to discuss in
detail the form and properties of the QE and KO func-
tions. The Q(T) function represents an alternative to the
QE approximation, however, as conditions of QE are ap-
proached Eqs. (14) and (28) show that Q(T) approaches
unity. From the definitions of ITL and ITsc, Q(T) can
be expressed as
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nP dITSC(T) ITsc(T) dp(T) + 1.~«P(T) ITL (T) "T li (T)

If it is assumed that p(T) = p =const then this equation
becomes

concept of kinetic order. From Eqs. (8) and (31) the
P(T) function can be written as

rlP dITsc(T)
( ) = ~I.,I..(T) dT (45) S (N —n) R„,p(T)

R (n+ H) R„,o (T)
(48)

It is clear from this equation that Q(T, ) = 1, where T,
is the temperature of the TSC peak maximum. Using the
rate equations, Q(T) can also be expressed as

t' El' exp( — ~+n —N
hT)

(«)

S nN

R(n+ H) n,

Note that during the initial rise of a TL or TSC peak,
n(T) no and n, (T) 0, therefore Q(T) starts at in-
finity for T close to To and drops quickly to unity as the
peak temperature is approached. The above equation
can be rewritten in the form

and

Q(T)+ P(T) =
Rrecom (T)

Q(T) R, (T)
P(T) R„,p(T)'

(49)

(50)

Thus, unlike previous treatments involving kinetic order,
P(T) maintains a physical interpretation in that it ex-
presses, at any temperature T, the degree by which re-
trapping processes compare to recombination processes.
From Eq. (47) it can be shown that

Q(T) =
R T lR-(T) —R- p(T)j
+recom

where

(47)

R„, (T) = the rate of recombination
= n, /r = n, v, R(n+ H),

R, (T)—:the rate of excitation
= n(N, Sv, )exp( E/kT), —

R„,p(T)—:the rate of trap recapture = n, (N —n)Sv, .

Note that R„, (T), R,„(T)and R„,p(T) are defined
so as to be positive quantities. Equation (47) expresses
the Q(T) function in terms of physically meaningful pro-
cesses. There are several points to be noted.

1. The imposition of the QE approximation means set-
ting Q(T) = 1 for all T, which in turn means R„, (T) =
R,„(T)—R„„p(T).So physically speaking, the QE ap-
proximation requires that, for all T, the net rate of charge
removal from the active trap must be equal $o the rate of
removal from the conduction band by recombination pro
cesses.

2. For p(T) =const, Q(T) —1 is directly proportional
to (dITsg/dT)/ITi„' therefore, in the case where simul-
taneous knowledge of TL and TSC is available, Eq (g8').
could be used to experimentally determine The shape of
the Q(T) function and fest for the apphcability of the
QE ap pro xi mati o n

3. For p(T) =const, Q(T, ) = 1, in general. Therefore
the temperature of the TSC peak maximum can be char-
acterized as that temperature for which R, (T,) =
R,„(Tmc)—R„cap(Tmc) holds, meaning that the QE ap-
proximation is only valid at the temperature of the TSC
peak maximum.

The P(T) function represents a generalization of the

Thus the Q(T) and P(T) functions provide the functional
link between the three processes involved in TL and TSC.
The standard kinetic order cases can be considered by
making P(T) take on certain cons/ant values. From the
definition of the P(T) function: P(T) « 1 for the slow-
retrapping (first-order) case, P(T) = 1 for the retrapping
case, and P(T) )) 1 for the fast-retrapping case.

Before proceeding, it will be informative to discuss
briefly, within the context of the Q(T) and P(T) func-
tions, some of the physical implications involved in mak-
ing the QE and KO approximations.

