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Thermal expansion was measured in two crystals of blue bronze (Ko 3Mo03). At the Peierls tem-
perature, the expansion coefficients exhibited a small steplike decrease along the chain direction, a
nearly negligible change perpendicular to the cleavage planes, and a large steplike increase in the
third, mutually orthogonal direction. Substantial departures from mean-Beld behavior were attri-
buted to fluctuations, the width of the critical region was 8 K, and the temperature dependence was
consistent with the three-dimensional XF model. The anisotropy of the steps was interpreted in
terms of a transverse-optical periodic lattice distortion in an anharmonic lattice. Specimen length
did not vary with electrical bias.

I. INTRODUCTION II. EXPERIMENTAL METHOD

Many quasi-one-dimensional metals undergo a second-
order metal-insulator phase transition at a temperature
TI, . The transition involves the formation of a periodic
lattice distortion with an associated charge-density wave
(CDW). Tremendous interest was generated by the ob-
servation in several of these materials of a form of collec-
tive electron transport involving the sliding of the CDW
with respect to the crystal lattice. ' However, many of
the more traditional solid-state properties still lack de-
tailed understanding. One such property involves mini-
ma in elastic moduli at TI, . Whereas elastic proper-
ties and thermal expansion are interrelated thermo-
dynamically, an investigation of thermal expansion
should contribute to our overall understanding of basic
CDW properties.

The modulus minima may be due to fluctuations.
These materials are likely candidates to exhibit wide Auc-
tuation regions near Tp because of their short coherence
lengths and small specific-heat signatures at the
phase transition. Indeed, x-ray experiments in blue
bronze (Ko 3Mo03) have observed critical exponents ap-
propriate to the XYmodel over a rather wide range of 10
or more on either side of TI„and the wide critical region
is in qualitative agreement with an estimate based on the
Ginzburg criterion. The observation of XY behavior in
several physical quantities leads to definite predictions for
the critical behavior of the thermal-expansion coeficient.

Section II describes our experimental method and Sec.
III presents results for blue bronze. Section IV analyzes
the contribution of critical fluctuations to the expansion
coefficients, and Sec. V relates them thermodynamically
to previous investigations of specific heat and elastic
moduli. In Sec. VI the results are interpreted in terms of
an anharmonic lattice subjected to a transverse-optical
periodic lattice distortion, and Sec. VII offers a reason for
the transverse polarization of the distortion. Section VIII
contains summary remarks.

Expansion was measured on two crystals of blue
bronze (Ko 3Mo03). As blue bronze exhibits monoclinic
symmetry, measurements in four directions are needed to
determine the complete expansion tensor. The samples
were shaped by grinding with A1203 powder such that,
between them, five distinct crystallographic directions
were accessible. These directions will be described by
giving components of vectors spanning direct space
[ . ] or reciprocal space ( . . ), using the unit cell of
Graham and Wadsley. '

Sample A, grown by Alavi at the University of Califor-
nia, Los Angeles, was prepared in the form of a rectangu-
lar parallelepiped with edge lengths of about 4 mm. One
pair of faces was accurately defined by the (201) cleavage
planes. Using Laue photography, a second pair was
oriented normal to the chain direction [010] with an ac-
curacy of 1 . The final pair was oriented normal to [102],
orthogonal to the other faces. Sample 8, grown by Lyons
and Ramli at the University of Illinois, was prepared in
the form of a hexagonal prism with length about 12 mm
along its axis and about 4 mm between the other pairs of
faces. The prism axis was along the chain direction; the
(010) faces were oriented within 1' by Laue photography.
The cleavage planes defined (201) faces, and the final
pairs of faces were prepared within 2 of the (100) and
(001) growth facets.

Expansion of the samples was measured with a capaci-
tive dilatometer based on the design of Steinitz et al. "
The samples were held between vitreous silica plates for
electrical insulation from the copper probe. Capacitance
was measured at 415 Hz using a coaxial bridge' based on
a seven-decade ratio transformer. Thermal expansion
measurements were made in a vacuum during slow tem-
perature sweeps with heating stepped under computer
control. The bridge was balanced at the beginning of
each run, and the imbalance signal was converted into ca-
pacitance and then into specimen length. The thermal-
expansion coefficient was calculated by taking a numeri-
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cal derivative of the sample length. Performance was
checked using test specimens of vitreous silica, obtaining
agreement to +1 ppm/K with compiled data on silica
and oxygen-free-high-conductivity (OFHC) copper. '

Most thermal-expansion measurements were taken
with increasing temperature. To check that temperature
gradients throughout the apparatus were negligible, some
measurements were taken with decreasing temperature.
Agreement between upward and downward sweeps was
obtained using sweep rates not exceeding 4 per h. The
transition temperature Tz of sample A was determined
by the peak in the resistance derivative-d(lnR)dT. To
measure resistance along the direction of highest conduc-
tivity, the faces perpendicular to [010] were electroplated
with copper electrodes. Because of the small resistance
of the large cross-section specimen, its resistance was
measured in a pseudo-four-probe configuration, using
separate current and voltage leads.

