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The autocorrelation function of a single spin (s(t) s(0)) has been obtained from the time-
evolution solutions given in the preceding paper by carrying out the ensemble averages explicitly.
Slow decay is found in the transverse component and only at high temperatures ( T & T, ). The ex-
ponent x., where (s"(t)s'(0) ) —t, as t~ oo, is found to depend discontinuously on the spin-spin
interaction strength R =J, /J: ~=2 if R =0, ~=3 if 0&R ~2 (R&1), ~= ~ if R=1, and ~= ~ if
R & 2. Slow decay in this model is attributed to nondimensional effects, e.g. , cooperativity. Physical
and mathematical mechanisms of the slow decay are described.

I. INTRODUCTION

The existence of long-time tails in the velocity auto-
correlation function (VAF) of a particle in a fiuid
( t-, dimensionality D) appears to be strongly indi-
cated by evidence, mainly from computer simulations and
experimental measurements, obtained over the last two
decades. What is much less well established are the ori-
gins and mechanisms of the slow decay behavior. (By
slow decay, we shall mean a power-law form of the decay
of the VAF. ) Also, whether slow decay is a universal
property of Hermitian many-body systems seems to be an
open problem. Satisfactory understanding would prob-
ably ultimately require some detailed knowledge of the
time evolution of a single particle in a given interacting
environment. For realistic many-body models, obtaining
time-evolution solutions from a canonical equation of
motion represents a formidable task.

The possible existence of slow decay in fluids seems to
have stimulated investigations of similar behavior in oth-
er systems. We may mention the Paley-Wiener criterion
for relaxation functions, "' high-field electron transport
in semiconductors, anomalous spin diffusion in Heisen-
berg magnets, heat conductivity in a one-component
plasma, and hydrogen-bond fluctuations in water dynam-
ics. Slow decay may be fundamentally linked to low-
frequency phenomena in condensed matter. " '

Analytical studies show that slow decay in classical
fluids originates from certain modes or excitations of a
Quid or other basic properties. ' Most commonly dis-
cussed are friction in Brownian-motion theory, diffusive
shear modes in hydrodynamic theory, particle-number
and momentum conservation in Fick's law, ' etc. Al-
though illuminating, they do not or cannot include col-
lective effects at a microscopic level. As a results, some
have questioned the validity or relevance of these
theories. '"

The problem of the VAF of an electron in a system of

fixed scatters (Lorentz gas) has drawn some attention re-
cently. ' Despite the progress made, there seems to be
disagreement over the sources and mechanisms of long-
time tails. '

In spin-diffusion theory, long-time tails are also under-
stood only phenomenologically. It is based on an as-
sumed pair correlation function, much as hydrodynamic
theory is based on Fick's law. ' This theory also yields
an exponent D/2, but not surprisingly it has given no
more understanding than hydrodynamic theory.

If the exponent for long-time tails has a seemingly
universal value D/2, it would suggest that the observed
slow decay is purely of geometric nature, a dimensional
effect. Other physical effects (e.g. , interaction or coopera-
tive, quantum) evidently do not contribute at long times.
That is, the VAF u (t) behaves as follows:

u(t +~)- At '+Bt — +
where A, 8, . . . are constants and a =D/2, b, . . . are
exponents. The exponents satisfy an inequality:
0&a&b& .

There is a possibility that as the dimensions increase,
the above inequality may not continue to hold. In partic-
ular, if D ~~ (hence, a —+ ac), but b & ae, then slow de-
cay in this high-dimension limit must arise from nondi-
mensional effects. They are also likely to be present al-
though not dominant when D & ~.

The spin van der Waals model is known to be the
D= ~ limit of the NN anisotropic Heisenberg mod-
el. '"' Therefore, one cannot learn anything about pure-
ly dimensional effects from this model. But if there is a
slow decay in this model, it must be of quantum coopera-
tive nature of some limited generality. One may be able
to identify the sources and mechanisms responsible for it.

In a realization of the canonical approach to dynamics,
we shall obtain the spin autocorrelation function (SAF)
by applying the time-evolution solutions given in the
preceding article. ' Our analysis is completely self-
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contained, i.e., no a priori assumptions or approximations
invoked. It is based only on the requirement that N —+ ~,
where N is the number of spins in our system. We find
that slow decay exists in certain interaction regimes at
high temperatures, but not at low temperatures. Slow de-
cay in our model arises from a single spin coupling to
some macroscopic modes of the system, which alone per-
sists as t ~ ~.

Our mathematical results, first reported somewhat

briefly several years ago, ' are here given in full detail. In
addition we describe the physical and mathematical
mechanisms as well as identify the modes responsible for
slow decay. Recently, Liu and Muller' have studied a
classical version of the same model and obtained con-
clusions similar to ours for high temperatures.

Eqs. (35a)—(35c) in I. Our general solutions given in I
may also be presented in the above form.

III. AUTOCORRKLATION FUNCTION
OF A SINGLE SPIN

We shall define the spin autocorrelation function SAF
of a single spin as follows:

6; (t) =4Tr[s'(t)s~(0)e ~ ]/Tre

=4(s'(t)s'(0) ), ij =x,y, z .

From our asymptotic solution, also from our general
solution, we find that the diagonal components are

(7)

II. SPIN van der WAALS MODEL
AND TIME EVOLUTION

OF A SINGLE SPIN: SUMMARY

In this section we shall present a brief summary of our
solutions for the time evolution of a single spin in the
spin van der Waals model obtained in the preceding arti-
cle' (to be referred to as I). We have regarded a system
of N+1 identical spins to be composed of two subsys-
tems: One subsystem contains just one spin, which may
be any one of the N +1 spins, and the other subsystem
contains the remaining N spins. This division allows us
to write the interaction energy of the system as a sum of
the "self"-energy of the larger subsystem and the interac-
tion energy of the two subsystems, i.e.,

H =Ho+ V,
where

Ho= —(gS —AS, ),
V= —2(gs S—cos'S, ),

(2)

where g =J/N, co=(J —J, )/N=g —g, . Here s refers to
the spin in the small subsystem and S to the spins of the
large subsystem collectively. That is, the total spin S' ' of
our system of N + 1 spins is

S L„(t)=S,+(S S, )cos(—Qt), (10)

where Q=2gS, A, =2coS, . For our asymptotic solutions
e have replaced 8 by S, i.e., S =S(S+1)=S .
Substituting (9) and (10) into (7) and (8), respectively,

we obtain

6 „(t)= ((S /S )cos(Q, t ) )

+ ( [1—(S, /S ) ]cos(Qt )cos(Q, t ) )

+ ((S,/S)sin(Qt )sin(Q, t ) )

and

If N —+ ao, the ensemble averages may be carried out with
respect to Ho rather than H. Errors due to this replace-
ment are of lower orders in N and become negligible in
the large-N limit. It is consistent with our using the
asymptotic solutions.

L, (t) and L„(t)may be obtained from I:

S L, (t) = [S„+(S—S, )cos(Qt) ]cos(Q, t)

—[S,S~ [1 cos(—Qt ) ]
—SS,sin(Qt ) ]sin(Q, t),

(9)

S"'=s+S . (4) G„(t)=((S,/S) )+([1—(S, /S) ]cos(Qt)) . (12)

s "(t)'=sL (t)+s L (t-)+s'L, (t),
s~(t) =s L (t)+s~L (t)+s'L, (t),
s'(r)=s L, (t)+s~L, (r)+s'L„(r), (Sc)

where L's are quantities defined in terms of Ho only. See

As in I, s and S will be referred to as a small spin and a
large spin, respectively.