Consider first the case of a traditional derivation in
which both QE and fast-retrapping conditions are as-
sumed. In this case Q(T) = 1 and P(T) )) 1. From Eq.
(50) it is apparent that for all T, R,„(T) R „p(T)If.
this condition were rigorously true the traps would not
empty. Since the traps must empty for some finite T,
the only conclusion is that QE and the fast-retrapping
approximations do not form a consistent set of approx-
imations over the entire active temperature range. The
retrapping case with Q(T) = 1 and P(T) = 1 requires
that R„,m(T) = R,e, p(T). While this case would con-
ceivably allow for the emptying of traps, one would al-
ways expect R„,p(T) to go to zero before R„„(T)as
the end of the active temperature range is approached.
So, while it is unlikely that valid parameter ranges could
be found in nature that would exhibit this type of be-
havior over the entire active temperature range, physical
systems may be found that approximate this behavior
with discrepancies appearing near the end of the peak.
From a physical standpoint, the QE, slow-retrapping
combination seems the most plausible. This case re-
quires Q(T) = 1 and P(T) « 1, which then results in

Rrecom(T) )) Rrecap(T) and Rex(T) &) Rrecap(T)
allowing for the emptying of traps at finite T and the
physically motivated restriction that R„„p(T)must die
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off faster than R„, (T). So, while it should be con-
sidered overly restrictive to make assumptions concern-
ing the values of Q(T) and P(T) a priori, it should be
noted that of the QE and KO cases traditionally con-
sidered, the slow-retrapping case best satisfies the basic
requirements of any physically realizable system. It is
then perhaps no coincidence that the vast majority of
observed TL and TSC curves have been categorized as
slow-retrapping processes.

With the Q(T) and P{T) functions defined, it is now
I

possible to discuss the reduction of the general TL and
TSC equations under some approximations. For the rea-
sons stated above, special consideration will be given to
the slow-retrapping approximation. Since the retrapping
and fast-retrapping cases can easily be obtained by re-
quiring P(T) = 1 or P(T) » 1, respectively, these results
will not be presented.

To consider the slow-retrapping approximation one
only needs to set P(T) = 0. Doing this in Eq. (36)
for TSC and Eq. (38) for TL gives

n, (T) = ' exp
~

— ) (—1)~+ — exp —— s(O) e d8SN, ( E w '+] np 2 -R ko™—
RQ(T) q ~T . ; &

P
(51)

IT„(T)= """) exp
~

—
~

exp
~—-' .(8)e-~&"-de (52)

Note that under these circumstances,

I ' (T) = Q(T)I (T)

(53)

and (54)

q gP dI (T
AI ep

From Eq. (51) one observes that the ratio np/H is in-
strumental in determining the rate of convergence of this
series in the initial rise portion of the peak where g(T) is
still close to zero. For systems where the concentration of
deep thermally disconnected traps is much greater than
the concentration of active levels then H &) np and one
could accurately approximate the TSC function for all
temperatures by taking just the first term in this series.
With this done, it can be shown that the TSC equation
will take on the same form as the TL equation (which is
invariant under this approximation). This is true regard-
less of kinetic order.

Equations (51) and (52) represent the TSC and TL ex-
pressions for slow-retrapping without the QE approxima-
tion. If this approximation is made [by setting Q(T) = 1]
the TL expression reduces to the Randall and Wilkins
form [Eq. (20)]; however, the TSC expression does not.

4g (T) = Q(T)IT~(T)

where ITIC(T) and Ig(T) are the slow-retrapping TSC
and TL functions under conditions of QE. So, under con-
ditions of slow-retrapping, the expressions for TL and
TSC obtained with the QE approximation are the same
obtained without this approximation modified by a fac-
tor Q(T). Furthermore, with Eq. (45) it can be shown
that

I

One must, in addition, assume that H )& np in order to
obtain the traditional form [Eq. (19)]. This additional
requirement is necessary, since the model of Randall and
Wilkins does not include deep thermally disconnected
traps. Instead, their model assumes a very large con-
centration of recombination centers as compared to the
concentration of full active levels (that is, hp )) np). The
formalism presented here replaces hp, via charge neutral-
ity, by H + np. Therefore, the condition that II &) np is
equivalent to the requirement that hp » np Of co. urse,
the expression for TL does not need this requirement,
since for TL it is unnecessary to specify the form of v .

