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The static demagnetization energies as well as the Polder permeability tensors of uniformly mag-
netized spheroidal particles arranged periodically in three-dimensional lattices have been calculat-
ed. The energy is calculated as a function of aspect ratios, packing densities, and local coordina-
tions: simple-cubic, body-centered-cubic, and face-centered-cubic lattices. The demagnetizing ener-
gy is expressed in terms of three demagnetizing factors, N,, N,, and N,. We find that N,, N,, and
N, are well behaved for packing densities reaching the percolation limit. The Polder permeability
tensor of the composite is derived in terms of these three demagnetizing factors and as a function of
the particle’s aspect ratio and packing density. The magnetic particles may be assumed to be mag-

netically saturated or nonsaturated.

I. INTRODUCTION

The study of composite materials has been the subject
of considerable interest in recent years because of possible
technological applications of these materials.! In this pa-
per we are considering microwave applications of com-
posite materials consisting of magnetic particles embed-
ded in a binder matrix. Besides the permittivity of the
composite, the magnetic permeability is of crucial impor-
tance regarding the usefulness of materials, in general, for
microwave applications. The problem of calculating the
permittivity of composite materials consisting of fine par-
ticles uniformly distributed in a binder material has been
considered for over 40 years. For a dilute concentration
of particles in a composite, the resultant permittivity is
the sum of all the single-particle contributions to the total
polarization of the composite. For concentrations
beyond approximately 20% volume loading, this ap-
proach of calculating permittivity is inaccurate, since the
distance between particles decreases to a point in which
coupling between particles must be included in any realis-
tic calculation. The multipole method of calculations
first introduced by Lord Rayleigh? is useful in estimating
the contribution due to coupling to the permittivity of
heavily loaded composites. Reasonable success has been
achieved using this method of calculation to determine
the resistivity of composites consisting of metallic parti-
cles symmetrically distributed with sc, bee, and fcc coor-
dinations.3

In the calculation of permeability for composites con-
sisting of magnetic particles, the above-reference
method?? is applicable if one assumes a single magnetic
domain nucleation in each particle. The method becomes
impractical or unyielding if, for example, the magnetic
domain within a particle is coupled to elastic vibrations
and an electric dipole moment. The difficulty arises from
the fact that the elastic motion or other motions affects
the motion of the dipole moment and, hence, the elec-
tromagnetic coupling between particles and vice versa.

We propose a new method or formulation of calcula-
tion that may prove to be more general. The interaction
between particles is represented in an integration repre-
sentation introduced earlier by Kaczér and Murtinova.*
This allows us to represent the coupling between particles
in terms of energy terms which are only appropriate to a
single particle. The implication here is that all the parti-
cles have the same form of energy terms. Hence, long-
wavelength excitations are assumed. The advantage of
this approach is that the free-energy expression of the
particle may contain terms representing purely magnetic
interaction between particles as well as self-elastic energy
terms, magnetic anisotropy energy terms, etc. The
particle-particle interaction energy term is manifested in
the so-called demagnetizing factors. The effective per-
meability of the composite can then be calculated in the
usual way>® from the total free-energy—self- and
particle-particle energy terms.

In the past, Vorob’yev et al.” considered the permea-
bility calculations of a magnetic composite in which the
permeability was averaged to be a scalar value, and Abe
et al.® considered the tensor permeability of a composite
consisting of fine magnetic particles. Both of these calcu-
lations were carried out under the assumption that the
loading of particles in a binder material is dilute and the
interaction between the particles is small compared to the
self-energy of the particles. In the dilute limit the per-
meability of the composite is expected to have a linear
dependence on the particle volume loading and have
small dependence on the particles’ shape. The above
model is inappropriate to the volume loading of particles
in which the particle might ultimately reach a percola-
tion packing limit (particles touching each other).

In this paper we first consider calculations of the
demagnetizing field which represents the magnetic in-
teraction between particles arranged in cubic lattices.
The demagnetizing fields are calculated as a function of
the particle’s aspect ratio and concentration. The per-
meability tensor of the composite is then calculated from
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the total energy which includes the demagnetizing, mag-
netizing, and anisotropy energies. Thus, the total energy
is sufficiently general so that it may include particles
which are magnetically saturated or nonsaturated. The
effect of the particle’s axial anisotropy is also incorporat-
ed in the calculations.