We have shown that the equation of motion for the
small spin is expressible as a linear coupling of the small
and large spins. Now, if N »1, the large subsystem
behaves classically and it appears somewhat like a "reser-
voir" to the small spin. In this limit the equation of
motion for the small spin can be solved asymptotically.
The asymptotic solutions are, of course, the only ones ap-
propriate thermodynamically. They are given below:

In obtaining (11), we have dropped a term containing
S S~/S . It contributes to lower orders in N compared
with those retained. ' ""' '

Taking advantage of the xy symmetry in Ho, we can
write (11) as

6,(r)= —,'([1—(S, /S) ]cos(Q, t))
+ —,'((1+S,/S) cos(P t))

+ —,'((1—S, IS) cos(P+t) ), (13)

where P+=Q+Q, . The above expression can be further
simplified if T& T„where the sign of S, is arbitrary.
Hence, let S,~—S, in the third term on the right-hand
side (RHS) of (13). Now from the definitions of Q and
Q„P ( —+S, )=P (S, ). Thus,
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G (t) =
—,
' ( [1—(S, /S) ]cos(Q, t ) )

+ —,
' ((1+S,/S) cos(Pt) ),

where

(14)

( S, ) = II —II, =2g [S —( 1 —R )S,],
R =g, /g =1,/J .

(15)

(15a)

The new parameter R that we have introduced here
will be found to characterize the time-dependent behav-
ior of the SAF. Hence, it is worth noting that R =0, 1,
and ~ denote, respectively, the pure XY, isotropic
Heisenberg, and pure Ising interactions. The new fre-
quency P is neither even nor odd in S, except when
R = ~, where it is odd in S,. There are two frequencies,
0, and P, in G „(t),but only one frequency, 0, in G„(t).
These frequencies play an essential role in determining
the long time behavior of the SAF.

It turns out that (14) is also valid when T (T, if R (1,
where (S, )/N=O. If R ) 1, where (S, )/NWO, one
must use (13). One, however, gets the same result from
(14) if the linear term in the second term on the right-
hand side of (14) is ignored, i.e.,

((I+S,/S) cos(Pt)) —+( [1+(S,/S) ]cos(Pt)) .

Observe that when R = 1, where P+ =P =0, the
above-mentioned linear term does vanish. In any event,
the ensemble averaging for T (T, and R ) 1 is straight-
forward and there is no difficulty here.

Now we shall turn to the remaining technical point—
that of ensemble averaging in the asymptotic limit. We
recall from our earlier work' "that if F=F(S,S, ),

IV. MATHEMATICAL MECHANISM
OF LONG-TIME TAILS

Before carrying out a detailed analysis, it might be use-
ful to have in mind a qualitative picture of the mathemat-
ical mechanism responsible for long-time tails in the
SAF. The existence of long time tails implies a per-
sistence of memory. That is, the initial condition of the
small spin, say, must be lost only gradually. The memory
of the small spin is lost through its coupling with modes
of the "reservoir" or the large spin. Hence, the state of
the reservoir plays a critical role in determining the na-
ture of the decay of memory. Suppose that the reservoir
is in an ordered state, i.e., there is one dominant macro-
scopic mode. The small spin coupled to it cannot long
remain impervious to its inhuence. The small spin will
likely lose its memory rapidly. Or suppose now that the
reservoir is in a stationary state. The state of the small
spin must be closely bound to it since the state of the
reservoir is made up of individual states of spins like the
small spin. The memory of the small spin will also likely
be lost rapidly.

The most likely place to find a slow decay of memory is
in the high-temperature phase of the reservoir. In this
phase there are many fluctuating modes, none of which
are, however, dominant as in the low-temperature phase.
Over a long period of time, most of these modes will not
lead to a slow decay since their fluctuations are large and
random. Consider the x or y component of the small
spin. If it is coupled coherently to some modes with
small fluctuations, slow decay may emerge. Below we
shall attempt to isolate these special modes.

We shall consider G (r) for T) T, when R&1. Let
us decompose G (t) given by (14) into two terms:

(18)

(F ) = (F)~ =Z ' g g g (S)F(S,S, )exp( PHD)—
S S

~Z ' dSg s dS F SS, exp —Ho

where

G,',"(r)= —,'( [1—(S, /S) ]cos(Q, t) )

and

(18a)

(16)

where Z is the partition function and g (S) is the degen-
eracy factor. For N spin- —,

' particles,

g (S)=2 's (1+s) 'exp[ NW(s)], s =2—S/N,
(17)

where

W(s) =
—,
' [(1—s)ln(1 —s)+(1+s)ln(1+s)] . (17a)

The partition function Z may be evaluated through the
integral in (16) by setting F = l. If p is small, the phase
factor in (16) is dominated by 8; the entropy term at
S/N =0, which defines the high-temperature region. If p
is large, the phase factor is at a maximum for S/N=1.
Hence, there exists an ordered state below a critical tem-
perature T, . This ordered state depends explicitly on
whether R & 1 or R ) 1. See Appendix A for additional
detail.

G' '(t) =
—,'((I+S, /S) cos(Pt)) . (18b)

The first term G,',"has a classical structure [see the first
term on the RHS of (11)]. It may be called a direct term.
The second term G'„' is a consequence of spin algebra,
similar to the exchange eAect in atomic physics. Hence,
it may be called an exchange term. As in atomic physics,
the two terms can "interfere. "

To look for modes responsible for slow decay, we now
separately examine (18a) and (18b) as t ~ ~. If t grows,
the phases on the RHS's of (18a) and (18b) become very
large. They lead to rapid oscillations and cancellations
upon ensemble averaging except if the frequencies vanish,
i.e., Q, ~O and $~0. Hence, the only modes important
for slow decay are those that can satisfy the condition
0, =0 or / =0 or both.

The first condition Q, =O (i.e., S, =O) can always be
satisfied independently of R since S, is bounded:
—S~S, +S and 0+S( ~. The small spin coupled to
the S, =0 modes (i.e., the large spin largely in planar
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configurations) will likely exhibit long-lived character.
The second condition /=0 gives S, =S/(I —R). Since
iS, i

&S, the second condition can be satisfied if and only
if R & 2 and R =0. R =0 and 2 are marginal or turning
points. For 0(R (2, the second condition cannot be
met. Hence, there can be no slow decay in the exchange
term. The direct term is the only possible source of slow
decay for this range of R. It is more diScult to under-
stand the physical meaning of the second condition (just
as exchange phenomena in atomic physics). But modes
satisfying the second condition have maximal S„ i.e.,
iS, i

=S, in contrast to modes favored under the first con-
dition, which have minimal S„ i.e., iS, i

=0. The small

spin coupled to the large spin in largely axial
configurations may also exhibit long-lived character.

An interference between the direct and exchange terms
can be demonstrated as follows: Let R —+ ~, i.e.,
P~ —n, . Then,

6,' '(t)~ —,'([1+(S,IS) ]cos(n, t)) . (19)

Hence,

cEG „(t) +(cos(—n, t)) =e ", c &0 . (20)

The (S, /S) -mode terms cancel out exactly as if destruc-
tively interfered, removing any possibility of slow decay.
See Appendix B for the proof of (20). If one lowers R
from R = ~, the same interference can take place just as
completely as long as in, i

&n. That is, p, in effect,
behaves discontinuously when t —+ ~: '

y=n —n, —n„ if in, i&n.
As far as the asymptotic behavior is concerned [i.e.,6' '(t ~ ~ )], the time evolution of the small spin
behaves as if g=0 (i.e., R = ao) if 2&R & ~. In this
range of R, the exchange term is contributed by +S,
equally for a given S (i.e., S, symmetric).