Measurements of length versus electric field were taken
with the sample and dilatometer entirely immersed in
liquid nitrogen. A current was passed through the speci-
men along the [010] direction using one pair of leads, and
the voltage was measured using the other pair. The
heaters were not used, and the only temperature variation
was due to Ohmic heating in the sample.
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III. RESULTS
FIG. 2. Thermal expansion coefticients of sample B.
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Figure 1 shows thermal expansion coefficients along
the [102] and (201) directions in sample A. The sharp
minimum in a along [102] occurred at 179.4+0.1 K,
while the peak in the resistance derivative occurred at
179.6+0.4 K. Figure 2 shows thermal-expansion
coefficients along (010), (100), (001), and (201) in sample
B. The electrical resistance of sample B was not mea-
sured, but TJ, appears to be a few degrees higher than in
sample A.

The data along [102], (001), and (100) show a sudden
increase at Tp, largest along [102]. In the mean-field
theory one expects a simple discontinuity ("step") at Tz.
Instead we find a precursor dip which indicates the im-
portance of fiuctuations. Along (010) we find a step de-
crease with precursor peak. Along (201), sample A shows
a very small decrease while sample B shows no effect.
The precursor is sharper in sample A, which we therefore
believe is a higher-quality crystal.

Apart from the behavior near Tz, these results are in
general agreement with the x-ray measurements of
Ghedira et al. ' The expansion is largest perpendicular
to the cleavage planes and is smallest (nearly zero) along
the chain direction. The magnitudes of the various
coefficients are similar, although not identical, to values
deduced from the x-ray work. These measurements show
no evidence for an incommensurate-to-commensurate
(lock-in) transition.

Elastic moduli of some quasi-one-dimensional CDW
compounds are known to vary when the CDW slides. ' '
No such effect has been observed in blue bronze, '" at
least not at 77 K. ' Nevertheless, we investigated wheth-
er the length might depend on sliding. Measurements
were made at 77 K in sample A along all three directions.
To an accuracy of +1 ppm, we found no effect which
could not be attributed to Joule heating.
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FIG. 1. Thermal expansion coefficients of sample A.

IV. FLUCTUATIONS

The temperature dependence of the expansion
coefficient does not show the simple step classically asso-
ciated with second-order transitions. The precursor dip
(or peak, for data along the chain direction) signifies a
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contribution from fluctuations. In the regime of Gauss-
ian fluctuations, the thermal expansion may be represent-
ed by
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FIG. 3. Deduction of regime of validity of Gaussian Auctua-
tions, using expansion data from sample A along [102]. Points
within T* degrees of Tp were excluded from the fit. Solid cir-
cles: o. with 6 variable. Crosses: corresponding values of G.
Open circles: o. with constraint 6 =0.

The polynomial sum represents a smooth background
variation, H is the magnitude of the mean-field step, and
G is the strength of the Gaussian term, whose form as-
sumes three-dimensional fluctuations.

The regime of validity of Gaussian fluctuations was
found as follows. Treating Ia„ I, G, and H as adjustable
parameters, Eq. (1) was fit to a(T) excluding data for
which

~
T —Tp ~

(T*. The fit was repeated for various
values of T*, and Fig. 3 presents the corresponding varia-
tion with T* of G and of o, the mean-square deviation
per degree of freedom (variance). For T' ) 8 K, o is
essentially constant. For smaller T', o. increases rapid-
ly, indicating failure of the Gaussian representation. The
figure also shows a calculated while holding G =0, indi-
cating failure of the mean-field form within 17 K of Tp.
Correspondingly, G behaves rather erratically for T' & 17
K, then attains a fairly well-defined value for T*=10 K.
For T*&8 K, G decreases because the data no longer
diverge as fast as the Gaussian prediction. Therefore, we
experimentally identify the width of the critical region to
be AT=8 K.