II. CALCULATIONS

A. Demagnetizing energy

Let the z axis be the revolution axis of the spheroidal
particles which are arranged periodically in free space.
The case where the binding medium is characterized by
the dielectric constant €; and magnetic permeability u,
can be deduced by replacing € (dielectric constant of the
particles), u (magnetic permeability of the particles), and
k (wave number) of the text by e/€;,, p/u;, and
k (e,u41)'?%, respectively, and multiplying all electric fields
(including the exciting field) by (e,)~!/? and all magnetic
fields by (u,)"!”2. We only consider here cubic lattices
and the conventional unit cell for a bcc structure is
shown in Fig. 1. We denote a and b as the semimajor and
semiminor axes of the particles, respectively, and all the
lengths have been normalized with respect to the length
of a unit cell. The analysis below utilizes the formalism
developed in Ref. 4 and Gaussian units are used
throughout.

Let the magnetization vector M(x,y,z). The Fourier
component of M, is denoted as C{*’ with

M, (r)=3C&e kT, (1a)
k
(@) [172 172 172 iker
cw=[ " ax [ dy [ dzM, (e’ (1b)
Here,
k=27(pxX +qy +12) (1c)

is the wave vector with p, g, being integers from — o to
+ . The magnetostatic potential associated with mag-
netic charge M, satisfies the following Poisson equation:

VY P =—drM, , (2a)

which implies, from Eq. (1a),

FIG. 1. Unit cell for a bcc lattice containing prolate
spheroidal particles.

, 4 —ik-

¢(a)(r)_zk FCvi(ot)e ikr , (2b)
where 3} denotes the summation over all the vectors of k
except the term k=0. The term k=0 corresponds to the
self-energy of the magnetization distribution which ap-
pears in a later formulation and is therefore omitted. The
demagnetizing field associated with M@ in the «a direc-
tion is*

a0 =-2Y0

axaaxB

=—4ry’
k

k

K :
sz Cﬁ(ﬁ)e*lk'r . (3)

The demagnetizing energy density is therefore

172 172 172
E= .
fAl/zdx f_l/zdy fﬂ/zdz M(r)-H(r)

3
= z Ea[j ) (4)
a,f=1

where E 5 is defined by

12 172 12
= d HP
E.z f—]/zdx f~1/2 yfﬂ/zdzMa(r) JN(r)

ko k
=27TE'CLQ) ‘C{(B) ——k—Z—B_ . (5)
k

If the magnetization distribution possesses even parity,
M(r)=M(—r1), it implies C{*’ =C'% and so Ez=0 if
a7 3. Therefore, for cubic lattices we have

3
E=3E, (6a)
=1
with
k, |’
E =213 |C{®—= (6b)
- k

We assume the particles are magnetized uniformly and
the magnetization vector M(r) takes the following form:
M, % +M0yj3 +My,2,

for r located within the particles,
0, otherwise .

M(r)=

We define the volume integral I, and the form factor F
as the following:

IkIfffdre“” , (72)

single
particle

1, for sc lattice,

_ [14+(—1T9%r], for bee lattice,
Fi= [T+ (=1 I (—=1) 4 (—1)7P], 70)

for fcc lattice .

It turns out that

Ci& =Moo Iy Fy . (8)



8096

Denote v as the volume fraction of the particles and n as
the number of particles per unit cell (n =1, 2, and 4 for
sc, bee, and fce structures, respectively). The demagnet-
izing factor N, is defined by

Ikaka
k

2
) )

2
__n
Ne v(l—v) <

and Eqgs. (6a) and (6b) can be rewritten as

g=2mu ZNM : (10)
n

Normalization factors are self-contained in Eq. (9) such
that

N,+N,+N,=1. an

Equation (11) can be verified utilizing Eq. (9) and notice
that the k=0 term is omitted in the summation.

The remaining work is to calculate I,. For spherical
particles, a =b,

%fokaésingdg , (12)

where the equality

e'kr= 2 (21 +1)j,(kr)P/(cosy)
1=0
has been used and only the / =0 term contributes to the
volume integral of I,. Here j, is the spherical Bessel
function of order / [j,(£)=(sin§) /], and y is the angle
between k and r. For spheroidal particles it is derived in
the Appendix that

Ik=47rf:ds[ s34 | — kzstZ;H + 3];%2 }cz Si;Z
—Zl—z—— 3](2352 c%cosZ |,
for prolate spheroids , (13a)
=41Tf0bds[ s? k}i;—l - 31;;2;2 c? Si;X
+ _;_21 31;252 czcosX] )
for oblate spheroids , (13b)

where Z and X are defined as

Z =[k*>—(k2+k})c?]' %,
x y

X =[k**+(kZ+k2)c?]'?,
and c is the focal length of the particles defined by
:(aZ_bZ)l/Z .