The crossover occurs at
i n, i

=n or R =2. At this
upper marginal or turning point, $~0 means S,~ —S.
Hence, only the negative components of S, contribute (S,
symmetry broken).

Below this marginal point, P again behaves discontinu-
ously:

(t =n —n, n, if In, l
&n or 0&R &2 .

Now $~0 if and only if S~0. Hence, the character of
P has changed completely. As a result, the exchange
term can contribute only minimally now (i.e., no interfer-
ence possible). Note that if R = 1, p =n exactly since
n, =0. Hence, the behavior of 6,„(t) for R = 1 should be
quite similar to the asymptotic behavior of 6,', '(t) for
0(R (2.

At the lower marginal point (also a turning point if
negative R were to be included), P~0 means S,~+S.
Now only the positive components of S, can contribute.
As in the upper marginal point, there is also a "symmetry
break. " However, the behavior of the time evolution of
the sma11 spin at the lower marginal point is asymptotical-
ly very different. For example, s '(t)%0 if R =0 [see Eq.
(10) of I] but one may regard s '(t)=0 if R =2+e,
@~0+since asymptotically the SAF behaves as when
R = oo [compare (40a) —(40c) of I]. Hence, the time evo-
lution of the small spin is three-dimensional if R =0, but
is largely two-dimensional if R =2. Thus, the exchange
term can have contributions from fluctuations in the z
direction in spin space when R =0, but not when R =2.

The symmetry, or symmetry breaking, associated with
R occurring in the asymptotic behavior of the exchange
term, will be referred to later in Sec. V as dynamic sym-
metry.

V. 6 (t) FOR T& T, : ANALYSIS

We shall now obtain the transverse component of the
SAF of a single spin when T)T, by carrying out the en-
semble averages explicitly. We look for an asymptotic
solution in the form: 6,(t~ ~ ) —t ", where K —K(R ).

A. Direct term

Writing out the ensemble average therein explicitly (see
Appendix A), we can express (18a) as follows:

b u
G,'„"(t)= —f du 1 — f di) e "rI cos(2A ' urj)

&7r o 1 —au'

b u1 2 —Au=
—,
' f du 1 — (1—2Au )e (21)

0 1

crau

where A =X(abcot) =N(1 —R) (abgt), a=1 b See App—endi. x A for the definitions of a and b The time t is. now
contained entirely in our new parameter A. Dropping the part that vanishes rapidly as t —+ oo (see Appendix B), we can
obtain for A ~~ (i.e., t +~ and R&1)—

6',"(t~&m)= —(b /2) f du
u

(1—2Au )e
1 —au

(22a)

=(&orb l4)A +O(A ) —t

The upper limit may be increased as shown above,
which introduces little error since most of the contribu-
tion to the integral comes from u =0. As a result, the
denominator term (1 —au ) may also be replaced by uni-

(22b)

i

ty for the leading contribution. Hence, the direct term
yields slow decay with an exponent, say ~, =3, indepen-
dently of R except R %1. To obtain the above asymptotic
result, it would have been su%cient to take
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G(1)(t)—i
XX 3 (22c)

The same result is obtained just as readily from (18a).
When R =1, ((Sz/S) ) =

—,'. At this isotropic interac-
tion point, the direct term has no time dependence.

S,=N'~ abuq and S=N' art. (See Appendix A). Also,
u =0 implies that S,=0; i.e., the fluctuations of the large
spin are small and largely of planar configurations. The
small spin coupled to these smal1 fluctuations is evidently
long-lived.

If R =1, then 2 =0. Then, together with b =1 or
a=0 (see Appendix A), we obtain from (21)

I~ ~ ~ ~ ~ 1~ ~ ~ ~ ~ 0 ~ ~ ~ ~ 0 ~ ~ 0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~I~ ~ ~ ~ 0 ~ ~

0
I
I

] ~ oo ~ ~ ~ o ~ ~ ~ ~ ~ ~ ~ oeooloeo
I

I2- I

I

I

I3— I

4—

(a)

B. Exchange term

The exchange term (18b) may be expressed similarly.
After carrying out the g integration, we obtain:

'2
G' '(t)= ' f du—1+ (1—2Hz )e

bu
—1 V'I —au'

(23)

0

Z2

Z ]

where

z =z(u)=u —y(1 —au )', y '=bco/g =b(1 —R) .

(24)

Note that z(u) is neither even nor odd in u. But if y —+0
(i.e., R —+ ~), z~u. In this limit, (23) can be reduced to
a form similar to (21).

For t —+ ~, (23) may be generally evaluated as follows:
As 2 ~~, the above integral will be finite if and only if
z ~0 in the interval of u =( —1, 1). Hence, we shall look
for zeros of z (u ), defined as z (uo) =0. We find from (24)
that the zeros are given by

uo=(y +a)

where

f (z)= 1+
1 —au

2
Bu

az
u =u(z)

(27)

FIG. 1(a) uo vs R where z(uo)=0. See Eq. (24) for the
definition of z. (b) z, and z2 vs R, where z, = —(R —2)/(R —1)
and z2 =R /(R —1}.

Now the condition that these zeros lie in the allowed in-
terval of u, i.e., ~uo~ ~ 1, gives the condition for the ex-
istence of slow decay in the exchange term:

z, = —(R —2) /(R —1 ),
z2=R/(R —1) .

(28a)

(28b)

(1—R) &1 . (25)

That is, R ~2 and R =0. R =0 and 2 are the same mar-
ginal or turning points, earlier deduced from the frequen-
cy condition (see Sec. IV). The existence of slow decay in
the exchange term is thus R dependent, not as in the
direct term. We shall refer to the above condition (25) as
dynamic symmetry. In Fig. 1(a), the zeros of z(u) are il-
lustrated as a function of R. Observe that for R =0 and
R ~2, the zeros lie in the closed interval of u. But for
0 & R & 2, the zeros lie outside, i.e, z~0. In this case, we
shall see that the exchange term vanishes rapidly.

For R satisfying the dynamic symmetry (25), we can
evaluate (23) by expanding the integrand about u =uo.
We can also proceed another way, perhaps more interest-
ing. Let us change our variable from u to z, i.e., obtain
u = u (z) from (24). We can then transform (23) as shown
below:

pqz b z cx& u pz
2 3

f(z)=p + + +
D(z) (1—az ) (1—az )D(z)

where

(29)

Now (26) is in the form of (21). Hence, the direct and ex-
change terms may be easily compared.

In Fig. 1(b), the new limits are illustrated as a function
of R. For 0 & R & 2, the limits zi and z2 are both positive
or both negative (i.e., z =0 excluded). For R &2, z& (0
and zz &0 (i.e., z =0 included). For R =0 and 2, one of
them is zero. The new limits are no longer symmetric:—1&u &1 but zi &z&z2. The length of the interval,
however, remains the same: z2 —z, =2. The transforma-
tion u = u (z) has put the dynamic symmetry into the lim-
its of z. For asymptotic analysis, limits are often suscep-
tible to manipulation.

After some algebraic manipulations (see Appendix C),
we can express (27) in the following form:

G„'."(t)= ~ f dz f(z)(1—2Hz )e
1

(26)
p =(2—R)buo, (30a)
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q =2b —uu0p, (30b)

(30c)

tive interference is only partially complete, allowing the
slow decay from the direct term to exist.

