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The static demagnetization energies as well as the Polder permeability tensors of uniformly mag-

netized spheroidal particles arranged periodically in three-dimensional lattices have been calculat-
ed. The energy is calculated as a function of aspect ratios, packing densities, and local coordina-
tions: simple-cubic, body-centered-cubic, and face-centered-cubic lattices. The demagnetizing ener-

gy is expressed in terms of three demagnetizing factors, N„, N~, and N, . We find that N, N~, and

X, are well behaved for packing densities reaching the percolation limit. The Polder permeability
tensor of the composite is derived in terms of these three demagnetizing factors and as a function of
the particle s aspect ratio and packing density. The magnetic particles may be assumed to be mag-

netically saturated or nonsaturated.

I. INTRODUCTION

The study of composite materials has been the subject
of considerable interest in recent years because of possible
technological applications of these materials. In this pa-
per we are considering microwave applications of com-
posite materials consisting of magnetic particles embed-
ded in a binder matrix. Besides the permittivity of the
composite, the magnetic permeability is of crucial impor-
tance regarding the usefulness of materials, in general, for
microwave applications. The problem of calculating the
permittivity of composite materials consisting of fine par-
ticles uniformly distributed in a binder material has been
considered for over 40 years. For a dilute concentration
of particles in a composite, the resultant permittivity is
the sum of all the single-particle contributions to the total
polarization of the composite. For concentrations
beyond approximately 20%%uo volume loading, this ap-
proach of calculating permittivity is inaccurate, since the
distance between particles decreases to a point in which
coupling between particles must be included in any realis-
tic calculation. The multipole method of calculations
first introduced by Lord Rayleigh is useful in estimating
the contribution due to coupling to the permittivity of
heavily loaded composites. Reasonable success has been
achieved using this method of calculation to determine
the resistivity of composites consisting of metallic parti-
cles symmetrically distributed with sc, bcc, and fcc coor-
dinations.

In the calculation of permeability for composites con-
sisting of magnetic particles, the above-reference
method ' is applicable if one assumes a single magnetic
domain nucleation in each particle. The method becomes
impractical or unyielding if, for example, the magnetic
domain within a particle is coupled to elastic vibrations
and an electric dipole moment. The difficulty arises from
the fact that the elastic motion or other motions affects
the motion of the dipole moment and, hence, the elec-
tromagnetic coupling between particles and vice versa.

We propose a new method or formulation of calcula-
tion that may prove to be more general. The interaction
between particles is represented in an integration repre-
sentation introduced earlier by Kaczer and Murtinova.
This allows us to represent the coupling between particles
in terms of energy terms which are only appropriate to a
single particle. The implication here is that all the parti-
cles have the same form of energy terms. Hence, long-
wavelength excitations are assumed. The advantage of
this approach is that the free-energy expression of the
particle may contain terms representing purely magnetic
interaction between particles as well as self-elastic energy
terms, magnetic anisotropy energy terms, etc. The
particle-particle interaction energy term is manifested in
the so-called demagnetizing factors. The effective per-
meability of the composite can then be calculated in the
usual way ' from the total free-energy —self- and
particle-particle energy terms.

In the past, Vorob'yev et al. considered the permea-
bility calculations of a magnetic composite in which the
permeability was averaged to be a scalar value, and Abe
et al. considered the tensor permeability of a composite
consisting of fine magnetic particles. Both of these calcu-
lations were carried out under the assumption that the
loading of particles in a binder material is dilute and the
interaction between the particles is small compared to the
self-energy of the particles. In the dilute limit the per-
meability of the composite is expected to have a linear
dependence on the particle volume loading and have
small dependence on the particles' shape. The above
model is inappropriate to the volume loading of particles
in which the particle might ultimately reach a percola-
tion packing limit (particles touching each other).

In this paper we first consider calculations of the
demagnetizing field which represents the magnetic in-
teraction between particles arranged in cubic lattices.
The demagnetizing fields are calculated as a function of
the particle's aspect ratio and concentration. The per-
meability tensor of the composite is then calculated from

43 8094 1991 The American Physical Society



43 DEMAGNETIZATION ENERGY AND MAGNETIC PERMEABILITY. . . 8095

the total energy which includes the demagnetizing, mag-
netizing, and anisotropy energies. Thus, the total energy
is sufficiently general so that it may include particles
which are magnetically saturated or nonsaturated. The
effect of the particle s axial anisotropy is also incorporat-
ed in the calculations.