The width of the regime in which fluctuations are im-
portant (+17 K) agrees with a recent analysis of the
specific heat. ' Moreover, the width of the regime of crit-

ical fluctuations (+8 K) agrees with recent x-ray investi-
gations by Girault et al. Their difFraction experiments
measured order parameter, correlation length, and sus-
ceptibility as functions of reduced temperature
t =

~
( T/Tz )

—1 ~, finding critical exponents in good
agreement with the XYmodel (n =2) in three dimensions
(d =3) over a critical region=10 K. The expectation of
a wide critical region has been challenged by Chandra, '

who calculated a very small width by using a one-
dimensional Ginzburg-Landau Hamiltonian appropriate
to a single chain. In the absence of long-range interac-
tions, fluctuations suppress the phase transition in that
model to T=O. Thus, a correct treatment of the ob-
served transition at Tp requires attention to the inter-
chain coupling s. The parameters of the real three-
dimensional system have not yet been determined. How-
ever, by using experimental correlation lengths and ex-
perimental specific heats appropriate to the real three-
dimensional transition at Tp, Aronovitz et al. deduced
a width of the critical region consistent with the x-ray ex-
periments and with the present result.

On general thermodynamic grounds, the thermal ex-
pansion coefficients (as well as elastic compliances) should
show the same behavior as the specific heat. The n =2,
d =3 prediction for the specific-heat exponent is
a= —0.008; this small, negative value means that the
specific heat, expansion coefficients, and compliances
should show an extremely sharp cusp. However, Arono-
vitz et al. argued that such a sharp cusp would be
overwhelmed in the experimentally accessible tempera-
ture range by a weaker cusp, t +, derived as a correc-
tion to scaling. For n =2 and d =3, —o. +vvv=0. 53.

The practical difficulty with fitting such a cusp to data
is that the form can only hold over a limited temperature
range near Tp. Farther from Tp it is guaranteed to fail,
because, unlike the classical behavior, it continues to in-
crease without bound. This difficulty has recently been
obviated by Chen and co-workers who have formulated a
theoretically consistent interpolation between the classi-
cal and critical regimes. We have adapted that formu-
lation ' to thermal expansion by replacing
Tt)2( b, A *

) /r)T, which gives the specific heat, by
Tpd (b, A ")/r)Tdrr;, where b, A'is the critical contribu-
tion to the free energy and o.; is a stress component.
Then we assume that derivatives for T and o, are propor-
tional through dTp/do;, the sensitivity of the transition
temperature to stress. Additional fitting parameters are u
and g =—A/c, '~ (which determine the shape of the anoma-
ly and are defined in Ref. 21), the transition temperature
Tpo and the coefficients of a cubic polynomial represent-
ing a smooth background variation. Further details of
the fitting procedure are planned to be given elsewhere.

Acceptable fits are obtained with u =2.6+0. 1,
g=0.6+0. 1, and Tpo=180. 58+0.02 K. The dashed line
in Fig. 4 shows our best fit to the three-dimensional XY
model. The fit is distinctly narrower than the data. The
solid line includes an artificial broadening of about 2',
which might represent an inherent sample inhornogenei-
ty. Because of the need to introduce a broadening, we
cannot state without reservation that the XYprediction is
obeyed. Nevertheless, these data are consistent with the



8108 HAUSER, PLAPP, AND MOZURKE%ICH 43

notation, we define an orthogonal coordinate system with
x along (201), y along (010), and z along [102]. The
nonzero components are

E
cL 0

and

An„= —0.2+0.7 ppm/K,
= —1.4 0.2 ppm/K,

b.a„=+4.3+0.7 ppm/K,

I
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FIG. 4. Symbols: data from sample A (80% of points omit-
ted for clarity). Dashed line: best fit to three-dimensional XY
model. Solid line: best fit after including 2 K broadening. Cor-
responding polynomial backgrounds are also shown.

An„, =An, = +0.5+0.8 ppm/K .

The large uncertainties are primarily due to a variation
between the specimens.

The magnitudes of the mean-field steps should obey the
Ehrenfest relations for second-order phase transitions.
As generalized to anisotropic materials, these relations
are

XYmodel.
For an ideal sample, the minimum in n occurs exactly

at T„. For our samples, the value of Tpo, that gives the
best fit does not coincide with the minimum in n. This is
an indication of an inhomogeneous Tp. Recalling the
asymmetric shape of the ideal a(T), it is easy to show
that a symmetric distribution of Tp around a central Tpo
will cause the minimum of the measured n to occur
below Tpo. The magnitude of the separation between the
fitted Tpo and the minimum may be used as a quantitative
measure of inhomogeneity.

