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Nonequilibrium statistical mechanics of the spin- —van der Waals model.
I. Time evolution of a single spin
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The spin van der Waals model has received some attention in recent years as a soluble model, use-
ful for demonstrating collective behavior analytically. By solving the Heisenberg equation of
motion, we obtain the time evolution of a single spin in this model when N~ 00, where N is the
number of spins in the model. Our solution is characterized by rotations in spin space having the
appearance of a Larmor precession. In the accompanying paper, we use this time-evolution solution
to obtain the spin autocorrelation function and determine its long-time behavior.

I. INTRODUCTION

In the late 1960s, molecular-dynamics studies gave evi-
dence of slow decay in the velocity autocorrelation func-
tion (VAF) of a particle in a simple Quid. ' The VAF has
a power-law behavior t for t ) t„where t, is some
characteristic time of the system and ~=D/2 where D
denotes the dimension of the system. The value of the ex-
ponent seems remarkable: It depends on the dimension
D but apparently not on the interactions. This kind of
slow decay in the VAF is now referred to as long-time
tails. The existence of long-time tails, if correct, is physi-
cally significant since it can lead to a divergence in the
transport coefficients. Conventional transport theories
are built on an exponential decay of the VAF.

The evidence of long-time tails observed in computer
experiments has stimulated considerable activity both ex-
perimentally and theoretically. Measurements in aqueous
solutions of polyestyrene spheres by Paul and Pusey and
Fedele and Kim appear to indicate a slow-decay corn-
ponent in the VAF. Fox has recently assessed these
experimental findings. More recently, Morkel,
Gronemeyer, and G-lasser have shown strong evidence of
long-time tails in liquid sodium at high temperatures.

A qualitative understanding of the origin of long-time
tails was initially provided by mode-coupling theory. '

It is a hydrodynamic picture in which slow decay is attri-
buted to shear modes generated by a moving particle, act-
ing on itself at a later time. Presumably, coupling be-
tween a particle and its surroundings is an essential
source of this anomalous behavior. In an attempt to give
a more rigorous derivation based on microscopic models,
several workers have applied kinetic theory. Owing to
difficulty inherent to Auids, they were ultimately forced to
approximate their theories. As a result, they are perhaps
not much more rigorous than those based ab initio on hy-
drodynamic pictures. It is probably correct to say that,

to date, there are still no rigorous derivations of long-
time tails in the VAF of a particle in a Quid.

Spin diffusion is a physical process analogous to parti-
cle diffusion. If the spin autocorrelation function (SAF)
has a slow decay, the spin transport coefficients may also
behave anomalously. In many respects, spin dynamics
should be theoretically simpler to study than particle dy-
namics. Unlike particles in a Quid, spins in a lattice are
localized. Also, spin interactions can be limited to those
between near neighbors. Spin dynamics is still highly
nontrivial. Exact results are limited largely to one-
dirnensional spin- —,

' XY and transverse Ising models, to
which we shall confine our remarks.

At T = ~, Perk and Capel have shown that the trans-
verse component of the SAF of a single spin is Gaussian.
For the longitudinal component Niemeijer' obtained
Jo(t), where Jo is the Bessel function of order 0. There is
thus a slow decay here, but its origin is obscure. At
T=O, quantum effects make the determination of the
SAF very difficult. The work of Miiller and Shrock"
suggests a nonexponential decay, based on the nonanalyt-
ic behavior of the dynamic structure at certain frequen-
cies co, including co=0.

In what we might call a canonical approach to dynam-
ics, one would first calculate the time evolution of a
dynamical variable (e.g. , a spin operator) and then the au-
tocorrelation function and other physical quantities
therefrom. This approach can yield information with
which to obtain complete dynamical analysis. Not
surprisingly, rarely has anyone been able to realize this
approach, as our examples in spin dynamics would indi-
cate. We find, however, that there is a certain quantum
spin model called the spin van der Waals model for which
the canonical approach can actually be realized. For this
model we have succeeded in obtaining the exponent ~,
which is found to behave discontinuously as a function of
interactions.