II. CALCULATIONS

A. Demagnetizing energy

Let the z axis be the revolution axis of the spheroidal
particles which are arranged periodically in free space.
The case where the binding medium is characterized by
the dielectric constant e1 and magnetic permeability p1
can be deduced by replacing E (dielectric constant of the
particles), )M (magnetic permeability of the particles), and
k (wave number) of the text by ale„ply„and
k (e)p()', respectively, and multiplying all electric fields
(including the exciting field) by (e, )

'~ and all magnetic
fields by ()M()

' . We only consider here cubic lattices
and the conventional unit cell for a bcc structure is
shown in Fig. 1. We denote a and b as the semimajor and
semiminor axes of the particles, respectively, and all the
lengths have been normalized with respect to the length
of a unit cell. The analysis below utilizes the formalism
developed in Ref. 4 and Gaussian units are used
throughout.

Let the magnetization vector M(x, y, z). The Fourier
component of M is denoted as Ck ' with

q(a)( )
~~ ~ ( (a) —ik r

k
(2b)

where gk denotes the summation over all the vectors of k
except the term k=0. The term k=0 corresponds to the
self-energy of the magnetization distribution which ap-
pears in a later formulation and is therefore omitted. The
demagnetizing field associated with M'p' in the a direc-
tion is

g2, I,(p)
H(g) (r)—

= —4 ' C(P) —ik r
k kp

k

The demagnetizing energy density is therefore

E= f dx f dy f dz M(r) H(r)—1/2 —1/2 —1/2
3

a,P=1

where E p is defined by

k k
=2m~'C' '-C'P'. k kp

k

(4)

If the magnetization distribution possesses even parity,
M(r)=M( —r), it implies Ck '=C'

k and so E &=0 if
a&P. Therefore, for cubic lattices we have

QC(a)e ik r-
k

(la)

(lb)
with

3

a=1
(6a)

Here,

k=2m(px+qy+rz ) (lc) , ,
k

E..=2~y' C„"
k

2

(6b)

V'y"= —4 ~
which implies, from Eq. (la),

(2a)

is the wave vector with p, q, r being integers from —~ to
+ ~. The magnetostatic potential associated with mag-
netic charge M satisfies the following Poisson equation:

M(r)= '

0, otherwise .

We assume the particles are magnetized uniformly and
the magnetization vector M(r) takes the following form:

Mo x+Mo y+Mo, z,
for r located within the particles,

We define the volume integral Ik and the form factor Fk
as the following:

I,=f f fd~e'k',
single

particle

(7a)

(7b)

1, for sc lattice,

[1+(—1)i'+'i "], for bcc lattice,

[1+(—1))'+'+( —1)i+"+(—1)"+i'],
for fcc lattice .

FIG. 1. Unit cell for a bcc lattice containing prolate
spheroidal particles.

It turns out that

Ck MoaIkF
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Denote U as the volume fraction of the particles and n as
the number of particles per unit cell (n = 1, 2, and 4 for
sc, bcc, and fcc structures, respectively). The demagnet-
izing factor N is defined by

Equations (13a) and (13b) reduce to Eq. (12) in the spher-
ic limit, i.e., a =b and c =0.

B. Polder permeability tensor
2

n'
v(1 —v) z k

and Eqs. (6a) and (6b) can be rewritten as

2mv (1 —v) ~ 2
a Oa

n a=1

(9)
Let the particles possess a uniaxial magnetic anisotro-

py along the particles' axial axes and an external field be
applied along x axis. We assume that single magnetic
domain formation occurs in every particle. The total
free-energy density is therefore composed of the Zeeman
energy term, the anisotropy energy term, and the demag-
netizing energy term as

Normalization factors are self-contained in Eq. (9) such
that

N„+N +N, = I .

Equation (11) can be verified utilizing Eq. (9) and notice
that the k =0 term is omitted in the summation.