Note that p and q are constant and D (z) is even in z. The
four terms on the RHS of (29) are alternately even and
odd functions of z. At one marginal point (R =2), p =0.
Hence, the first two terms do not contribute. But both
are present at the other marginal point (R =0).

Using (29) in (26), we can now evaluate the exchange
term in different regions of R indicated in Fig. 1(b).

1. R&2

If A —+ co (i.e., t~ co), the main contributions in (26)
come from z=O. Observe from Fig. 1(b) that z=0 lies
within the interval (z),zz). Hence, we can extend the
upper and lower limits:

3. R=O

=(b /2)A '+O(A ) . (36)

In obtaining (36), we have noted that the first term of
f (z) does not contribute. But the second term does,
which in fact gives the leading order. Thus, for R =0,

G,„(t~ ~ ) =G"'(t~ ~ )-t (37)

This is the other marginal point, where now z2=0.
Also, p =2b, q =2b, and up

= + 1. One can write
0 2 —AzG(„)(taco)=—' f dz f(z)(1 2—Az )e
1

Z~~ oo
2 —AzG'„)(taco )=—,

' f dz f (z)(1—2Az )e
1

2 Z2
dz

2
1 —2Az e

2 0 1 —az2

(31a)
That is, )r(R =0)=2. For this pure XY interaction, the
slowest of slow decay comes from the exchange term, not
at all interfered.

4. 0& R &2 (R %1)
(31b)

G(2)(t )
— G(1)(t ) (32)

To obtain (31b), we have noted that the constant term
and the odd terms of f (z) contribute nothing, leaving
only the third term on the RHS of (29). Now from (22a),
we see that Uexp( —Az', ), 0&R &1,

G'„'(t —+ co ) &
Uexp( —Az, ), 1&R &2, (38b)

For this range of R the dynamic symmetry is not
satisfied. Observe [see Fig. 1(b)] that z=0 is outside the
interval (z),zz ). We can thus write

Hence, if R &2,
2

G„,(t~ co)-e ",c)0 . (33)

That is, )r(R )2)= oo. In this region of R there is no
slow decay at all. It is as if the direct and exchange terms
have interfered completely destructively.

where
Z2

U= —,
' f dz f (z)(1—2Az )

1

Hence, regardless of the detail of f (z), G„','(t —+ co ) van-
ishes rapidly. Thus,

2. R=2 G (t —+ oo ) =G(i'(t —+ co ) —t (40)

This is a marginal point of the dynamical symmetry. It
is indicated by z =0 being coincident with one of the lim-
its [see Fig. 1(b)]. One can thus write

zp~ oo
2 —AzG,'„'(t~ )c=o—,' f dz f(z)(1—2Az )e

f "d (1—2Az )e
1 —az

(34)

To obtain (34), we have noted that the first and second
terms of f (z) vanish identically since p =0 if R =2. The
third term off (z) contributes 0( A ) while the fourth
term gives 0(A ). Hence, we have retained only the
third term on the RHS of (34). Now comparing (34) with
(22a), we see that

G(2)(t ~ )
— (G(i)(t ~ )

That is, )~(0 & R & 2) =3. Slow decay arises entirely from
the direct term.

5. R=1

When R =1, b =1 and n=O. Also, 2 =0, but
Az =N(agt) =B)0. This follows from z~ —y and

y = 1/(1 —R). See (24). Thus, from (23)
1G' '(t)= —,

' du(1+u) (1 2B)e-
=

—,'(1 2B)e— (41)

The same result is also obtained from (18b) with / =0,
i.e., Q, =O:

G' '(t) =
—,'((1+S,/S) cos(Qt) )

Hence,
=

—,'((1+S,/S) )(cos(Qt)) . (42)

G(t~ ~ )=—,'G'"(t~ ~ ) —t (35)

That is, )~(R =2)=3. At this marginal point the destruc-

Now it is shown in Appendix 8 that
(cos(Qt ) ) =(1—2B)exp( B). The above —decoupling
occurs if and only if R = 1. See Appendix D.

Hence, together with the direct term (22c),
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6 (t) =—'+ —'(1 —2B)e (43)

VI. NUMERICAL ANALYSIS OF G„„(E)AT T)T,

It is of interest to know when the asymptotic behavior
of G (t) begins to manifest. For this purpose, we have
evaluated (21) and (23) numerically by applying the stan-
dard Simpson method to the u integration. The integra-
tion step was successively decreased until a reasonably
good stabilization of the result was achieved. In Fig. 2,
we give a double-logarithmic plot of G„(t) versus r for

lO'—

10

The time-dependent part, i.e., G„(t)——,', decays very
rapidly, which we shall thus denote by ~(R = 1)= oo. Ex-
cluding the constant term, there is no slow decay possible
when the interaction is isotropic. We shall see in Sec. VII
that the behavior of G „(r;R =1) is essentially very simi-
lar to that of G„(t;RW1 ). By symmetry, G„(t)=6„(t)
if R =1.

Our results for the exponent ~ may be summarized as
follows: 1~(R =0)=2, 1~(0&R &1)=3, ~(R =1)=~,
~(1 & R & 2) =3, 1~(R )2) = ~. The exponent behaves
discontinuously. Slow decay does not exist if R =1 and
R)2.

R =0.5, 1.4, and 3 at various T) T, . The time t is given
in units of fi/gX' if R & 1 and R/gzN'~ if R ) 1. See
our earlier work' "for the origin of the time scales. In
this plot the asymptotic slope of G (t) should give the
values of the exponent ~, which may be compared with
those obtained analytically in Sec. V.

First, observe that all the correlation curves show zero
initial slope as is required of a Hermitian system. For
I; =1—10, there are structures in the correlation curves,
evidently arising from various competing factors of quan-
tum origin. As the time grows, these early patterns begin
to vanish. They do not appear to have any inhuence on
the asymptotic behavior.

Let us now examine the curves individually. For R =3
(T=2T, ), the downward curvature of 6 (t) steadily in-
creases toward infinite slope, i.e., the slope never attains a
constant value. This behavior is consistent with the
Gaussian decay obtained for R )2 and T ) T, (i.e.,
a = oo). At R =1.4 (T=2T, ), the character of the curve
is decidedly diferent. It appears to reach a nonzero con-
stant value of slope. Reducing R to R =0.5 and also T to
T= 1.28T, leaves the slope of the correlation curve virtu-
ally unchanged. The two lines appear to become essen-
tially parallel, indicating the same exponent. This value
is consistent with ~= 3 obtained for 0 (R ~ 2 and T) T, .
Finally at R =0 (T=4T, /3), the correlation curve also
approaches a constant slope, but not in parallel with
those of the previous. The slope is smaller, consistent
with ~=2 for R =0 and T )T, given in Sec. V.

Our numerical work clearly indicates that the correct
power-law behavior of G„„(t) does not begin to emerge
until t —10 . Any extrapolation taken earlier than this
time could introduce no small error in the value of the
exponent. For our model the asymptotic region may be
said to lie in t & 10 .

Our numerical results also indicate that the values of

i.0

)0-4 R =0.5

10

lO-'—

0

l

1

R=zl

l
I

l

:R=O

R=O.5

I

lo 10

0.5 .
XX

0.0—

FIG. 2. Double-log plot of 6 „(t) vs t for different values of
R and T & T, . The time t is given in units of A/gN' if R ( 1

and A/g, N' if R &1. Value of R and T are R =3, T=2;
R =1.4, T=2; R =0.5, T=1.28; R =0, T=1.33. Tis given in
units of T, .