The spin van der Waals model is a cooperative spin
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model in which the spin-spin interactions are made in-
dependent of the separation distance. In the older litera-
ture it was called the molecular-field approximation mod-
el. ' This model may be regarded as the q~ ~ limit of
the spin- —,

' NN anisotropic Heisenberg model, where q is
the coordination number. A spin in the spin van der
Waals model is somewhat reminiscent of a Brownian par-
ticle in a dense medium. Hence, this model has qualita-
tive features of both quantum cooperativity and Browni-
an motion.

For this model it is possible to obtain the partition
function exactly if X—+ ~, where X is the number of
spins in the model. Hence, one can know all the static
properties of the model, all of which show mean-field
character. This model has attracted some attention in re-
cent years as a soluble model, useful for demonstrating
collective behavior analytically. Kim and Lee, ' for ex-
ample, have used this model to illustrate the correlation
inequalities of Falk and Bruch. ' Pathria' has examined
the X dependence in the specific heat. Gilmore' has
shown that this model is equivalent to the Meshkov-
Glick-Lipkin model in nuclear physics. Katriel and
Kventsel' have demonstrated among others a reentrance
phenomenon in a generalized version of this model.
There are many other works along these lines. '

Some years ago we were able to realize the canonical
approach to the dynamics of the total spin in this mod-
el. We have shown that, in the XY regime, the trans-
verse component of the SAF of the total spin is Gaussian
both above and below the critical temperature T, . In the
Ising regime, it is oscillatory below T, but Gaussian
above T, . There are no long-time tails at any tempera-
ture T. Perhaps most interesting was our finding that
there are two time scales, which are the source of the
critical anomaly. Kventsel and Katriel have general-
ized some of these results.

In this work, we undertake the canonical approach to
the dynamics of a sI'ngle spin in the van der Waals model
when X—+ ~. We are interested in determining whether
slow -decay exists in the SAF of a single spin, absent in
the SAF of the total spin. If slow decay exists, we would
like to know its origin. Our work is presented in two
parts. In the first part, we present the time evolution of a
single spin by solving the Heisenberg equation of motion.
In the second part (accompanying paper), we use the
time-evolution solution of a single spin to calculate the
SAF.

II. SPIN-2 VAN DER WALLS MODEL

Consider a system of %+1 lattice spins, denoted by a
spin- —,

' operator s, =(s;,s~, s ), where i labels the lattice
sites. The interaction energy of the spin van der Waals
model of X + 1 spins takes the following form:

N+1
H = Ã' g [J(s, s +—s;s )+J,s s'],

where the sum is over all pairs of spins, and J and J, are
coupling constants. In the spin van der Waals model,
each spin interacts with each other with the same

strength Jor J„independently of the separation distance
between any two spins. A division by N is needed to en-
sure that the energy is extensive.

Among these N+1 spins, we shall now single out one
spin, which may be any one of the %+1 spins, and
denote it as s. The remaining X spins are collectively
denoted by

S=(S,S,S, )= g s, (2)

The total spin S"' is given by

Stot

H =Ho+ V,
where

(4)

Ho= —(JS —t(,S, )/X, A, =J —J, ,

V = —2(Js S—t(,s'S, ) /N .

In obtaining (4) we have dropped an additive constant.
Note that [Ho, V]%0. The first term Ho represents the
"self-interaction" energy of the large spin; the second
term V, the interaction energy between the small and
large spins. As already suggested, Ho has the appearance
of the energy of a reservoir; V, the interaction of a spin
and a reservoir. Both Ho and V are characterized by two
parameters: g =J/X and co=(J —J, )/X. The first pa-
rameter may be said to indicate the strength of spherical
symmetry; the second, that of axial symmetry. In an ear-
lier work, we have given a complete account of the none-
quilibrium behavior of the large spin in the thermo-
dynamic limit; we shall find this work useful for
describing the behavior of the small spin.

III. EQUATION OF MOTION

We shall denote the time evolution of the smaH and
large spins as follows (adopting A'= 1):

( t) iHt iHt—
and

For the system defined by (1), important constants of
motion are (S'"),S,"', S, s, and s.S.

If N is very large, it is useful to formally regard our
system to be as if composed of two subsystems: one sub-
system containing s and the other containing S. Let us
refer to s and S as a small spin and a large spin, respec-
tively. Note that the two spins commute. If X is very
large, the subsystem containing the large spin acts some-
what like a reservoir for the subsystem containing the
small spin. That is, a small change in the small spin
should not affect the state of the large spin, but a small
change in the large spin could have a large effect on the
state of the small spin. We should emphasize here that
by this remark we do not mean to introduce a priori any
approximation.