The remaining work is to calculate Ik. For spherical
particles, a =b,

4~ ka
Ik = S111k'

where the equality

(12)

e'"'= g i '(2l +1)j~(kr)PI(cosy )
1=0

has been used and only the I =0 term contributes to the
volume integral of Ik. Here j& is the spherical Bessel
function of order l [jo(g) =(sing)/g], and y is the angle
between k and r. For spheroidal particles it is derived in
the Appendix that

r T

,2s 2

Ik=4~ ds s +
c Z2

3k, s
+

Z4
sinZ

Z

1

Z2
3k s

c cosZ
Z4

for prolate spheroids,

3k s

X4
b k, s +1

=4~I ds s2+ X'
sinX
X

(13a)

3k, s
+ +X' X4 c cosX

for oblate spheroids, (13b)

where Z and X are defined as

Z =[k s —(k +k )c ]'~

X = [k's'+ ( k'+ k')c']' '

and c is the focal length of the particles defined by

(
2 b 2)1/2

Note that X and Z go to zero if k, =0, s =c, and if
k =k =0, s =0, respectively. However, in these cases
the integrands of Ik take the same limit form, 4ms .

F vHOM +vK(M +My )/M +E~
= —vHOM, sin0 cosP+ vK sin 0

2~v(1 —v) 2 . 2 2

n

+N~ sin 0 sin P+N2cos 0), (14)

This implies

4'o=o (16a)

sin [Ho /(H& +H& ) ], for Ho (H& +H&,00= 16b~/2, otherwise .
Here Po and 0O denote the equilibrium values of P and 0,
H~ is the effective anisotropy field associated with the
particle s uniaxial magnetic anisotropy, and H& is the
demagnetizing field arising from the magnetostatic in-
teraction of the particles with itself as well as with its sur-
roundings. H~ and H& are defined as

H„=2K/M, ,

H~ =4m.(1—v)(X —X, )M, /n

(17a)

(17b)

For H0 & H~ +Hz the magnetization is not aligned along
the applied field, and for H0)H~+H& the magnetiza-
tion of the particles is saturated and along H0. Note
that, for a composite consisting of oblate particles, it is
possible to have H~+H& &0. In this case the magneti-
zation aligned in the z direction is in a metastable
configuration of the magnetization. An infinitesimal ap-
plication of H0 will rotate the magnetization into the x
axis.

The effective field associated with the free-energy den-
sity of Eq. (2) is'

H, =( —1/v)VMF,

where VMF denotes the functional derivative of F with
respect to M, i.e.,

where M, is the saturation magnetization, H0 the exter-
nal field strength, and K the anisotropy constant. Here
we have ignored the free-energy term arising from the in-
terfacial energy between the particles and the binding
matrix. At static equilibrium we have

BF (3F
a0
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(H, ) =Hp H—„M /M, —4~(1 v—)N M In

(H )»= H„M»IM 4~(1 u)N M /ni

(H, ), = —4ir(1 u)—N, M, /n~ .

The Landau-Lifshitz equation takes the form

=MXH — MX(MXH),
y dt yM'

(19a)

(19b)

m&
=0,

(19c) where

(20)

0=ico/y,

3 =Hp/sinOp —ihH/2,

8 = ~H„+H~ —Hpsin8p~ id H—/2 .

(29)

(30a)

(30b)

(30c)
where y and A. denote, respectively, the gyromagnetic ra-
tio and the Landau-Lifshitz damping constant. Let M
and H be expressed as

When the particles magnetization is saturated, i.e.,
Hp )H~ +Hz, 8p=90' and Eqs. (30b) and (30c) become

M=Mp+m,

H=H, +h,
(21a)

(21b)

A =Hp ib,H/—2,
B =Hp —H~ —H~ —i hH/2.

(31a)

(31b)

m=m X H,'+Mp Xh,

where H,' is defined by

(H,'), =Hp —[H„+(4m./n )(1 u)N, M, —

+i b H/2]sin8p,

(H', ) =0,
(H', ), = —[( 1 —v)N, M, +i b H /2]cos8p,

and AH is the linewidth defined by

AH=2K, co/y M, .