I I I

2 5 4
I I I I

5 6 7 8 9

FIG. 3. 6 (t) vs t at R =0.5 and T=1.01T„1.28T, .
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1.0

R =1.4

where B =N(agt) . If t ~ oo (i.e., B~~ ),
1

b.G„(t~ m ) = —2Be (1 —u )e
0

= —2ae ~X . (47)

Gxx"

The above integral E depends on the sign of a. Recall
that 0&a & 1 if 8 & 1, but a &0 if R & 1. Hence, it must
be handled separately.

If 0&a&1, the main contributions to EC [see (47)]
comes from u = 1. Changing the variable u to x = 1 —u,
we can write

(48a)

If @ &0, the main contributions come from u =0 in K.
We can therefore write

I I

2 5 4
I I I I

5 6 7 8 9

I(. =f ' "du e""'+.. .
0

Hence, together,

(48b)

FICx. 4. G„(t) vs t at R =1.4and T=1.01T„2T,.
(49a)

(49b)

the exponent are independent of T if T& T„just as
shown by our asymptotic analysis. Long-time tails, if
they exist, seem unaffected by the onset of critical Auc-
tuations. That is, the exponent remains the same as
T +T, +. Th—e T dependence in G„„(t)is most noticeable
in the short-time region. In Fig. 3, we have shown G„„(t)
of R =0.5 at T= 1.01 and 1.28 (T in units of T ). In Fig.
4, we have shown G (t) of R =1.4 at T=1.01 and 2.
The first temperature is almost within the neighborhood
of the critical point; the second, well outside. For
t =0—1, there are irregular structures, more pronounced
if T is nearer T, . But they disappear at t=3—5. What
emerges thereafter at t=4 —6 already begins to show
asymptotic character, without much trace of the T
dependence found in the earlier times.

VII. G„(t)AT T & T,

The first term on the RHS of (44) is a constant, hence,
not germane to long-time behavior. But it can be evalu-
ated exactly. Converting the sums in the ensemble aver-
age therein into integrals, we obtain

Go:—((S /S) ) =(b /a)(a ' tanh 'a' —1) . (45)

Similarly we obtain for the second term

b, G„(t)—:( [1—(S, /S) ]cos(Qt ) )
2

=e f du [1 2B(1—au—)]e
1 —au

(46)

In this section we will evaluate the longitudinal com-
ponent of the SAF of a single spin for T & T, given by
(12). Let us write (12) as

G„(t)=Go+A,G„(t) .

If a=O (i.e., R =1), bG„(t) can be obtained exactly
for any t. From (46) we have

bG„(t)=—', (1 —2B)e, R =1 . (49c)

As noted earlier, indeed G„(t)=G„(t) if R =1, as is re-
quired by symmetry. See (43).

There is thus no slow decay in G„(t) when T) T, .
One can understand why long-time tails are absent here
in G„(t) if it is compared with, e.g. , G„"'(t). Equations
(18a) and (46) show that both have the same structure
differing only in the frequencies: 0 in EG„(t) and Q, in
G (t) This diffe. rence makes their long-time behavior(&)

entirely different. Recall from our discussion in Sec. IV
that as t ~~, what survives the ensemble averaging is
that part which is coupled to smallest frequencies. If
0~0 (i.e. , S~O) in (46), then S, /S~ —+0 or 1 since
~S, ~

&S. (By this we mean that in the first case S,~O
faster than S~O. In the second case, both go to zero at
the same rate). The first possibility occurs when R &1
and the second when R ) 1. If ~S, /S ~

~0, then from (46)
we see that b, G„(t) is essentially determined by
( cos(Qt ) ). If ~S, /S ~

~1, then the leading term in
[1—(S, /S) ] vanishes. As a result, the next order term
vanishes faster than (cos(Qt)). In Appendix B we have
shown that ( cos(Qt ) ) vanishes very rapidly. In contrast,
in Gi'i(t), where Q, ~O, one picks up S, =O for a fsxed
S.

Finally, comparison of Eq. (46) with Eq. (42) shows
that the structure of G„(t) is very similar to that of
G „(t;R =1). Thus, the time dependent behavior of
G„(t;R =1) can be explained essentially as described
above for G (t;R&1).

Illustrated in Figs. 5 —8 is G„(t), together with G „(t).
One can readily observe the different behavior between
the two components. See especially Fig. 8. After the ini-
tial short time, G„(t) is quickly dominated by G„. This
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G (t)=G„(t)=—,'+ —', cos(Qt), Q=2g&S& . (56)

A. G„„(t)

(i) R &1. The SAF is given by [see (14)]

G„(t)= —,
'

& [1—(S, /S) ]cos(Q, t ) &

+ —,'&(1+S,/S) cos(Pt) &

= —,'&cos(Q, t) &+ —,'&cos[(Q —Q, )t] &

= [cos(Qt /2) ] & cos(Q, t ) &, (51)

where Q=2g&S &. To obtain (51) we have used the low-
temperature property (50a). In Appendix E, the remain-

ing ensemble average is shown, i.e.,

& cos(Q, t ) & =exp( d t —), d =2' & S, & =co/P . (52)

The above average also occurs in the SAF of the large
spin:

&S (t)S, &=&S &&cos(Q, t)& .

See Appendix D. There are two time scales in (51): 1/Q
and 1/d. But they are of different orders of magnitude,
i.e., 1/Q=O(1) and 1/d =O(v'X ). Hence, for t —1/Q,

G„„(t ) = [cos(Q/2) ] (53)

Thus, in time scales of 1/Q the SAF is merely periodic.
There is no slow decay as suggested earlier.

(ii) R & I. Using the low-temperature property (50b),
we find

&S, &=&S&=O(X), if R&1.
Hence, in the ensemble averaging, only those states very
near an ordered state are significantly counted. As a re-
sult, the state of a single spin cannot evolve independent-
ly of such a dominant state of the "reservoir". It implies
that slow decay is forbidden. We shall examine in this
section both components of the SAF separately.

The oscillations found in the low-temperature regime
refer to the oscillations of the small spin with respect to
the direction of ordering of the large spin or the reser-
voir. The frequencies of oscillation are directly related to
the magnitude of ordering. Also observe that these fre-
quencies Q and P [see, e.g. , (53) and (54)] are X indepen-
dent, but d [see (52)] is X dependent.

IX. DISCUSSION

dun uFu

J du w(u)
(57)

where w(u) is some weight function and u represents the
order parameter of the system. For our model the weight
function may be written as

w(u)=exp[Ay(u)] . (58)

The phase factor y(u) depends on the temperature of the
system as fo11ows:

We have studied the long time behavior of the SAF of
a single spin. We have demonstrated that in some physi-
cal regimes there can be slow decay, stemming from cer-
tain modes of the large spin to which the small spin is
coupled. These modes have small fluctuations. Owing to
the xy symmetry in our model, they assume xy planar or
z axial configurations in spin space. In this section, we
shall attempt to identify the modes responsible for slow
decay by reexamining the time evolution solutions of the
small spin obtained in I. The canonical approach, which
we have realized for this problem, allows us to do so. We
shall also reexamine the conditions that appear to be
necessary for the existence of long time tails.

As we have seen, the SAF of a single spin is intimately
tied to ensemble averaging. The long-time behavior is

especially sensitive to the averaging processes used. We
have shown that the ensemble average of, say, I' may be
written as

G„„(t)= —,
'

& [1—(S, /S) ]cos(Q, t) &

+—,'& [1+(S,/S) ]cos(Pt) &

=cos(Pt ),
where p =2g, & S &. The SAF is also oscillatory.