We can rewrite our interaction energy (1) in terms of
the small and large spins as follows:
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iHtS —iHt

where H is given by (1) or (4), s =s( t =0) and
S=S(t =0), which may be regarded as initial conditions.
The equation of motion for the small spin at t =0 is

S,(t), and also S (t) and S (t) in (12). Hence, we first
look for the time evolution of the large spin. Since we
have in mind the case X—+ ~, we need only to look for
asymptotically exact solutions. Let us write the equation
of motion for the large spin as follows:

s=i [H, s]=i[Vs] .

Using V given by (6), we obtain

(9) S(t)= i[H, S(t)]=i[H, + V, S(t)]=S "'(t)+S ' "(t) .

(16)

s "(t)=2g, s»(t)S, (t) 2gs—'(t)S (t),
s»(t) = 2g, s—(t)S,(t)+2gs'(t)S (t),
s '(t)=2gs"(t)S«(t) 2gs«(—t)S„(t),

(10a)

(lob)

(10c)

where g, =J, /N =g —co. The above equations show that
the time evolution of the small spin depends on its cou-
pling to the large spin, where g and g, act as the strengths
of the coupling. In this work, we propose to solve the
equation of motion for the small spin.

As noted, the above equations express a linear coupling
of the two spins. It is thus natural to introduce bilinear
spin operators P, Q, and R defined at t =0 as follows: and

s (0)= —2&s,sy —E~s„,
S' )=2coS,S —i~s

s,'"=0,

(17a)

(17b)

(17c)

The first term refers to the time evolution induced by the
"self-interaction;" the second term, that induced by the
interaction with the small spin. In the limit X~~, the
second term may be neglected, as we shall see. By
evaluating the commutators at t =0 (for simplicity), we
obtain

P =s S„+syS„,
iQ =s"S —s«S

R =s'S, .

(1 la)

(1 lb)

(1 lc)

S"'=—2gs S,+2g,s'S

S "'=2gs "S,—2g, s'S

S,"'=—2g(s S —s»S. } .

(18a}

(18b)

(18c)

Observe that the bilinear spin operators may be combined
with the large spin to give the small spin:

s U =PS +iQS +is«S, ,

s»U =PS» —iQS„is"S, , —

s'S, =R,

(12a)

(12b)

(12c)

P(t) = 2igS, (t)Q—(t) igP(t), —

Q(t) = 2igS, (t)P(t)+2i—gs, (t)U(t)

igQ (t) ——igS, (t),
R(t)=2igS, (t)Q(t)+igP(t) .

(13a)

(13b)

(13c)

where U=S —S, . Hence, if one knows the time evolu-
tion of the bilinear spin and large-spin operators, one can
obtain the time evolution of the small-spin operators.
Thus, we turn to obtain the time evolution of the bilinear
spin operators, rather than to directly solve the equation
of motion for the small spin.

Using (10a)—(10c) we find that the bilinear spin opera-
tors satisfy the following equations of motion:

The linear term on the right-hand side of (17a) or (17b) is
an effect of noncommutativity in the large spin, if the
spins were classical, it would not be present. Also, the
terms of the right-hand sides of (18a)—(18c) are all linear
in the large-spin operators, comparable to the quantum
fiuctuation" terms of (17a) and (17b).

IV. ASYMPTOTIC SOLUTIONS FOR THK LARGE SPIN

If N~ ~, we find it sufFicient to obtain asymptotic
solutions for the large-spin operators and also for the bi-
linear spin operators. These solutions are much simpler
to obtain and are physically more intuitive than the gen-
eral solutions. Hence, we proceed to obtain the asymp-
totic solutions here and in the following section. For pur-
poses of corn. parison we have given the general solutions
in Appendix A. To obtain the asymptotic solutions, the
large-spin operators are regarded as terms of order N. In
our difFerential equations we retain terms to leading order
in N only. Qn the right-hand sides of Eqs. (17)—(18), we
drop all the linear terms in the large spin. Valid to this
order, we obtain

P(t)+R(t)=0 . (14)

Hence,

Observe that now only the parameter g enters into these
equations. We immediately note that S (t)=[cos(Q, t)]S,—[sin(Q, t)]S