(24a)

(24b)

(24c)

(25)

The remaining work is to specify m and h explicitly for
different purposes. To be valid in first order, m is perpen-
dicular to Mp and can be written as

where Mp and H, denotes static values of the magnetiza-
tion and field given by

Mp =M, sinOpx +M, cosOpz

and by Eqs. (19a)—(19c), respectively. Here m and h
represent small departures of the magnetization and field
away from their equilibrium values. Substituting Eqs.
(21a) and (21b) into Eq. (20) and keeping only to first or-
der terms in A, , m, and h, one obtains

Nonsingular solutions of Eq. (20) exist only if
0 + AB =0, which solves the ferromagnetic resonant
frequency, denoted as AH. For nonsaturated particles,
one obtains

CO~ i AH=Hpcos8p — ( cos8p+ sec8p ) /2
y 2

and for saturated particles,

(32a)

h, =h, cosOox+h2y —h] sinOpz . (33)

=QHp(Hp —H„H~)—
y

ihH 2Hp —Ha —H&
QHp(Hp H„H—~) . —

(32b)
Note that the real part of AH goes to zero when the parti-
cles just reach saturation, and the imaginary part of AH,
denoting the linewidth at resonance, always has values
larger than that of the bulk material composing the mag-
netic particles.

Magnetic permeability can be determined from Eq. (23)
if the external rf field h„ is nonvanishing. For h, AO, an
additional term of torque, Mp Xh„appears on the right-
hand side of Eq. (23) and, therefore, it is sufficient to con-
sider h, of the following form:

m=m, cosOox+m2y+m, sinOpz . (26)

h can be distinguished as being composed of two com-
ponents

h2
=M,

1
—B 0 m2

Equation (29) now becomes
r

0 A
(34)

h=h, +h (27) which can be rewritten as

with h, being the applied rf field and h the field associ-
ated with m. From Eqs. (19a)—(19c) h can be written as

m&

mp

Q Ai
—0 B h2

(35)

(h ), = —[H„ /M, +4'(1 —v)N„/n ]m, cos8p,

(h )»
= —[H~ /M, +4'(1 u)N»/n ]m2, —

(h ), =4m. (1 u)N, m, sin8p . —

(28a)

(28b)

(28c)

Therefore, in the coordinate system, whose z axis has
been rotated a Op degree toward the x axis, i.e., the new z
axis is aligned along Mp, the permeability tensor takes the
following form:

Without an applied rf field, Eq. (23) determines the fer-
romagnetic resonant frequency of the composite material.
In this case, substituting Eqs. (22), (24), and (26)—(28) into
Eq. (23) with h, =0, one obtains

p& iv 0

p = EK p2 0

0 0 1

(36)
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where

p, =l+4mvM, A/(0 +AB),

@2
= I +4vrvM, B /(0 + AB),

i lc= 4~vM, A/(0 + AB ) .

(37a)

(37b)

(37c)

Note that p' is Hermitian if and only if 3 and B are real,
i.e., the particle medium is lossless. When expressed in
the original xyz coordinate system, the permeability ten-
sor becomes

cos Oo 0 sin Oo

0 1 0
—sin O0 0 cosOO

cosOo 0 —sinOO

0 1 0
sinOO 0 cosOO

(38)

For magnetization-saturated particles, Eq. (38) can be
most conveniently written as

1 0 0

p — 0 p2 lK

0 lK pi

(39)

III. RESULTS

A. Demagnetizing energy

To obtain X„,X, and N, numerically, we notice the
following two things. For large k values the integrands
defining Ik in Eqs. (13a) and (13b) oscillate rapidly. If in-

tegers p, q, and r are taken from —1V to +N, there shall
be at least N grid points in evaluating integrals which ap-
peared in Eqs. (13a) and (13b) in order not to create
significant error. The second point is that the summation
over k in Eq. (9) converges very slowly. Convergence

within 90% was achieved when X was taken to be 100,
i.e., when 8 000000 Fourier components have been taken
into account. However, we notice that the convergence is
inversely proportional to X, and, when the sums have
been extrapolated by X =50 and 100, the demagnetizing
factors N, N, and N, can be evaluated with errors less
than a few parts in one thousand. Errors associated with
N, N~, and N, can be estimated by comparing their sum
to unity, Eq. (11).