B. G„(T)

(54)

—cu — c)0, if T) T, (59a)

y(u)+2(u —u) y"(u)+ . if T& T, . (59b)

where y'(u ) =0 and y"(u ) & 0. Thus, the weight function
is peaked at u =0 if T) T, and at u =u if T(T, .
Roughly speaking,

From (12) and using the low-temperature property
(50a) and (50b) we obtain at once

F(u=u), if T&T, .

(60a)

(60b)

cos(Qt), Q=2g&S&, R &1,
1, R)1.

C. R =I

(55a)

(55b) If T & T„ the ensemble averaging (57) is reminiscent of
a random Cxaussian process. It is stationary since our
SAF satisfies

When R = 1, G, (t)=G„(t). Hence, it follows directly
that

&s(t+t'). s(t')&=&s(t) s(0)& .

It is, however, not Markovian since Doob's theorem is
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not satisfied, i.e.,

(s(t) s(0})&exp(—at), a)0.
Our Hamiltonian can never admit such a solution for the
SAF. If T & T„ the weight function acts as a "filtering"
function. The ensemble averaging is essentially re-
placed by the value at the filter. In our problem, the pro-
cesses of ensemble averaging above and below T, are to-
tally different. To obtain a slow decay, a Gaussian-like
process is evidently necessary.

Now let us turn to the time evolution solutions of the
small spin. As stated before, the time evolution of the
small spin is brought about entirely by its coupling to the
large spin, which itself evolves in time. The time evolu-
tion of the large spin S represents a simple plane rotation
about the z direction in spin space, in which S, is a con-
stant of motion. The frequency of rotation is directly
proportional to the magnitude of S,. Illustrated in Fig.
9(a) and 9(b) are orientations of the large spin S for two
possible values of S, (e.g. , S, =O and S, =S) at a given
time. All possible different values of S, (

—S ~S, &S)
correspond to all possible allowed frequencies. An en-
semble averaging of these di6'erent S, values is a source
of "fluctuations" in S,.

At time t, let the small spin s be at an angle cp to the
large spin S. As the large spin rotates about the z direc-
tion, the small spin follows it while at the same time ro-
tating about the direction of the large spin. Since s-S is a
constant of motion, one may regard the angle y also to be
a constant of motion. In this semiclassical context, the
small spin precesses about a certain direction, identified
as r in I. Illustrated in Fig. 10(a) and Fig. 10(b) are rela-
tive directions of all three quantities s, S, and v, projected
in two dimensions.

The rotation of the small spin is thus a little more corn-
plex and more strongly R dependent than the rotation of
the large spin. If R —+~, y the angle between the two
spins disappears. Also w coincides with the z direction.

(b)

FIG. 9. Time evolution of the large spin S depicted in spin
space at a given time and at two dift'erent values of S,. The spin
rotates about the z direction, as indicated by double arrows.
Shown in (a) and (b) are, respectively, for S,=S and S, =0.

(b)

(c)

FIG. 10. Small spin s, large spin S, and precession axis v,
projected in two dimensions. The two spins make an angle y,
which is a constant of motion. Shown in (a) and (b) are for
S,=S and S,=0, respectively, at arbitrary values of R. Shown
in (c) and (d) are for S, =O and S, =S, respectively, at R =0.
Observe that ~ now lies in the xy spin plane.

In this limit the two spins have an identical rotation, both
a pure rotation about the z direction. Consequently, they
have an identical time evolution. This behavior may be
regarded as a classical limit of the time evolution of the
small spin since the large spin behaves like a classical vec-
tor.

If R ( ~, the rotation of the small spin is no longer a
pure plane rotation about the z direction. It develops an
extra rotation that amounts to oscillations of the xy plane
about a direction normal to r. If S, =0 [see Fig. 10(b)],
the rotation causes the xy planar configuration to have
small fluctuations.

If R —+0, ~ now lies in the xy plane [see Fig. 10(c) and
10(d)]. If S, =0 [see Fig. 10}(c)],the precession about r
causes fluctuations of the xy planar spin configuration,
similar to that shown in Fig. 10(b). If S, =S, the preces-
sion about ~ causes fluctuations of the z axial spin
configuration depicted in Fig. 10(d).

The slow decay that we have found in G (t) when
T & T, is contained in the time evolution of the small spin
described above. The slow decay emerges from certain
modes, which we may term "slow decay modes", after a
Gaussian-like process. There are two independent
sources for these slow-decay modes: the direct term and
exchange term. The direct term has the structure

((S„/S) cos(Q, t)) ——
—,'((S, /S) cos(II, t))

if t~~. The slow-decay modes in the direct term are
quadratic, representing small fluctuations of the xy pla-
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nar spin configuration, approximately depicted in Fig.
10(b). They are R independent. It is interesting to note
that the quadratic modes in (S„cos(Q,t ) ) are, however,
not slow-decay modes.

The exchange term has the structure
—,'((I+S, /S) cos(Pt) ), which contains both linear and

quadratic modes. Dynamic symmetry governs the oc-
currence of slow-decay modes here. If R )2, only the
quadratic modes can contribute in the form of
—,
' ( (S, /S ) cos(Q, t ) ). There are thus slow-decay modes,
which are of the xy planar spin configuration, identical to
those found in the direct term except with an opposite
phase. Hence, there can be no slow decay in this region
of R. The origin of this remarkable result is found in the
discontinuous behavior of the frequency of the exchange
term when t —+ ~. The absence of slow decay in this re-
gime (2 (R ( 00 ) invites the following interpretation:
Asymptotically (i.e. , t~ ~) the time evolution of the
small spin is of a pure plane rotation of R = ~ [see Eqs.
40(a) —40(c) of I], or equivalently the small spin behaves
as if the vector v. were fixed along the z axis, as long as
R &2.

If R & 2, the quadratic modes in the exchange term are
no longer slow-decay modes. At the two marginal points
(R =0 and 2), the quadratic modes are slow-decay modes,
but they are not the dominant ones. At R =0 the dom-
inant slow-decay modes are linear modes, allowed be-
cause of "broken symmetry, " in the form of
((S,/S)cos(gt)). They represent small fluctuations of
the z axial spin configuration, approximately depicted in
Fig. 10(d). The same linear modes are allowed at the oth-
er marginal point R =2 since there is also the same "bro-
ken symmetry. " But they do not contribute because of a
vanishing amplitude. That is, s (t)=0 asymptotically,
which is related to the asymptotic behavior of the time
evolution when R )2.

We have seen that when R = ~, the small and large
spins have the same time evolution, indicating that there
can be no slow decay. In the SAF of a single spin, this
particular result appears in the guise of a destructive in-
terference between the direct and exchange terms. For
t~ ~, the interference persists until R =2+@, e—+0+.
We have described the absence of slow decay in this re-
gion of R as classical since the time evolution is that of a
classical vector. The value of the exponent ~(R ) 2) = oo

would appear to correspond to a finite-dimensional classi-
cal exponent ~=D/2+~', where ~' is some number, in
which D ~~. The finite value of the exponent we have
obtained for R (2, e.g. , v(R =0)-=2, thus must be of
cooperative origin, unrelated to purely dimensional
effects.