S (t) = [cos(Q, t)]S + [sin(Q, t)]S„,
S,(t)=S, ,

(19a}

(19b)

(19c)

P(t)+R (t)=s S,
recalling that the right-hand side of (15) is a constant of
motion mentioned earlier. To solve (13a)—(13c) we need
to know the time evolution of the large spin, in particular S(t)= M(t)S (20)

where 0, =2cus, . To this order, S, is now a constant of
motion. Our zeroth-order or asymptotic solutions may
be written simply in a matrix form:
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where P+R =s.S=c +d . (27)

cos(Q, t ) —sin(Q, t) 0

M(t) = sin(Q, t) cos(Q, t) 0 (21)

Also by evaluting (22b) by (24) and also by (25) and (26),
one gets

Observe that detM(t)=detM(0)=1. The time evolution
of the large spin is a simple plane rotation in spin space
and it is represented by an orthogonal matrix. The rota-
tion is proper.

S,2d=Uc .

Hence, it follows that

S c =s.SS,

and

(28)

(29)

V. ASYMPTOTIC SOLUTIONS
FOR THE BILINEAR SPIN OPERATORS

Now turning to the equations for the bilinear spins
(13a)—(13c), we may similarly reduce them to

S2d =s SU . (30)

Q(0)=b (31)

One can evaluate the remaining two constants a and b
similarly:

P(t) = —2igS, Q (t),
S,Q(t) = 2igS,'P—(t)+2igUR (t),
R (t) =2igS, Q (t) .

(22a) and

(22b)

(22c) Hence,

R (0)= —
( 2igS, /Q )a +c . (32)

Observe that (14) remains valid, i.e. , s S is still a constant
of motion. Also observe that only g still appears in these
equations. Asymptotically we may regard the large-spin
and bilinear spin operators as classical operators, i.e.,
commuting operators.

The above asymptotic equations may be solved in a
number of ways. Perhaps the simplest is to note that

Q(t)+4g'S'Q (t) =0 .

Hence, at once,

Q(t)=a sin(Qt)+b cos(Qt), Q =4g S

(23)

(24)

R (t)=(2igS, /Q)[ —a cos(Qt)+b sin(Qt)]+c . (25)

Also by substituting (24) into (22a), we obtain

P(t)= —(2igS, /Q)[ —a cos(Qt)+b sin(Qt)]+d . (26)

The two constants c and d are, of course, simply related
through (15). That is,

where a and b are integration constants, i.e., constants of
motion, to be determined from boundary conditions.
Substituting (24) into (22c), we obtain

and

b = i (s'S——s~S )

S a =(Q/2ig)(s SS,—s'S ) .

(33)

(34)

We have thus completely determined the time evolution
of the bilinear spin operators, valid to leading order in X.
Observe that there is only one frequency 0, which de-
pends on g, but not on g, . [See Eqs. (22a) —(22c).]

VI. TIME EVOLUTION OF THE SMALL SPIN:
ASYMPTOTIC SOLUTIONS

We now use our asymptotic solutions obtained for the
large-spin and bilinear spin operators given in Secs. IV
and V to obtain the time evolution of the small-spin
operators via Eqs. (12a)—(12c). For the asymptotic solu-
tions, one may neglect the linear terms in (12a) and (12b)
[the third term on the right-hand sides of (12a) and (12b)].
After some lengthy but straightforward algebraic manip-
ulations, we obtain our solutions as given below (denoting
X =S„,Y =S, and Z =S,):

8 s (t)=s [[X +(S —X )cosQt]cosQ, t —[XY(l cosQt) —SZ sinQt]sin—Q, t I

+s [ [XY(1—cosQt )+SZ sinQt ]cosQ, t —[ Y +(8 —Y )cosQt ]sinQ, t J

+s'[ [XZ (1 cosQt ) —S—Y sinQt]cosQ, t —[ YZ (1—cosQt )+SXsinQt]sinQ, t ],
S s~(t) =s [ [XY(1—cosQt ) —SZ sinQt]cosQ, t + [X +(S X)cosQt ]sin—Q, t I

+s I [ Y +(S —Y )cosQt ]cosQ, t+ [XY(1—cosQt )+SZ sinQt ]sinQ, t )