E. The initial-rise equations

Similarly for T close to Tp, P(T) becomes

P(T)
S ( --.)
R (np+H)'

so that Eq. (55) can be written as

ln[n, (T)] = ln(N, fpn)

(56)

—»[Q(T)(fp + ~) + ~(1 —fp)]- kT'

(57)

where f(T)—:n(T)/N, o.(T) = S(T)/R(T), and p =

The initial-rise procedure involves the analysis of the
relationship between 1n(ITsg) or in(ITL) and 1/T over
the initial-rise portion of the peak. However, this proce-
dure has traditionally been developed within the context
of the QE approximation.

To obtain the general form of the TSC initial-rise equa-
tion, one starts with the general TSC equation and makes
the approximation that T Tp. With this approxima-
tion, g(T) 0 and equation (36) takes the form

S N, / El np

R Q(T)+ P(T) ( kTp, + H
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(58)

where ro(T) = I/[v, (T)R(T)(no + H)].
These general forms bring to light those terms that

could adversely eA'ect the application of the initial-rise
procedure. The above equations are similar to the tradi-
tional initial-rise equations except that now temperature-
dependent correction terms are included. Since this pro-
cedure requires that the slope of an Arrhenius plot be
considered, it is the temperature dependency of the lead-

ing logarithmic terms that introduces errors into the
analysis. While the above equations show that the anal-
ysis is independent of the amount of retrapping, i.e. , the
kinetic order, it also shows that the analysis is critically
dependent upon the behavior of Q(T). To further demon-

strate the eAects of the various temperature-dependent
terms upon the slope of an Arrhenius plot, it best to
consider the form of din(I)/d6, where 6 = 1/T. Under
this operation Eqs. (57) and (58) become

d In(Ivsc) 1 3k k dQ 1 vsc
db k 26 Q db k

(59)

din(I&L) 1 f(2 —b)k 0 dQ

)db k ( b Q db

TL= ——E,fr'(~)
k

(60)

where it has been assumed that N, (T) = const x Ts~2,

v, (T) = const x Tr~z, R(T) = const x T, n(T)
I

H/¹ For TL the procedure is much the same. Starting
with Eq. (38) and making the T = To approximation,
the resulting TL initial-rise equation is

lnlI&L(T)j = ln (

n = const, p(T) = p = const, and also that excitation
was carried to saturation so that fo ——1. It should be
emphasized that these conditions need not be satisfied
over the entire active temperature range but only need
to be approximately correct in the initial-rise region.

Equations (59) and (60) show that when one measures
the s'ope of an Arrhenius plot one does not measure E;
what is actually rneasu."ed is E,fr(6), w'hich is slightly
different for TL and TSC. In both cases E,fr consists of E
plus two temperature-dependent correction terms. The
form of these equations suggests an alternative initial-rise
method. Rewriting them as

din(I) a k dQ
db 6 Q db

(61)

where I = ITsc and a =
2 for TSC, and I = ITL and

a = 2 —6 for TL, shows that plotting —k[d In(I)/db+a/6']
versus b will produce a curve that will be constant (i.e. ,

equal to E) if and only if (1/Q)dQ/dT = 0. Thus,
strictly speaking, the initial-rise analysis is only valid
for Q(T) =const, and therefore the QE approximation
[Q(T) = 1] represents only a special case. In the analysis
section examples of TL and TSC curves will be discussed
for which Q(T) is approximately constant but ) 1 (some-
times )) 1), and in doing so the general validity of the
initial-rise method will be addressed.

F. The Hoogenstraaten heating rate analysis

Another important and commonly used analysis tech-
nique is that originally developed by Hoogenstraaten.
This technique stems from the observation that TL and
TSC peak maximum temperatures, T ~ and T, respec-
tively, shift under variations in the heating rate. From
the generalized TL and TSC equations one can calculate
dI~L/dT and dI~sc/dT and set these equal to zero at the
peak maximum temperatures. This procedure for TSC
gives

1

P ) kT ks(T ) ) (&o exp[ —g(T, )] + H 1 + P(T, )

+ (dldT) 1 ([Q(T) + P(T)]R(T)P'(T) & (T))
[s(T„„)/P]exp( —E/kT, ) )

'

and the same procedure for TL yields

Q (T ~) + (dldT)»~([Q(T) + I'(T)]ls(T))~,
) kT 1 kk s(T &) Q(T ~) + P(T ) [s(T &)/4 exp( +/kT ~)

(62)

(63)

Use was made of the fact that Q(T, ) = 1, which from
Eq. (44) means that the p(T) const assumption was
made near T [note that Q(T ~) does not equal one in
general].