Finally, we shall turn to the behavior of G„„(t) when
R =1. The time dependent part of the SAF shows a fast
decay only, hence, ascribed x = ~ for its exponent, the
same as for R )2. We shall see that there indeed is a
similarity in the time evolution behavior when R =1 and

I

R )2. First, the behavior of the SAF about R =1 has
the appearance of a point "singularity" since ~=3 if
0(R (2 (R&1). In fact, we recall that the asymptotic
region of the time is defined by to=v'N /(aha

~
I —R ~).

See Ref. 22(a). As R ~1, it takes longer and longer to
enter the asymptotic domain. Now if R&1, our system
has a well-defined cylindrical spin symmetry, where there
are two axes of rotation z and r. (As a result, axial and
planar fluctuations responsible for slow decay are possi-
ble. ) The cylindrical symmetry persists as R = I+a,
e~O. At e=O or R =1, there is but one axis of rotation

This discontinuous behavior of spin symmetry in our
system rnanifests itself as a point "singularity, " also analo-
gously as a strip "singularity" when R & 2.

The absence of slow decay when R = 1, and also when
R )2, may be traced to the behavior of the vector r(t)
Recall that s(t)=s(t)X~(t). See Eq. (44) of I. Now if
R =1, r(t)=2gS(t)=2gS. If R )2, r(t)~2g, s, (t)z
=2g,s, z, as discussed earlier. That is, in both cases r(t)
becomes independent of the time, unlike when 0 & R ~ 2
(R %1). Hence, the time evolution of the small spin is of
pure rotation. If R =1, the small spin rotates about a
fixed direction of the large spin. If R & 2, the small spin
rotates about the z axis just as the large spin. There are
no precessions. The behavior of the SAF at R =1 as well
as the behavior at R & 2 stems from having one fixed axis
of rotation.

If 0 (R (2 (R W 1), r( t) is always time dependent. The
motions of the small spin, as earlier noted, are thus pre-
cessional, as if brought about by some effective force ap-
plied on a simple rotation. We have found that lowest
precession frequencies give rise to a slow decay of the
SAF. In our model, slow decay cannot exist without a
precession motion.

What will remain when our model is made finite-
dimensional (e.g., NN anisotropic Heisenberg) cannot be
answered. The values of the exponent are not expected to
be the same. It would seem to us, however, that the basic
mechanism for slow decay in our model may yet have
some generality.
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APPENDIX A: PARTITION FUNCTION
AND ENSEMBLE AVERAGING

We shall first obtain the partition function when
T) T, in a slightly different way than previously
given. ' " The new way is found most suitable for the
analysis of long-time tails. From (16) and (17), to leading
order in N, we have

Z= &gg( ) s'e~2"+' f "dS(2S/X)e ""'~f' dS e
S S 0 —S

Z

(A 1)
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S =N ~ a7)(1 —au )
r

S, =X'"ab~~ .

Then,

(A2)

(A3)

where a =(2—PJ), a b =(2—PJ, ), a=1 b- .
Note that a, b )0 when T ) T, . One can readily evalu-
ate the above double integral. Instead, we shall now
change the variables S,S, to g, u, where

and one may expand the summand in (A10) about S=So
as in the previous case.

The ensemble averaging when T (T, is thus much
more straightforward than when T) T, . For example,
(F)=F(So), where So is determined by the extremal
condition on the phase function: 9'=0 if R &1 and
9,'=0 if R ) 1. Ensemble averaging appears as if pro-
cessed by a filtering function. A few examples are given
in Appendix E.

Z=2 + N 22a bf duf d2irje—1 0

=2&+ ~(N~)»2a 3b (A4)

APPENDIX B: ( cos(Q, t ) ), (cos(Qt ) ),
AND (cos(Pt ) ) WHEN T) T,

Accordingly, the ensemble average of any "reservoir"
quantity, say F(S,S, ), may be given as follows:

(F)=Z ' g g g (S)F(SS,)e
S S

Using this method outlined in Appendix A, we can
evaluate the ensemble average of cos(A, t ) as follows:

(cos(A, t)) = —f du f d2) e "2) cos(2A' u2)),v'2r —i o

where

f du f d21e "ri F(u 2)),
7r

(A5)
(81)

where A =N(abbot) =N(1 —R) (abgt) . We now in-
tegrate over u first or integrate by parts. Then,

S

—S2 S oo cS2'~2 f dS, e '=(vr/c)'
0

Therefore,

Z=2 +'(vr/c)' g (2$/N)e (A7)

where

F=F( V'N a r)V I —au, V N abu 2) ) .

In Appendix B, several examples are given.
If T( T„ the partition function is not dominated by

S=0. Instead one finds that the phase function is peaked
at some macroscopic value of S, say Sp, which depends
on whether R (1 or R ) 1. We shall briefly review our
previous results. ' "

(i) R & 1. In this regime, c =pro )0. Hence,

(cos(A t)) = —A ' f d21 e ~ rtsin(2A'r rj)
2

which is valid for any t, not just t ~ ~.
We next evaluate the ensemble average of cos(At ). Let

C=B(1 au ), B =—N(agt) . Then

(cos(At)) = —f du f d2) e "r) cos(2C' 21)v'~ —i o

= f du(1 —2C)e
0

—e B(eaB 2B
—

du eaBu 2

0
(83)

where the last step was obtained on integration by parts.
Denote the integral in (83) by L. Now if t~ co (i.e.,
B~ ao ), it may be evaluated asymptotically depending on
the sign of o, , where e = 1 —b .

(i) 0 & a & 1 (R & 1). Let x = 1 —u . Then,
0= —W+PJS /N (AS)

See (17a) for the definition of W. Now Q(S) is sharply
peaked at S=So, i.e. , 0'(So) =0. Hence, one may expand
the summand in (A7) about S=So.

(ii) R ) 1. In this regime, c &0. Let us assume that the
S, symmetry is broken upward, i.e., S, /S=+1 to order
N. Then,

L —] eaB dx(1 —x)
—1/2e —aBx

(
1 aB )eaB

2 0 2

(ii) a &0 (R)1).
du e " =—'(m. /l a lB )

0 2

Hence,

(84a)

(84b)

ge '~ f dS e '=e ' /( —2cS) .
S 0

Z

Hence,
lim (cos(At) ) = '

t —+ oo

(b /a)e, R—&1,
—(rrB/la

I

)' e, R & 1,
(85a)

(85b)

Z=2 +' g (2S/N)e '/( —2cS)
S

where

(A9) and

(cos(At) ) =(1 2B)e—(85c)

0, = —W+PJ, S /N (A10)

Now 9, is also a sharply peaked function, i.e., 9,'(So)=0
In a similar way we can write down the ensemble aver-

age of cos(Pt ), where /=A —A, :
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&cos(pt)) = f du f
dhole

"g cos(2A'~ zi1)v'~ —i 0

du 1 —2HZ e—1

where z=z(u) is defined by (24). Observe that if R =1,
P=Q and (B6) reduces to (B4). If R = ~, P= —0, and
(B6) reduces to (B2). Changing the variable u to z in (B6)
as in Eq. (26), we obtain

a =uoy (D —auoz)D (C3)

Also, using (24),

(1—au )' =y '(u —z)

ing to (29) is somewhat involved but straightforward.
Below we give an outline. The derivative of u (z) may be
expressed as

2
& cos(Pt ) ) =

—,'u oy f dz( 1 au—ozD ')
1

=uoy '(D —auoz), (C4)

X(1—2Az )e (B7) where we have used (Cl) to eliminate u in the first expres-
sion. Hence,

where for the derivative of u we have used (C3) from Ap-
pendix C. See (24), (25), and (30c) for various quantities
appearing here. We shall now evaluate the above integral
in different regions of R following our ideas given in Sec.
V, implicitly assuming that A —+ ~ (t ~ ~).