+s'[ [ YZ ( 1 cosQ t ) +S—X sin Qt ]cosQ, t + [XZ( 1 —cosQt ) —SY sin Qt ]sinQ, t I,
S s'(t)=s IXZ(1 cosQt)+SYsin—Qt I+s I YZ(1 —cosQt) —SX sinQt I+s'IZ +(S —Z )cosQt I,

(35a)

(35b)

(35c)
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+s [m" cos(A, t) —m~~sin(A, t )]

+s'[m 'cos(A, t) —m~'sin(A, t) ],
S s~(t)=s [m cos(A, t)+m "sin(A, t)]

+s [m icos(A, t)+m sin(A, t)]
+s'[m~'cos(A, t)+m 'sin(A, t)],

(36a)

(36b)

S s'(t) =s m "+s~m'~+s'm",

where

(36c)

m =S +(S —S )cos(At),

m ~=S,S, [1—cos(At ) ]+SS,sin(At ),
m"'=S S,[1—cos(At)] —SS sin(At),
m~"=S S [1—cos(At)] —SS,sin(At),

m~ =S"+(S —S )cos(At),
m~'=S S,[1—cos(At)]+SS„sin(At),
m' =S S,[1—cos(At)]+SS~sin(At),
m' =S S, [1—cos(At ) ]—SS sin(At ),
m"=S, +(S —S, )cos(At ) .

(37a)

(37b)

(37c)

(37d)

(37e)

(37f)

(37g)

(37h)

(37i)

Through these coe%cients m'~, one can readily recognize
some of the symmetries present in our solutions
(36a)—(36c).

Our solutions may be written more compactly in a vec-
tor form:

S's(t) =X(t)+ [z X [z X X(t) ]][1—cos(A, t)]

+ [z XX(t) ]sin(A, t), (38)

where z is the unit vector in the direction of the z axis in
spin space and

X(t)=S scos(At)+S(s S)[1—cos(At)]

+S(sXS)sin(At) . (39)

In discussing the equation of motion for the small spin,
it was pointed out that the time evolution of the small
spin may be viewed as being induced by its coupling to
the large spin, in which g and g, play the role of coupling
strengths. Thus, the motion of the small spin is bound to
the plane rotation of the large spin in spin space. If g =0
but g, %0, the time evolution of the small spin
(35a)—(35c) reduces to

where S =S(S+1)—=S, A=2gS, and A, =2d, . Ob-
serve that s (t) and s~(t) both depend on the parameters
g and g„but s'(t) depends on g only, as their equations of
motion (10a)—(10c) would suggest.

We can simplify the above expressions somewhat by
adopting a matrix-like notation which will be useful when
comparing with the general solutions later.

S s"(t)=s [m" cos(Q, t) —m~'sin(A, t)

s"(t)=s cos(A, t) —s sin(A, t),
s (t)=s"sin(A, t)+s cos(A, t),
s'(t) =s',

(40a)

(40b)

(40c)

VII. DISCUSSION

Our solutions for the time evolution of the small spin
are purely formal and without specific physical content
(i.e., all possibilities are given, unweighted). The physical
significance will emerge when we evaluate the SAF. We
may still lend them some qualitative interpretation.

It was pointed out that the time evolution of the large
spin represents a plane rotation in spin space and the ro-
tation matrix is orthogonal. In analogy, we may also
write the time evolution of the small spin in a matrix
form:

s(t) = L(t)s (41)

where L(t) is a 3X3 matrix whose elements may be
identified from (35) or (36). Although somewhat tedious,
one can show that

detL(t) = 1,
as it must since s(t) is a "vector" with constant "length. "

where now 0,= —2g, S,. The small spin undergoes the
same rotation as the large spin, i.e., the large spin
"drags" the small spin along. As g increases from g =0,
the motion of the small spin gains an additional indepen-
dent rotation. The time evolution of the z component of
the small spin illustrates the extra rotation quite clearly.
It is worth noting here that if g =0, then there can be no
long-time tails in the SAF of the small spin. As noted,
there are no long-time tails in the SAF of the large spin.
Coupling between the small and large spins does not
necessarily imply the existence of a long-time tail in the
SAF of the small spin. To develop a long-time tail, as
will be seen in our second paper, an independent rotation
must superpose the simple plane rotation in a certain
way.