Note that X and Z go to zero if k,=0, s =¢, and if
k,=k,=0, s =0, respectively. However, in these cases
the mtegrands of I, take the same limit form, 4ms>.
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Equations (13a) and (13b) reduce to Eq. (12) in the spher-
ic limit, i.e., @ =b and ¢ =0.

B. Polder permeability tensor

Let the particles possess a uniaxial magnetic anisotro-
py along the particles’ axial axes and an external field be
applied along x axis. We assume that single magnetic
domain formation occurs in every particle. The total
free-energy density is therefore composed of the Zeeman
energy term, the anisotropy energy term, and the demag-
netizing energy term as

F=—vH,M, +vK(M?+M})/M}+Ey
= —vH,M,sinf cos¢ +vK sin’0

27v(1—v)

+ > MZX(N,sin*6cos’s

+ N, sin*0sin’p+ N,cos’0) ,  (14)

where M is the saturation magnetization, H, the exter-
nal field strength, and K the anisotropy constant. Here
we have ignored the free-energy term arising from the in-
terfacial energy between the particles and the binding
matrix. At static equilibrium we have

OF _ oF

30 _Ozﬁ . (15)

This implies

$o=0, (16a)

“[Ho/(H 4 +Hy)],
7/2,

Here ¢, and 6, denote the equilibrium values of ¢ and 6,
H , is the effective anisotropy field associated with the
particle’s uniaxial magnetic anisotropy, and Hy is the
demagnetizing field arising from the magnetostatic in-
teraction of the particles with itself as well as with its sur-
roundings. H , and Hy are defined as

H,=2K/M, ,

for Hy<H , +Hy ,

o= (16b)

otherwise .

(17a)

Hy=4m(1—v)(N,—N, )M, /n* (17b)

For Hy < H 4+ Hy the magnetization is not aligned along
the applied field, and for H,> H , +H, the magnetiza-
tion of the particles is saturated and along H,. Note
that, for a composite consisting of oblate particles, it is
possible to have H , +Hy <0. In this case the magneti-
zation aligned in the % direction is in a metastable
configuration of the magnetization. An infinitesimal ap-
plication of H will rotate the magnetization into the x
axis.

The effective field associated with the free-energy den-
sity of Eq. (2) is®

H,=(—1/0)VF , (18)

where VyF denotes the functional derivative of F with
respect to M, i.e.,
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(H,),=H,—H M, /M,—47(1—v)N .M, /n?, (19a)
(H,),=—H M, /M, —47(1—v)N,M, /n* , (19b)
(H,),=—4m(1—v)N,M, /n? . (19¢)
The Landau-Lifshitz equation takes the form
%%=MXH— 7/17“121\4><(1\4><H), (20)

where ¥ and A denote, respectively, the gyromagnetic ra-
tio and the Landau-Lifshitz damping constant. Let M
and H be expressed as

M=M;+m,
H=H,+h,

(21a)
(21b)

where M, and H, denotes static values of the magnetiza-
tion and field given by

My=Msinb,x + M cos6,2 (22)

and by Egs. (19a)-(19c), respectively. Here m and h
represent small departures of the magnetization and field
away from their equilibrium values. Substituting Egs.
(21a) and (21b) into Eq. (20) and keeping only to first or-
der terms in A, m, and A, one obtains

I h—mXH,+M,xh , 23)
where H,, is defined by

(H,),=Hy,—[H +(47/n*)(1—v)N, M,

+iAH /2]sin6, , (24a)

(H,),=0, (24b)

(H,),=—[(1—v)N,M,+iAH /2]cosf, , (24c)
and AH is the linewidth defined by

AH=2) 0 /y’M, . (25)

The remaining work is to specify m and h explicitly for
different purposes. To be valid in first order, m is perpen-
dicular to M and can be written as

m=m cosOyX +m,P +msinfZ . (26)

h can be distinguished as being composed of two com-
ponents

h=h,+h,, @7

with h, being the applied rf field and h,, the field associ-
ated with m. From Egs. (19a)—(19¢) h,, can be written as

(h,,)y=—[H, /M, +47(1—v)N, /n*Im cosf,, (28a)
(h,,),=—[H /M +4w(1—v)N,/n*Im, , (28b)
(h,,),=4m(1—v)N,m,sinf, . (28¢)

Without an applied rf field, Eq. (23) determines the fer-
romagnetic resonant frequency of the composite material.
In this case, substituting Egs. (22), (24), and (26)—(28) into
Eq. (23) with h, =0, one obtains