Equations (62) and (63) represent the generalized
Hoogenstraaten relations. They are to be distin-
guished from the traditional equation [Eq. (26)] in

I

that they involve no assumptions concerning QE or KO
and dier from the traditional forms by a correction
term. If one again assumes that H )) no and that
p(T)/[R(T)v, (T)] const, then T = T~~ = T [re-
fer to Eq. (39)] and the TL and TSC Hoogenstraaten
equations take on the same form. If one then im-

poses the particular set of assumptions, s(T)=s =const,
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Q(T) = Q =const (near T ), and P(T) « 1 (i.e. , slow-
retrapping), then the correction terms equate to zero.
Thus only under these rather special circumstances do
the generalized equations (62) and (63) reduce to the
standard form

(64)

valid for both TL and TSC.
If instead of P(T) « 1, one assumes that P(T) —1

(i.e. , retrapping), then the equations reduce to

/Tz l E ('2E'i

qP) kT qksp'
valid for both TL and TSC. Thus even in the case where
significant retrapping takes place, a plot of ln(T /P) ver-
sus 1/T will still produce a straight line of slope E/k

However, if P(T) )) l(i.e., fast retrapping) then the
equations reduce to

iTz i E (EP(T )
qPy kT l, ks

for both TL and TSC. In this case some curvature may
be observed in the Hoogenstraaten plot.

Thus if H » np and if both s(T) and Q(T) are approx-
imately constant then the traditional slow-retrapping
Hoogenstraaten relation seems to introduce only small
errors when applied to cases other than slow retrapping.
This cannot be said, in general; however, it is in agree-
ment with the observations of Chen and Winer. 25

IV. EXAMPLE SOLUTIONS
AND FURTHER DISCUSSION

It can be seen from the foregoing sections that the
introduction of the Q(T) and P(T) functions does not
allow one to actually solve the difFerential rate equations,
but it does allow one to arrive at general forms of the
solutions. These general forms are valuable in that one
may then make physical arguments about the behavior
of Q(T) and P(T) and thereby gain information about
the actual solutions in various cases.

To achieve this, various TL and TSC curves have been
generated using extreme cases of retrapping and recom-

bination by numerically solving the rate equations. For
these cases the shapes and values of the Q(T) and P(T)
functions are examined as well as how they vary as func-
tions of the initial level of trap Ailing no and the heating
rate P. Also discussed is how well the initial-rise and
Hoogenstraaten analysis hold up under these diA'ering

sets of circumstances.
Six difFerent cases based on the relative values of H

and N, and S and R were chosen. The act, ual values
for these cases, labeled A through I", are given in Ta-
ble I and were chosen to span the range from slow to
fast retrapping. For all cases the value of E was cho-
sen to be 0.3000 eV, the value of the electron eAective
mass was chosen to be the free-electron mass and, in ad-
dition, power-law temperature-dependent functions were
chosen for S(T) and R(T) of the form CT ";d = 1.5 and
DT; b = 1.5, respectively. For each of these cases TI
and TSC curve shapes were calculated as well as their
corresponding Q(T) and P(T) functions. Variations in
these for changes in np (actually fp ——np/N) and P were
examined. The cases covered in Table I include H )) N
and H=¹

These calculations generated a large amount of data
from which several trends could be observed. Figures
2(a)—2(d) show typical results for case A in Table I. Fig-
ure 2(a) shows the TL curves, Fig. 2(b) shows the TSC
curves, Fig. 2(c) shows the Q(T) function, and Fig.
2(d) shows the P(T) function, as the initial occupancy
fp varies from 0.005 to 1.0. Figures 3(a)—3(d) show the
same data, but with fp fixed at 1.0 and P varied from 4.0
K/min to 9.0 K/min. Figures 4(a)—4(d) and Figs. 5(a)—
5(d) show similar data generated using the parameters
of case F. Cases A and F represent extreme situations
of slow and fast retrapping, and therefore comparison of
these two data sets will be of particular interest in the
discussion. Based on the data the following observations
regarding the behavior of the Q(T) and P(T) functions
can be made.