The validity of our solutions may be tested by satisfy-
ing self-consistency requirements. For example, if under
T, s; ~s~ and s,'~ —s,

' for every i, then TH =H. Hence,
Ts (t) =s (t), etc. Our solutions satisfy this requirement.
To leading order in N, our solutions also satisfy the fol-
lowing requirements:

(1) s(t =0)=s.
(2) s(t) Xs(t)=is(t), i.e., the commutation relations of

s(t) are recovered.
(3) s(t) = i[H, s(t)], i.e., the original equation of motion

is recovered.
(4) If co =0, the components of s(t) are cyclic.
(5) s (t) =3/4, i.e. , a constant of motion.
(6) s(t) S(t)=s S, i.e., also a constant of motion.
(7) [s( —t)]"=s*(t), i.e., invariant under the time-

reversal operation.
Finally, our asymptotic solutions are recovered from

our general solutions given in the Appendix if X~~
therein. We are thus satisfied that our solutions are ex-
actly valid, to leading order in X.
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The time evolution of the small spin also represents a ro-
tation in spin space, and its rotation matrix is orthogonal.
The relationship between the time evolutions of the small
and large spins may thus be viewed from the relationship
between their rotations in spin space.

The large spin, being treated as a classical spin, may be
regarded as an ordinary real vector in a three-
dimensional space. The smaH spin is not a similar vector
in the same space. It is a spinor. Allowing for this
difference, we see that the small-spin vector maintains a
constant angle relative to the large-spin vector since
s(t) S(t)=s S. That is, the motion of the small-spin vec-
tor forms a cone with a constant angle about the large-
spin vector. But this motion is not orthogonal to the oth-
er vector, i.e. , s(t) S(t)%0. One can find another ordi-
nary vector, say v(t), which is orthogonal to the motion
of the small-spin vector. Such a vector is

r=(2gS„2gS, 2g, S, ) . (43)

Then the equation of motion for the small spin may be
written in the form

s(t)=s(t)Xr(t) . (44)

The above is exactly in the form of the equation of
motion for, e.g. , a classical angular momentum of con-
stant magnitude, rotating about the direction of a mag-
netic field. This is the Larmor precession. In this semi-
classical analogy, v(t) acts as the external magnetic field,
about which the small-spin vector may be said to pre-
cess. The relative angle between s(t) and r(t), however,
is not a constant of motion (except at g =0 and g =g, ),
i.e., s(t).v(t)Ws r, which apparently is an indication that
the motion of the small spin is a Larmor-like precession.

Finally we shall turn to the meaning of our asymptotic
solutions. Recall that we have divided our system into
two subsystems. When the larger subsystem is much
larger than the smaller subsystem (i.e., N ))1), we have
assumed that the time evolution of the larger subsystem
is unaffected by the interaction between the two subsys-
tems. That is,

s'(t)+S, (t) =s'+S, . (46)

Their time evolutions must be such as to exactly cancel
out one another. This implies that [ V, s'] = —[ V, S, ], as
may be verified. According to (46),

S,(t)=5, +[s' s'(t)] . — (47)

With respect to S„ the terms inside the square brackets

S(t) =exp(iHt)S exp( iHt)—
= exp [i (H0+ V) t ]S exp [ i (HD+ V) t]—
=exp(iH0 t )S exp( iH0t ) [ 1+0 (—N '

) I .

The large spin evolves in time according to the conditions
of its own system only.

The significance of the above approximation may be
best seen through the following: For the total system of
H Sz is a constant of motion but s ' and S, individual 1y
are not. That is,

contribute to lower orders in X, i.e., fluctuations may be
neglected if N +—~. Also, according to (46),

s'(t) =s'+ [S, S,(—t)] . (48)

Now the terms inside the square bracketes are of the
same order in X as s'. They no longer represent Auctua-
tions and thus they may not be neglected.

The small spin evolves in time not only according to
the conditions of its own system, but also governed by its
interaction with the large spin. To obtain the proper
asymptotic solutions of the time evolution of the small
spin, one must thus treat its equation of motion exactly.