—dTp/do; =An; Tp/AC

dT~ /d —o; = b,S,; /6, n, ,

(2a)

(2b)

dTI, /dP= —g dTp/do. ; = —1.25+0. 15 K/kbar .

where o, and n,- are components of stress and expansion
tensors expressed in Voigt notation, C is the specific
heat at constant stress, and S;, are isothermal elastic com-
pliances. The 6 denotes the difference between the quan-
tity above and below Tp. The pressure dependence of the
transition temperature has been measured by Wang
et zl./ and by Mihaly and Canfield, from which we
adopt an average value

V. THERMODYNAMICS

TABLE I. Magnitudes of expansion-coefFicent steps Aa; at
Tp. Note: Estimated uncertainties +0.2 ppm/K.

Direction Sample
Magnitude
(ppm/K)

The fit described in the previous section enables us to
extract the magnitude of the mean-field step, which we
define as the difference between the low-temperature data
and the fitted background. The resulting number is un-
biased, in the sense that we do not need to guess a back-
ground "by eye", and we consider it to be reliable be-
cause it is only moderately sensitive to whether an
artificial broadening was introduced. Table I compiles
the results.

The tensor of expansion-coe%cient steps was deter-
mined by least squares, using all seven table entries to
determine the four tensor components. To simplify the

From Eq. (2a),

b,c = Tp( g ba; )/(dTp/dP)

= —1.4+0. 5 J (mol formula unit) ' K

This result can be compared with three experimental
determinations. Our fit of Johnston's specific-heat mea-
surement to the XY model gives —1.8 J/mol K, Koma-
ten extracted a step of —2 J/molK, and Kwok and
Brown quoted a step of —3.6 J/mol K.

The isothermal compliance steps could be determined
from Eq. (2b) except that the sensitivities of T~ to the
stress components are not individually known. Instead,
we equate the right-hand sides and use the value of ACp
that satisfies Eq. (2a) to deduce compliance steps

AS,„=—(0.01+0.05) X 10 ' m /N,
b.Syy

= —(0.9+0.4) X 10 ' m /N,

(010)

(201)

[102]
(100)
(oo1)

B

B

B
B

—13
—1.5
—0.3

0
+4.9
+2.9
+2.4

bS„=—(8+3)X10 ' m /N .

Young's modulus Y; along a given direction is the re-
ciprocal of the corresponding diagonal compliance. Steps
in Young's modulus have been measured at audio fre-
quencies by the vibrating-plate technique (presumably
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isothermally) by Bourne and Zettl, with results corre-
sponding to

the springs' total potential energy may generally be
represented by

AS = —(1.4+0.6) X 10 ' m /N U, ( x)=N(e, x+ ,'f, x—+—,'g, x + —,', h, x ), (3)

and

AS„=—(32+10)X 10 ' m /N .

where e, =0 without loss of generality, and g, (0. Equi-
librium, defined by dU/dx =0, requires x =0, for which
the total length of the chain is Xlo. After dimerization

The yy component is consistent, but the zz component is
a few times larger than the value we expect. Although
ratios may be expected to be more reliable than absolute
measurements, their ratio of compliance steps differs sub-
stantially from our ratio of squares of hu;, even after tak-
ing account of the substantial error bars on each.

Saint-Paul and Tessema have measured longitudinal
sound velocities and corresponding stiffnesses at radio
frequencies. Those measurements were adiabatic, not iso-
thermal. Furthermore, in order to convert to compli-
ances, it is necessary to invert the entire stiffness matrix,
most of whose 13 elements are unknown. If we neverthe-
less take AS;; = —b, C;;/C;;, we obtain ESX„=O,

AS' 0 9 X 10 m /N

and

hS„=—1.5X10 ' m /N .

The first two values agree with our expectations, while
the last is smaller by a factor of 5. It is possible that mea-
surements of the full compliance matrix, combined with
conversions from adiabatic to isothermal moduli, would
resolve the discrepancy.

Ud(x) =(N/2)[ U, (x +a)+ U, (x —a)],
provided that the value of a is constrained from Auctuat-
ing. (This amounts to mean-field theory. ) Thus, Ud(x)
has the same form as U, (x) with the substitutions

f,=f, + ,'h, a', -
gd =gs =g

hd=h, =h .