For T very close to To, n, 0, and R„,& and R„,
are both approximately zero. In this region Q(T) is
very large but is dropping rapidly. P(T) starts off' as
S(N —np)/R(np+ H), which is zero for np ——N (fp ——1).
As T increases slightly past, Tp, the value of Q(T) then
levels off for temperatures approximately a third of the
way into the peak. Over this same region P(T) also re-

TABLE I. Summary of the system parameters used for the calculation of TL, TSC, Q(T), and
P(T) curves. Power-law temperature dependencies, R(T) = DT; b = 1.5 and S(T) = CT "; d =
1.5, were assumed for the capture and recombination cross sections.

Case

(H »N, S«R)
(H»N, S=R)
(H » N, S » R)
(H = N, S « R)
(H=N, S=R)
(H=N, S»R)

H(m )
1.0 x 10'
10 x10"

0x10
1.0 x 10
1.0 x 10
1.0 x 10

N(m )
1.0 x 10
1.0 x 10
1.0 x 10
1.0 x 10
1.0 x 10
1.0 x 10

D(Km)
1.0 x 10
1.6 x 10
1.0 x 10
1.0 x 10
1.6 x 10
1,0 x 10-"

C(I&"m )
1.6 x 10
1.6 x 10
1.6 x 10
1.6 x 10
1.6 x 10
1.6 x 10
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mains approximately level. These characteristics define
the initial-rise region of the peak. The occurrence and
width of this region does not appear to vary significantly
with H, N, S, R, fo, or P. The values of Q(T) and

P(T), however, are critically dependent upon the val-
ues of these parameters. Comparison of Figs. 2(a)—2(d)
(case A) with Figs. 4(a)—4(d) (case F) illustrate this.
Case F represents an extreme case with little recombi-
nation, so no TSC peak actually forms. Nevertheless,
the Q(T) and P(T) functions still display the same ba-
sic shape as before, but with their numerical values very
much larger than their counterparts in Fig. 2. Thus,
while changing the ratios H/N or S/N changes the nu-
merical values of Q(T) and P(T), they still remain rel-
atively constant over the initial rise region. That is, in
this region, (1/Q)dQ/dT and (1/P)dP/dT are small in
both cases. This property with regard to the Q(T) func
tion is what gives the initial rise an-alysis a wide range of
validity encompassing even systems very far away from
QE and showing a high degree of retrapping.

An important point to note in the initial-rise assump-
tion is that f fo ——const over the initial-rise region.
Note, however, that, for temperatures very close to Tp,
Q(T) is changing rapidly [refer to Eq. (46) and the dis-
cussion relating to this equation]. Thus f const is a
necessary condition for the initial-rise analysis to work,
but it is not a suKcient one. It is only during the region
of relatively constant Q(T) [i.e. , (1/Q)dQ/dT 0] that
the initial-rise plot will produce a straight line. This was
found to be true for all the calculations attempted, and
thus it is believed to be true independent of retrapping
kinetics.

The P(T) function in all cases starts from a low value
determined by fo and the H/N and S/R ratios. As T
increases, f decreases and P(T) increases monotonically
toward the constant value SN/RH indicating an increase
in the degree of retrapping. The factor R„, SN/RH
represents an upper bound to the rate of retrapping [re-
fer to Eq. (48)]. So, while it is clear that the kinetic
order of the system varies as a function of temperature,
it is also important to note that if SN/RH « 1 then
P(T) « 1 for all temperatures, and the system would
display only slow-retrapping characteristics. Case A is
an example of this situation with Fig. 2(d) showing that
P(T) approaches the maximum value of 1.6 x 10 s indi-
cating that even for high temperatures R„,p R„,
On the other hand, case F shows a marked increase in
kinetic order as higher temperatures as reached. In Fig.
4(d) one observes that for fo —1 P(T) starts at zero then
after a region of relative constant values rises quickly to
SN/RH = 160 indicating that past the peak maximum
retrapping is the dominant process. Thus not only are
the values of P(T) higher than case A but also the vari-
ation with temperature is greater. Figure 4(d) shows
that in the initial rise region the peak is best charac-
terized by slow-retrapping kinetics; however, for higher
temperatures the peak takes on the characteristics of fast;
retrapping. All these features are in accordance with ex-

pectations, but the figures graphically illustrate that the
assumption of constant kinetic order throughout the TI
or TSC peak is invalid. Nevertheless, this assumption
can be taken as a good approximation if SN/RH « 1.