It may be worth pointing out that this is in contrast to
obtaining time evolutions according to stochastic theories
of nonequilibrium statistical mechanics. In those
theories, one assumes a priori that the random force F(t)
exerted on the small spin s(t) is stationary and Gaussian
and also that it has an infinitely short correlation time,
(F(t) F(t'))-5(t t'), i.e—., a white-noise power spec-
trum of F(t) The .underlying equation of motion is the
classical Langevin equation, whose solutions would yield
a simple exponential decay form for the autocorrelation
function (s(t).s(t ) ). There is a built-in irreversibility in
the time-evolution solutions. In our work, which may be
classified as an example of Hamiltonian dynamics, we
have made no such assumptions. In our time-evolution
solutions, there is always time reversibility, i.e., the solu-
tions are even in t. See Eqs. (35a)—(35c). They are ad-
missible solutions of the generalized Langevin equation.
We shall show in our second paper that our time-
reversible solutions can give rise to long-time tails in the
autocorrelation function.
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APPENDIX: TIME EVOLUTION OF A SINGLE SPIN,
WHEN N ( 00

We shall now obtain solutions for the time evolution of
a single spin when N, the number of spins in our system,
is finite. When N is finite, there is no advantage to be
gained by dividing the system into two subsystems.
Hence, we shall let H =H0, V=O. Also, S"'=S. Now
the small spin s is any one of the spins that constitute the
large spin S. It is now more appropriate to refer to s and
S as a single spin and a total spin. Observe that the single
and total spins no longer commute, e.g. , [S, ]WsO. Im-
portant constants of motion for this system are S, S„s,
s-S, and U.

One immediate advantage of making H =Ha is that
the time evolution of the total spin is already known. We
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have shown that

S (t)=e'"'[S cos(Q, t) —S sin(Q, t)],

S (t)=e'"'[S cos(Q, t)+S sin(Q, t)],

(Ala)

(A 1b)

P(t)= —2igS, Q(t)+2igR (t),
S,Q(t) = 2i—gS, P (t)+ 2igR (t) U,
R (t) =2igS, Q (t) 2ig—R (t) .

(A3a)

(A3b)

(A3c)

S,(t)=S, , (A 1c)
The above equations appear slightly simpler than their
analogs, Eqs. (13a)—(13c). Observe that one still has

s '(t) =2g[s'(t)S (t) —s (t)S, (t)] 2igs'(t) —. (A2c)

Observe that the above equations reduce to the original
equations (10a)—(10c) if we let S~s+S. To solve these
equations, we introduce, as before, the same bilinear spin
operators P, Q, and R [see (11)],where now the large spin
means the total spin. Note that P, Q, and R commute
with S„but not with U. We then obtain P(t), Q(t), and
R (t) from their equations of motion, whence s(t) via (12).

The equations of motion for the bilinear spin operators
are

where co=(J —J, )/N and Q, =2d, . The above form is
convenient for our purposes here, obtained by taking
Hermitian conjugation of our original results.

Our method of solution is the same as before when
But now the total-spin operators cannot be

treated as classical spin operators, i.e., their noncommu-
tativity must be respected. As a result, it is much more
complicated to obtain solutions for the time evolution of
a single spin. In what follows we shall indicate necessary
steps and present our solutions without showing many in-
termediate steps.

The equation of motion for a single spin is given below:

s "(t)= 2gs'(t)S—«(t)+2g, s«(t)S, i (g +—g, )s (t),
(A2a)

s«(t)=2gs'(t)S, (t) 2g, s"(t)S—, i (g+g—, )s«(t),

(A2b)

P(t)+R (t) =0 . (A4)

Hence,
P(t)+R(t)=s S . (A5)

«I =e 's'cos(Qt ),
8 =e '"'g si (Qnt)IQ,

Q =g (4S'+1)'"

(A6)

(A7)

(A8)

In terms of the above quantities, also with X =S„,
Y =S, and Z =S„our final solutions are

To solve the equations of motion for the bilinear spin
operators, it is perhaps simplest to begin by taking one
more derivative of (A3c). It results in an equation entire-
ly of R, hence, soluble at once. Using this solution one
may obtain P(t) via (A5), thereupon Q(t) via (A3b).
Constants appearing in these solutions may be identified
through the boundary conditions at t =0 or by connec-
tion to the constants of motion mentioned earlier. We
will not exhibit them here, but the solutions for P(t),
Q (t), and R (t) are analogous to those given in Sec. V.