(4)

2ga ga'
f, + —,'ha 2f,

(5)

The thermal expansion of a one-dimensional chain
with the interaction potential given by Eq. (3) has been
described in detail by Leibfried and Ludwig. Its lattice
constant is

Applying the equilibrium condition to Ud shows that the
average lattice constant in the dimerized chain is longer
by

I ( T)= I —(g/2f, )s, (6)

VI. ANHARMONIC MODEL

The anisotropy of the thermal expansion coefficients
can be understood in terms of the nature of the periodic
lattice distortion (PLD) associated with the CDW in blue
bronze. The distortion, as determined for the molybde-
num ions by Sato et al. using x-ray diffraction, exhibits
these main features: The displacements of the Mo(3) ions
are principally along [102], with smaller components
along (201) and [010]. The much smaller Mo(2) and
Mo(1) displacements are roughly along (100) and [102],
respectively. The entire displacement pattern is modulat-
ed with wave vector Q=(l, qb, —0.5), where qb=0. 75,
but is incommensurate with the parent structure. The
(1,0, —0.5) component of Q causes the displacement pat-
tern to have opposite sign on alternate (201) planes, possi-
bly due to interplane Coulomb interactions, but this de-
tail will not concern us here. This PLD may be described
as a frozen transverse-optical phonon.

Consider the expansion along [102]. The Mo lattice
along [102] will be treated like a string of balls and
springs. Whereas the Mo(3) and Mo(2) ions have
different distortion amplitudes, the PLD causes the
springs to have different lengths. Therefore, for the pur-
pose of understanding the essential physics, the PLD will
be modeled by a dimerized one-dimensional chain, with
springs of alternating lengths lo+a.

For small departures x from their undimerized lengths,

where c is the mean thermal energy per mode in the har-
monic approximation Making the classical approxima-
tion for T near Tp, s =ks T, results in a linear I ( T). I is
the T=0 intercept of I(T). [This differs from the zero-
temperature lattice constant I(T =0) due to zero-point
fiuctuations. ] Thus, the thermal-expansion coefficient
along the undimerized chain is

a =—
S

The dimerized chain expands more slowly. This is ap-
parent upon inserting fd for f, and I+5l for I in Eq. (6).
For temperatures far enough below TJ, that a becomes
constant,

k~g

2(f, + —,'ha ) Io

while in the vicinity of T~, the temperature dependence
of a must be taken into account. Recalling that a is pro-
portional to the order parameter, its mean-field depen-
dence is a =ao(T& —T)/Tr for T (Tp and a =0 for
T & TJ, . Thus, e undergoes a finite discontinuity at Tz of
magnitude

gao2

2f, IOT~
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a 0 (10)

The spring constant may be estimated as f =Mv /1 o
from the elementary treatment of the harmonic chain,
where U =3.1X10 cm/s is the longitudinal velocity of
sound along [102]. The basic, five-octahedra structural
unit corresponds to a full dimerization repeat distance,
whose length along [102] is' 2lo=9. 84 A and whose
mass is that of 5 Ko 3Mo03, i.e., 2M =6.5X10 g.
Thus, a& =0. 1 A, which is about twice the observed dis-
placement of Mo(3).

to lowest order in the anharmonicity. However, if mean-
field theory is not obeyed, a will have a more interesting
behavior near Tz.

While the discussion so far has been for a one-
dimensional chain, the three-dimensionality of the speci-
men allows dimerization along one direction to afFect the
expansion in other directions. Consider the two-
dimensional lattice shown in Fig. 5. Dimerization along
the horizontal direction without changing the vertical lat-
tice constant causes all the vertical springs to elongate.
The lattice will reduce its energy by shrinking vertically.
Thus, the thermal-expansion effect associated with the di-
merization along [102] should be expected to induce an
opposite effect along (010).

To conclude this section, we give a crude estimate of
the amplitude of the PLD. Because of the extreme ap-
proximations required to apply the simple balls-and-
springs model to the complicated blue bronze structure,
this estimate is valuable only to indicate that the order of
magnitude is reasonable. The distortion amplitude may
be obtained from the expansion step along [102] by Eq.
(9) if g is estimated from the background expansion, Eq.
(7):

VII. WHY THE PQLARIZATIQN
IS TRANSVERSE

The transverse polarization of the CDW in blue bronze
is a fact which still requires explanation. The Peierls ar-
gument is often illustrated with a longitudinal acoustic
distortion. From a more general standpoint, the
phenomenon can be viewed as an extended Jahn-Teller
transition, in which a general symmetry reduction lowers
the energies of some of the states involved. Two
specific examples, both applicable to molecular chains,
have been analyzed in the literature. Both invo1ve a
modulation of the molecular bonding strength, resulting
in either a longitudinal-optical distortion ' or a
transverse-optical one. All these examples consider
only a single quasi-one-dimensional band crossing the
Fermi level.