Referring to the Q(T) function, it was found that
Q(T~~) = 1 in all cases. For case F the Q(T) values
are extremely large ( 10s for T ( T ) and so the sys-
tem is very far from QE. The conclusion here is that
the use of the QE approximation in the derivation of the
fast retr-apping TL and TSC equations is entirely without
merit and therefore the traditional fast retra-pping TL and
TSC equations sh, ou(d be considered worthless.

Finally, it should be noted that for all cases where H »
N, the Q(T) function is independent of fo, regardless
of the value of S/R. The value of the P(T) function,
however, varies linearly with fo in the initial rise region.
This can be seen from the definition of the P(T) function,
which in the initial rise region can be written as

S 1 —fp
R fo+ H/N

For II » N, however, this becomes

(67)

P(T) = SN SN
RH f' (68)

and the fo dependence of P(T) can be understood.
For H = N, however, both Q(T) and P(T) have some

fs dependency. Under these conditions it can be demon-
strated that both vary with fo as 1/[fo C(T) + 1] in the
initial-rise region. The temperature-dependent function,
C(T), is independent of fo and is the same for both Q(T)
and P(T).

V. THE INITIAL-RISE ANALYSIS

The modified version of the initial-rise analysis as out-
lined in Sec. IIIE was applied to TL and TSC curves
for all the cases presented in Table I. In order to access
the effect of the correction term, —ka/b, in Eq. (61),
plots of —k[dln(I)/d6+ a/6) versus b were constructed
for a = 0 and z for TL (because for these curves h = ~z)

and for a = 0 and z for TSC. Figures 6(a) and 6(b)
show the results for TL and Figs. 7(a) and 7(b) show
the results for TSC. The curves presented in these fig-
ures represent (k/Q)dQ/db+ E. For high 6 these curves
have very large values and are increasing rapidly. This
region corresponds to the regions in the previous figures
in which, for low T, Q(T) is very large and is decreasing
rapidly. As 6 lowers, the values of the curves in Figs.
6 and 7 reduce and reach an inflection point or level ofF
briefly before dropping again. This region corresponds
to the relatively level regions in the Q(T) plots for which

(1/Q)dQ/dT 0. The final reduction of the curves in
Figs. 6 and 7 is the result of the breakdown of the initial-
rise approximations.

It has been shown that in the initial-rise region of a
TL or TSC peak (1/Q)dQ/dT 0. This appears to be a
general characteristic of the Q(T) function and has been
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c 0.300

~~0.310-
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TL: 0=0 1/2
0.300

TSC 0=0 a=3/2

0.290
0.008 0.009 0.01 0 0.008

a(K )

0.009 0.01 0 0.01 1

0.295
0.008

b(K )
FIG. 6. Illustration of the modified version of the initial-

rise analysis showing plots of —
k[ dl n(I Ti)/ db+ a/b] vs b in

the initial rise region for (a) a = 0 and (b) a = —.Cases A E—
(fo ——1, P = 4.0 K/min) are shown.

FIG. 7. Illustration of the modified version of the initial-
rise analysis showing plots of k[d ln(I—Tso)/db+ a/b]vs b' in'

the initial rise region for (a) a = 0 and (b) a = —.Cases A E—
(fo ——1, P = 4.0 K/min) are shown.

shown to be true for a wide range of kinetic cases in-
volving even systems very far from QE. In this region