To obtain the time evolution of a single spin, we use
the above results in (12a)—(12c). It is straightforward to
obtain s'(t). But it is very complicated to obtain s'(t)
and s«(t) because of the presence of the third term on the
right-hand side of (12a) or (12b), which could be neglect-
ed when X~~. As a result, each term contributing to
the final solution contains the factor (U —S, ), which
finally cancels out. Let us first define the following quan-
tities:

s (t)S e ' '=s [[X +(S —X )2 i (S +X )8]c—os(Q, t) —[XY(1—2)—(2ZS~+iXY)8]sin(Q, t)]
+"[[»(1—~)+(2ZS' —iYX)8]cos(Q, t) —[ Y'+(S' —Y') ~ i (S'+—Y')8]sin(Q, t )]

+s'[[ZX(1—2)—(2YS +iZX)8]cos(Q, t) —[ZY(1—3)+(2XS~—iZY)B]sin(Q t)],
s (t)S e ' '=s [[XY(1—2)—(2ZS +iXY)B]cos(Q,t)+[X +(S —X )2 i (S2+X~)B—)sin(Q t) j

+s«[[ Y +(S —Y )A i(S + Y—)B]cos(Q,t)+ [ YX(1—2)+(2ZS —i YX)8]sin(Q, t)[

+s'[ [ZY(1—2 )+ (2XS —iZY)B]cos(Q, t)+ [ZX(1—«I ) —(2YS +iZX)8]sin(Q, t ) ]

s'(t)S2=s" [(XZ(1—2)+(2YS —iXZ)B )+s«[( YZ(1 —3)—(2XS +iYZ)B]

+s'[(Z +(S —Z )3 i (S +Z )8—] .

(A9a)

(A9b)

(A9c)

One can express the above results somewhat more simply in a matrix-like notation:

s (t)S e ' '=s"[m cos(Q, t) —m sin(Q, t)]+s«[m cos(Q, t) —m sin(Q, t)]+s'[m 'cos(Q, t) —m 'sin(Q, t)],
(A10a)
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s (t)S2e '"'=s [m~ cos(Q, t)+m "sin(O, t)]+s [m icos(Q, t)+ m ~sin(A, t)]+s'[m 'cos(O, t)+m"'sin(Q, t)],

s (t)S =s m +s m' +s'm'
(A lob)

(A10c)

where

m "=S +(S —S )A i—(S +S )B,
m "~=S S,(1—2)+(2S,S —iS S )B,
m"=S,S„(1—2) —(2S S +iS,S )B,
m~"=S,S (1—A) —(2S,S +iS S )B,
m~~=S +(S —S )

—i(S +S )B,
m~'=S, S (1—A)+(2S„S —iS,S )B,
m' =S„S,(1—3)+(2S S iS,S—, )B,
m'~=S S,(1—2)—(2S„S +iS S, )B,
m"=S +(S —S ) —i(S +S )B

(A 1 1)

(A12)

(A13)

(A14)

(A15)

(A16)

(A17)

(A18)

(A19)

results for the total spin (Ala) —(A 1c) are recovered.
Also, our asymptotic solutions are recovered if S~~,

where S =S(S+1), i.e., X—+ oo. If S—+ oo,
A~cos(2gSt) and Basin(2gSt)/2S. Also, g~0 and
co—+0 but gS~const. Hence B is asymptotically one or-
der lower in X than A. If we substitute these asymptotic
forms into (All) —(A19), we find that all the imaginary
terms may be dropped. If the noncommutativity in the
total-spin operators is ignored, we recover the asymptotic
solutions of Sec. V.

Finally, our solutions may be compactly expressed in a
vector form as follows:

s(t)S =X(t)+ [z X X(t)]sin(Q, t)e'"'

—tzX [X(t)Xz]][1—cos(A, t)e'"'], (A20)

The correctness of our solutions may be tested through
self-consistency requirements mentioned in connection
with our asymptotic solutions. There is one additional
possibility: g s=S. If all the single spins, each given by
(A9a) —(A9c) or (A10a) —(A10c,) are summed, indeed our

X(t)=(s S)S(1—A)+sS A

+[2(sXS)S —i(sS +(s S)S]B . (A21)

where z is the unit vector in the direction of the z axis
and
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