(1) R) 2.

1+ =B+
1 au

bz

uoy '(D —auoz )
(C5)

where B = 1+by. Combining (C3) and (C5), we obtain

f (z)=B uoy +Buoy '(2b —auoBy ')zD

&cos(ti)t)) =uoy e

(2) R=0,2.

& cos(Pt) ) =
—,'ay f dz z(1 —2Az )e

= —ab /4A -t

(B8)

(B9)

b'z
D(D —auoz)

b2 2

D (D —auoz )

b z

1 cxz D(1 —az )

The last term of the RHS of (C6) can be split up as

oupb z

(C6)

(C7)

One obtains the same result for both R =0 and 2. The
only difference between the two appears in the sign of S„
which is, however, immaterial since both signs occur in
the ensemble averages.

(3) 0(R (2 (R&1).
oupb zb 2 2f (z)=p +pqzD '+ +

1 —az D(1 —az )
(C8)

where we use the identity D (auoz) =—1 —az . [See
(C2)]. Substituting (C7) in (C6), we obtain

C)e
&cos(Pt ) ) & .

C2e

—Az~ 0&R &1,
—Az

1 1&R &2,

(B10a)

(Blob)

where

p =Buoy '=(2 —R)buo,

q —2b 0!upp

(C9a)

(C9b)

where C, and C2 are constants. The results are similar to
(36a) and (36b).

The ensemble average of cos(A, t), cos(IIt), and
cos(Pt ) all lead to a rapidly vanishing result if t ~ oo, ex-
cept for the third when R =0 and 2. The vanishing can
be attributed to a cancellation arising from large phases,
randomly occurring. When R =0 and 2, the frequency
can be zero for an entire range of S whenever ~s, ~

=S. As
a result, phases corresponding to very small frequencies
can survive and contribute to slow decay.

The constant p has the following special values: p =2b if
R =0;p =0 if R =2.

APPENDIX D: ABSENCE OF LONG-TIME TAILS
IN THE LARGE SPIN

Let's define the SAF of the large spin as
4 &(t) = &S (t)S&(0)), a,P=x,y, and z. Consider first
T)T, . We have shown previously' "that in the high-
temperature region

APPENDIX C: TRANSFORMATION u = u (z)

Using (24) and (25), one can obtain the inverse trans-
formation expressed in the following form:

$„„(t)=$„(t)=&S (t)S. ) = &S.'cos(Q, t) ),
0, =2coS, ,

z„(t)= &s,(t)s, ) = &s,'& . (D2)

u (z)=y uoz+uoD(z),

where

(C 1) The z-component of the SAF is time independent since S,
is a constant of motion. That is, S, denotes a stationary
state of the "reservoir. ' If R W 1,

D(z)=(1 —ay uoz )' (C2) &S,cos(Q, t)=&s )&cos(A, t)) (D3)

In obtaining (Cl) we have chosen the positive sign before
D (z) since u = uo if z =0.

We next turn to f (z) given by (27). The algebra lead- & cos(n, t ) & =e (D4)
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$„„(t)=&S cos(A, t))+(i/2)(S, sin(A, t)) . (D5)

The imaginary part would not be present if the SAF were
symmetrized. ' " If R & 1, the first term on the RHS of
(D5) also decouples. The second term may be neglected.
That is,

where A =N(abbot) =2' t (S, ). See Appendix B. Be-
cause of decoupling, there is no long-time tail in the x
and y components of the SAF for the large spin if R W l.
Now if R = 1, 4„„(t) =S„(t), hence, time independent.

Let us consider T & T, . Here S, is still a constant of
motion. Now the x component is

Substituting the above result in (El), we obtain

(cos(A, t)) =cos(pS),

where S=(S). Together,

(E3)

2~21 2(S2)
e R &1,

&cos(A, t)) = '

cos 2cots, R ) 1 .
(E4a)

(E4b)

—cS2 S —cS2

g e 'cos(ps, )~f dS, e 'cos(pS, )
S 0

Z

—cS=e ' cos(pS) /( —2cS) .

(t)=(S )&cos(A, t))
=

& S )exp( 2' —t ( S, ) ),
where now (S, ) = 1/(2Pco). If R ) 1,

(D6)
—cS

(cos(At) ) =Z ' g (2S/N)e cosqS g e
S S

(E5)

We shall next evaluate (cos(At)). Using the same
definition, we may write

(t) = (S )cos(Q, t )+(i/2)S, sin(A, t ) (D7&

where A, =2cos„s,= (S, ). Thus, the same decoupling
may be said to occur.

The SAF of the large spin decays very rapidly if
T) T, . It behaves similarly if T& T, and R &1, but it is
oscillatory if R ) 1. The frequency of oscillation is
directly related to the long-range order. The absence of
long-time tails in the SAF of the large spin may be attri-
buted to decoupling of the modes of S and S, ",
n =1,2, . . . [see (D3)].

When R =1 and T)T„ there are other possibilities of
decoupling. For example,

(cos(At)) =cos(At), A=2gS,
where S= ( S ).

Finally, we shall calculate & cos( At ) ) . Using
definition,

& cos(pt ) ) = (cos[(A —A, )t] )

(E6)

—cS
e ge 'cos[(A —A, )t ],

s &

where c =Pc@ (same as before) and q =2gt. The evalua-
tion is straightforward since the sign of c is now imma-
terial. We obtain directly,

&s's'"&=&(s /s)'&&s'"+'& k=0, 1,2, . . . . (D8)

Observe that we obtain ((S,/S) ) =
—,
' if we set k =0 in

(D8). This identity (D8) was used in arriving at Eq. (42).
where Q=2gS and A, =2cuS, .

(i) R & 1. Then, expanding the cos term, we obtain

(E7)

APPENDIX E: ( cos(Q, t ) ), ( cos(Qt ) ),
AND ( cos(Pt ) ) WHEN T & T,

Following the definition of the ensemble average, one
may write

—cS
(cos(A, t)) =Z ' g (2S/N)e ge 'cos(p S, ),

S S

(El)

where c =/3', p =2~t, 9 is the phase function (see Ap-
pendix A), and Z is the partition function.

(i) R & 1. Here c & 0. Hence,

—cS —S2
g e 'cos[(A —A, )t]=cos(At) g e 'cos(Q, t) .
S

Hence,

& cos(Pt ) ) = (cos(At ) ) (cos(A, t ) )

=cos(At)(cos(A, t) ) (E8)

where A=2gS, S=(S) and (cos(A, t)) is given by
(E4a).

(ii) R ) 1. Let us assume that the S, symmetry is bro-
ken upward as before. Then,

—S2
g e 'cos[(A —A, )t ]
S

S

—cS S~ oo —cS2

'cos(p S, )~2 dS, e 'cos(pS, )

—
( / )1/2 —p /4c

Hence, substituting the above result in (El), we obtain

(cos(A, t ) ) =e

f'dS, e
0

—cS=e ' cos(rS)/( —2cS),

—cS'cos[rS, +q(S —S, ) ]

where q =2gt and r =2g, t.
Hence,

(ii) R &1. Here c &0. Assume that the S, symmetry is
broken upward, i.e., S, /S=+1 to order X. Then,

& cos(Pt ) ) =cos(At ),
where Q =2g, S, S= (S ) = (S, ).

(E9)
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