! (k/Q)dQ/db ! is minimized resulting in a curve with a
slope close to zero. The best values of E, therefore, are
those chosen from the most level regions of these curves
or from the inflection point when no clear level region is
observed. The curves in Figs. 6 and 7 serve to illustrate
nicely the boundaries of the initial-rise region and serve
as a measure of the applicability of the initial-rise anal-
ysis. The energies obtained in this way are presented in
Table II. The first and third columns (a = 0) contain
values that one might obtain from a traditional initial-
rise analyses. From the results presented it should be
noticed that systems configured for higher Q(T) values
generally give larger values of the energy. This is re-
lated to slight variations in the value of (1/Q)dQ/dT in
the initial-rise region. However, this eA'ect is small and
when the —ka/b correction term is accounted for, the en-

ergy obtained for all cases agrees with the actual energy,
0.3000 eV, to within +0.009 eV. So while it is apparent
that the initial-rise analysis is independent of the KO
approximation, we have shown that it does depend upon

ln! !
= (b —z) ln(T)+ const,

(ITsc &

& hr, ) (69)

valid only in the initial rise region. Therefore, an approx-
imate value for b can be determined from the slope of a
in(ITs~/ITi, ) versus ln(T) plot.

VI. HOOC ENSTRAATEN'S HEATINC
RATE ANALYSIS

Figures 8(a) and 8(b) show Hoogenstraaten plots for
cases A and I" as applied to TSC curves. In each is

how close the system is to QE, but, it does not depend
upon the Q(T) function as such. Instead, the important
term governing its use is the rate of change of the loga-
rithm of Q(T); the effect of which can be minimized by
a judicious choice of where to read oA the energy. Hence
one may obtain real information concerning the system
without having explicit knowledge of the Q(T) and P(T)
functions. However, for TL it is still necessary to obtain
an approximate value for b By subt. racting Eq. (60)
from (59) one obtains

TABLE II. Summary of activation energies obtained from the initial-rise analysis with and
without the correction term. All energies are expressed in ev. In all cases the actual value of E
was 0.3000 ev.

Case

A
B
C
D
E

TL (a = 0)

0.306
0.313
0.313
0.313
0.313
0.313

TL (a = —,')
0.302
0.308
0.309
0.309
0.309
0.309

TSC (a =0)
0.315
0.322
0.323
0.323
0.323
0.323

TSC (a = 3)

0.302
0.308
0.309
0.309
0.309
0.309
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1 2.50

12.25-

I 2.50 E

I 2.25

12.00- I 2.00

«.75-

11.50-
C

11.75

- 11.50

plotted ln(T~2, /P) versus 1/T~„and In(T2, /P) minus
the correction term versus 1/T, . [The correction term
was discussed in relation to Eqs. (62) and (63).] In both
cases the lines shown are linear regression fits to the data
points with the slope of this fit producing values of E. For
the uncorrected plots, frequency factors where calculated
from the intercept of this fit. Table III summarizes the
results obtained from the uncorrected plots for all the
cases for both TL and TSC. Errors in the calculation
of E and 8 were found to result from errors in picking
off' the actual peak temperature. The errors in choosing
T were estimated to be +0.15 K leading to errors of
+0.0006 to +0.0007 eV in E and of the order of I'Fo in
s. The slopes of the corrected plots gave values of E =
0.3000+ 0.0006 eV in all cases. While it is necessary
to have considerable knowledge concerning the system
in order to calculate the correction term, the point here
is that by ignoring the correction term one introduces,
in some cases, significant error into the evaluation of E
(beyond just tne error associated in determining T )
The following observations concerning the values in Table

III can be made: (i) The Hoogenstraaten plots from the
TI curves tend to give more accurate E values than from
the TSC curves; (ii) for both TL and TSC, the cases
where H = N appear to work better than H && ¹
(iii) overall the trend is that the higher the degree of
retrapping, the higher the energy; and (iv) for all TSC
cases the calculated frequency factor is about two orders
of magnitude less than the real frequency factor.

Due to the complexity of the correction terms in Eqs.
(62) and (63), simple interpretations of these results is
diKcult. Detailed analysis of these terms will be the
subject of future work.