Pouget et al. proposed that the CDW in blue bronze
simultaneously gaps two bands. A tight-binding band
calculation by Whangbo and Schneemeyer is beautifully
consistent with this proposal. Among its strengths is the
presence of an empty band just above the Fermi level,
which can account for the previously unexplained tem-
perature dependence of the CDW wave vector.

Simultaneous gapping of two bands requires not only a
lattice distortion with the right wave vector but also a
matrix element capable of scattering forward-going elec-
trons on one band into backward-going electrons on the
other band. Here we suggest that the most eKcient way
to provide the interband scattering is by modulating the
distance between the chains on which the two bands are
based. Both Mo(3) and Mo(2) orbitals are involved in
the bands which cross the Fermi level. However, accord-
ing to the band calculation, the lower band has stronger
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FIG. 5. Two-dimensional balls-and-springs model in high-
temperature (solid lines, solid circles) and distorted (dashed
lines, open circles) phases, illustrating the origin of the inverted
expansion step along [010]. Distortion wavelength along [010]
equals 4b.

FIG. 6. Comparison of (a) the observed distortion pattern
(Ref. 28) and (b) the orbitals from which the relevant bands are
built (Ref. 34). Mo(3) chains are shaded, Mo{2) chains are
unshaded. The chain direction is normal to the figure. (Adapt-
ed with permission of the American Chemical Society and of
IOP Publishing Ltd. )
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Mo(3) character while the higher is more strongly based
on Mo(2). Therefore, it is productive to think of the
bands as being built principally from one or the other of
two types of chains: one chain based on a pair of corner-
sharing octahedra containing Mo(3) sites, the other on a
pair of edge-sharing octahedra containing Mo(2) sites.
Scattering between the bands based on the two distinct
chains is accomplished by the observed distortion pattern
[Fig. 6(a)] which modulates the distance between these
two types of chains, but not the distance between atoms
within a chain. Furthermore, the orbitals upon which
the lowest two bands are based [Fig. 6(b)] are oriented in
such a way that the observed distortions efficiently (and
presumably optimally) modify the relevant transverse
hopping integrals.

VIII. SUMMARY

CDW formation in blue bronze introduces steps into
the thermal-expansion coe%cients at the CDW formation
temperature TI, . In form, the steps are not simple
discontinuities, as predicted by mean-field theory; they
show precursor effects caused by fluctuations. The
shapes are not precisely what is expected for the XYmod-
el in three dimensions, but the shapes are consistent with
XY in three dimensions if sample inhomogenity is taken
into account.

By introducing a transverse-optical lattice distortion
into an anharmonic lattice, the anisotropy of the expan-
sion coeKcients is readily interpreted. A dimerized,
anharmonic chain is longer than the corresponding undi-
merized chain but expands less quickly as temperature in-
creases. This accounts for the upward step parallel to the
displacement vector of the lattice distortion. Because of

transverse coupling, the expansion effect along the dimer-
ization direction is accompanied by an effect of opposite
sign along the chain direction. Therefore, a downward
step is observed along the chain direction. The same
anharmonicity is thermodynamically related to the mini-
ma in various elastic moduli near T~.

While the transverse polarization of the PLD in blue
bronze has been known for several years, this is, to our
knowledge, the first time that measurements other than
diffraction have been interpreted in terms of the trans-
verse distortion. We attribute the origin of the transverse
distortion to the necessity of simultaneously gapping two
bands, both of which cross the Fermi level. A transverse
distortion is not the only way to accomplish this, but it
seems to be an eKcient way. Whereas the transition-
metal trichalcogenides also have pairs of bands crossing
the Fermi level, we speculate that their PLD's also are
transversely polarized, and that their anharmonicities ac-
count for the observed minima in their moduli.

We discerned no dependence of specimen length on
electric Geld. Perhaps this is not very surprising because
the elastic moduli of blue bronze also are not modified
when the CDW slides. It would be interesting to learn
whether specimen length is bias-dependent in those com-
pounds whose rnoduli soften in the sliding state.
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