Figures 2—4 show the dependences of N„, N, and N,
on the aspect ratio A =b/a for the cases of sc, bcc, and
fcc, respectively. In these plots, a was fixed to 0.3 (in
units of the length of the unit cell) and b was taken from
0 to 0.3. The left-hand sides of these graphs are for the
prolate cases (increasing A for the horizontal coordinate),
while the right-hand sides are for the oblate cases (de-
creasing 2 for the horizontal coordinate). The central
lines separating the two sides represent the sphere cases
a =b =0.3. For b =0 this corresponds to N =N„=O.5,
X, =0, for the prolate case (thin rod), and X, =X =0,
X, = 1, for the oblate case (Hat disc). For a =b the
demagnetizing factors are all equal to —,

' as we expect for
the sphere case. The above results are the same as if the
particles were isolated from each other. Actually, for an
isolated spheroid, ' prolate and oblate, respectively,

(1—e )(tanh 'e —e)/e3,N='
(1+e )(e —tan 'e)/e

(40a)

(40b)

and % =N = ( 1 —X, ) /2, where e is the eccentricity of
the particle defined as c/a and c/b for a prolate and an
oblate, respectively. For the sc and bcc structures, Figs.
2 and 3, the demagnetizing factors presume values which
are almost indistinguishable from those derived for an
isolated particle, Eqs. (14a), and (14b). Only for the fcc
structure do the demagnetizing factors predict apprecia-

1.0

0. 8

0. 6

0.4

0. 2

0. 0
0 0 0.5 1.0 0.5 0. 0

Aspect Ratio

FIG. 2. Demagnetizing factors as functions of the aspect ratio: sc structure. (a =0.3, 0 ~ b ~ a).
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1.0

0.8

0. 6

0. 2

0. 0
0.0 0.5 1.0 0. 5 0.0

Aspect Ratio

FIG. 3. Demagnetizing factors as functions of the aspect ratio: bcc structure. (a =0.3, 0 ~ b ~ a).

ble departure away from the isolated case. The reason
for this is that for the fcc structure with a =0.3 the pack-
ing density of the particles is closer to the packing limit,
while that of the sc and bcc structures with a =0.3 can
still be treated as in the dilute approximation. This point
will be discussed further below. However, the demagnet-
izing energy densities associated with Figs. 2 —4 are very
different as predicted by Eq. (10).

Figures 5 and 6 show the dependence of N, N, and
N, on the packing density of the particles in the sc, bcc,

and fcc structures for the cases of prolate and oblate, re-
spectively. The aspect ratio for these plots is chosen to
be 0.5 and the horizontal axes are taken to be a. For
small a's the curves go to dilute limits which have, from
Eqs. (14a) and (14b), the following values: N„=N =0.41,
N, =0.17 for the prolate case, and N~ =N~ =0.24,
N, =0.52 for the oblate case. In the dilute situations
where a is small, the demagnetizing factors are almost in-
dependent of the particle concentration and have very lit-
tle dependence on the types of lattice structures, as we

l. 0

0. 8

0. 6

0. 4

o. 2

0.0

0.0 0. 5 1.0 0.5 o. o

Aspect Ratio

FIG. 4. Demagnetizing factors as functions of the aspect ratio: fcc structure. I,
'a =0.3 0 6 ~ a).
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0 ~ 46

0.44- ( PROLATE )

0.40-

0.18-

0.16

0 ~ 42 N~( Ny

long "thread" of magnetic particles have very small
demagnetizing factor along its longitudinal direction.
However, when the packing limit is reached, there is no
catastrophic changes in the values of N„, N, and N, .
This result differs from the situation found in the
dielectric-metallic transition in which the metal particles
start to touch each other in a dielectric binder. When
the packing limit is passed over, Eq. (9) still provides
values for N, N~, and N„except that in this situation
the sum of these physical factors will gradually depart
from unity.

0.14

0.12

0. 10

0.0 0. 1 0. 2 0. 3 0.4 O. S

might expect. When a increases, the curves gradually
depart from their dilute values until the packing limits
are finally reached. For the prolate cases the packing
limits are 0.5, 0.5, and 0.447 ( = 1/&5), and for the oblate
cases 0.5, 0.5, and 0.354 ( =&2/4) for the sc bcc, and fcc
structures, respectively. When the particles' packing lim-
it is approached, the demagnetizing factor closest to the
direction parallel to the direction of particles in contact
will decrease, as we might expect from the fact that a

FICx. 5. Demagnetizing factors as functions of a for a fixed
aspect ratio (6 =a /2): Prolate case.