VII. FINAL COMMENTS AND
PRACTICAL IMP LICATIONS

In this paper two new functions, Q(T) and P(T), have
been introduced into the analysis of the thermally stimu-
lated processes, TL and TSC. The clear message emerg-
ing from this analysis is that the treatment of TI and
TSC using the assumption of QE and fixed KO through-
out the TL and TSC curves is dubious. In some cases (for
example case A) the use of the QE approximation and
the simplified slow-retrapping TI and TSC equations are
unlikely to lead to serious errors. In other cases, however,
the use of the QE approximation is meaningless (for ex-
ample the fast-retrapping case F).

Since both Q(T) and P(T) are defined in terms of phys-
ically meaningful processes (i.e., rates of excitation, re-
combination, and retrapping) connection with the phys-
ical system is always maintained, thus leaving open the

11.25-

11.00
7.3 7.4

I I I

7.5 7.6

&/T (&O K )

I 1.25

I 1.00
7.7

CQ

cv
EI—

TABLE III. Summary of the activation energies and fre-
quency factors obtained from the Hoogenstraaten heating rate
analysis.
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Energy (eV)
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1/T (10 K )
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- 8.0

- 7.0

6.0
6.4

L0
O

C2

cv EI—
C

A
B
C
D
E

0.2418
0.2468
0.2723
0.2616
0.2818
0.3032

0.2507
0.2654
0.3031
0.3045
0.3188
0.3188

TL

2.10 x 10
1.14 x 10
5.22 x 10
2.68 x 10
9.83 x 10
4.88 x 10

4 84 x 10
6.82 x 10"
1.50 x 10
3.37 x 10
1.18 x 10io
1.18 x 10

FIG. 8. TSC Hoogenstraaten plots for (a) case A (fo =
I) and (b) case E (fo = I). When the correction term is
ignored (line through circles) the slope and intercept can differ
significantly from when the correction term is accounted for
(line through boxes). The lines through the symbols are linear
regression fits from which the activation energy is calculated.
The slope of the corrected plots gave values of E = 0.3000 +
0.0006 eV in all cases.

In all cases the actual values of E and s(T) were 0.3000 eV
and 5.21 x 10 T s ' respectively. With T = T~ 135
K, 8 6.05 x 10 s . The errors in the calculation of E
vary from + 0.0006 to + 0.0007 eV and result from errors
in picking the actual peak temperature. Errors in this are
estimated to be +0.15 K. The associated errors in 8 are of the
order of 1 /0.
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possibility that, for any given system configuration, Q(T)
and P(T) can be required to take on specific forms on
physical grounds. In general, however, one does not have
specific knowledge of these functions, nevertheless, the
general formalism clearly shows how these functions ef-
fect the shape and characteristics of TL and TSC curves
as well as the applicability of the initial-rise and Hoogen-
straaten relations. In short, the analysis presented in this
paper provides a general framework from which more spe-
cific assumptions and approximations can be intelligently
applied and in the process provide valuable insight into
the nature of the system under study.

It should be emphasized that experimentally one can
estimate the validity of the QE approximation by using
Eq. (44) or Eq. (45), and here we suggest how this can be
done. The shape of the Q(T) function can be determined
from simultaneous measurement of TSC and TL, using
Eq. (45). Clearly, since the leading constants in this
equation are unknown, this procedure will give only the
shape of the Q(T) function, but if it is recalled that the
value of Q(T) at high temperatures is zero, and that the
value of Q(T, ) = I, then an estimate of the numerical
value of Q(T) may be obtained by scaling. Further work
concerning the experimental determination of the Q(T)
function is presently being pursued.

The present analysis also demonstrates that as long

as (I/Q)dQ/dT is small the initial-rise analysis gives an
estimate of the activation energy. However, one may ob-
tain more accurate estimates if a modified version of this
analysis is performed with the inclusion of the correction
term, —ka/6. The conditions of validity for the initial-
rise analysis are that f fo=const and that (l/Q)dQ/dT
is small. This is true, independent of the numerical value
of Q(T) and therefore independent of how close the sys-
tem is to QE. Similarly the Hoogenstraaten heating rate
analysis is only able to give an estimate of the activation
energy. The departure of the calculated values from the
actual values is complex, and no simple correction term
can be applied. Further analysis of the Hoogenstraaten
procedure as well as the extension of the general formal-
ism to include systems containing more than one active
level is the subject of continuing research.
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