B. Polder permeability tensor

In the following calculations we take 4aM, =H ~
=3000 G and b,H=100 Oe (at 9 GHz), which corre-
spond to substantial hexagonal barium ferrite particles.
The external field Ho is normalized with respect to 4m.M,
and angular frequency m with respect to 4~@M, . The
data for particles in the simple-cubic lattice are calculat-
ed explicitly, whereas data concerning bcc and fcc lattices
can be deduced in a similar way. Actually, not much
difference is found for the functional behavior of the per-
meability for different particle coordinates in cubic lat-
tices and it will be enough to show the permeability here
only for the simple-cubic coordination.

Figure 7 shows, according to Eqs. (32a) and (32b), the
resonant frequency as a function of the particle aspect ra-
tio 2 =b/a, where a is chosen to be 0.3 (in units of the
length of the lattice unit cell). Two values of the external
field have been considered: HO=0. 5 and 2. The left-
hand side of the figure is for the prolate case (increasing
A for the horizontal coordinate), the right-hand side is
for the oblate case (decreasing 2 for the horizontal coor-
dinate), and the central line separating the two sides

1.0

0.75
(OBLATE)

Nz

0. 5

0.25
N~, Ny

fcc

O

4J
Ul

SC

bcc

0.0

0.0 0.1 0. 2 0. 3 0.4 0. 5

FIG. 6. Demagnetizing factors as functions of a for fixed aspect ratio (b =a /2): oblate case.
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meabilities show significant variations only when the par-
ticle volume loading is high. No anomalous behavior is
found for the permeability even at the percolation limit.

ACKNOW) WLKDGMENTS

The authors would like to acknowledge U.S. Office of
Naval Research (ONR) in sponsoring this research pro-
ject.

APPENDIX

The prolate spheroidal coordinate (u, v, P) is defined as

x =c sinhu sinu cosP,

y =c sinhu sinu sing,

z =c coshu cosu,

and the volume element is

d~=dx dy dz

=c (sinh u +sin v)sinhu sinu du dv dP.

Consider a single spheroidal particle where the coordi-
nate origin locates at the particle center. The particle
surface is bounded by

u =uo =cosh '(a /c) .

Let the wave vector k have the spherical coordinate
( k, 8o, Po). This implies

k r =k(x sin80cosgo+y sin8osinyo+z cos8O)

=ck [coshu cosv cos80+sinhu sinu sin80cos(P —$0)] .

Therefore,

single
particle

0=c du dv(sinh u+sin v )sinhu sinv exp(ick coshu cosv cos8 )I
0 0

0 1

where integral I, is defined by
2'I, = dPexp[ick sinhu sinv sin90cos(P —$0)]

0

=2vrJO(ck sinhu sinv sin8o)

and J0 is the Bessel function of order zero defined by

Jo(t) = 2~
d g e lt cos'g

2& 0

Therefore, Ik can be rewritten as
Qp

Ii,=2nc f du (sinhu )Iz

with I2 defined by
1I2= dg cosh u —q exp ick cosO0coshuq Jo c~ s Oosinhu 1 —&2 li2

1=2f dg(cosh u —g )cos(ag)JO[P(1 —il )' ] .

Here, variables a, P, and g are defined by, respectively,

o.=ck cosO0coshu,

P=ck sin80sinhu,

xJ
=cosU

After using the following equality, "as well as its second derivative,

1 sin(a + )'f dgcos(ag)JO[P(1 —g )'~ ]=

one obtains

Ik =4vrc f d g
1

c k cos 80+1 3cos 9+
c k (g —sin 90) c k (g —sin 80)

sin[ck (g —sin 8O)' ]
X +

ck(g —sin 80)'
1

c k (g —sin 80)

3cos 8og
cos[ck (g —sin 80)]'~

c "k (g —sin 80)
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where g is defined by

g=coshu .

Now, changing the variable from g to s defined by

and noticing that

k sinO=k +k0 x y

k'cos'6 =I '

one obtains Eq. (13a). Equation (13b) can be obtained
from Eq. (13a) if c is changed to ic —and the integration
1imits of s are changed from "c to a" to "0 to b."
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