8097
Q A |m
-B Qll|m, =0, (29)
where
Q=iw/y , (30a)
A=H,/sin0,—iAH /2 , (30b)
B=|H,+Hy—H,sin,| —iAH /2 . (30c)

When the particles’ magnetization is saturated, i.e.,
Hy,>H , +Hy, 6,=90° and Eqgs. (30b) and (30c) become

A=H,—iAH/2 , (31a)
B=H,—H,—Hy—iAH /2. (31b)

Nonsingular solutions of Eq. (20) exist only if
Q%+ AB =0, which solves the ferromagnetic resonant
frequency, denoted as wy. For nonsaturated particles,
one obtains

i iAH
_ —H —
" 0c0s6y )

(cosB,+sechy) /2 , (32a)

and for saturated particles,

[0)
—;L:\/HO(HO—HA —Hy)

__iIAH 2Hy—H,—Hy
2 2

/\/HO(HO—HA —Hy) .

(32b)
Note that the real part of wy goes to zero when the parti-
cles just reach saturation, and the imaginary part of wg,
denoting the linewidth at resonance, always has values
larger than that of the bulk material composing the mag-
netic particles.

Magnetic permeability can be determined from Eq. (23)
if the external rf field h,, is nonvanishing. For h,#0, an
additional term of torque, M;Xh,, appears on the right-
hand side of Eq. (23) and, therefore, it is sufficient to con-
sider h, of the following form:

h,=hcosOpX +h,P —h,;sinf2 . (33)
Equation (29) now becomes
Q A |™ hy
-B Qll|m, s |—h, | (34)
which can be rewritten as
m; M, 4 Qfl|mh
e o9

Therefore, in the coordinate system, whose z axis has
been rotated a 6, degree toward the x axis, i.e., the new z
axis is aligned along M,, the permeability tensor takes the
following form:

u ik O
u=|—ik p, 0}, (36)
0O 01
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where
w,=1+47vM, A /(Q*+ AB) , (37a)
u,=1+47vM,B /(Q*+ AB) , (37b)
ik=4m0M,Q/(Q*+ AB) . (37¢c)

Note that y' is Hermitian if and only if 4 and B are real,
i.e., the particle medium is lossless. When expressed in
the original xyz coordinate system, the permeability ten-
sor becomes

cosf, O sinf, cosfy, O —sinb,
u= 0 1 0 || 0 1 0 (38)
—sinf, 0 cosb, sinf, 0 cosf,

For magnetization-saturated particles, Eq. (38) can be
most conveniently written as

1 0 0
p= 0 u, ik (39)
0 —ik pu,

III. RESULTS

A. Demagnetizing energy

To obtain N,, N,, and N, numerically, we notice the
following two things. For large k values the integrands
defining I, in Eqgs. (13a) and (13b) oscillate rapidly. If in-
tegers p, g, and r are taken from —N to +N, there shall
be at least N grid points in evaluating integrals which ap-
peared in Egs. (13a) and (13b) in order not to create
significant error. The second point is that the summation
over k in Eq. (9) converges very slowly. Convergence
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within 90% was achieved when N was taken to be 100,
i.e., when 8 000 000 Fourier components have been taken
into account. However, we notice that the convergence is
inversely proportional to N, and, when the sums have
been extrapolated by N =50 and 100, the demagnetizing
factors N,, N,, and N, can be evaluated with errors less
than a few parts in one thousand. Errors associated with
N,, Ny, and N, can be estimated by comparing their sum
to unity, Eq. (11).

Figures 2—4 show the dependences of N,, N, and N,
on the aspect ratio A =b /a for the cases of sc, bec, and
fcc, respectively. In these plots, @ was fixed to 0.3 (in
units of the length of the unit cell) and b was taken from
0 to 0.3. The left-hand sides of these graphs are for the
prolate cases (increasing A for the horizontal coordinate),
while the right-hand sides are for the oblate cases (de-
creasing A for the horizontal coordinate). The central
lines separating the two sides represent the sphere cases
a =b =0.3. For b =0 this corresponds to N, =N,=0.5,
N, =0, for the prolate case (thin rod), and N, =N,=0,
N,=1, for the oblate case (flat disc). For a =b the
demagnetizing factors are all equal to 4 as we expect for
the sphere case. The above results are the same as if the
particles were isolated from each other. Actually, for an
isolated spheroid,10 prolate and oblate, respectively,

_ J(1—e?)(tanhle —e)/e?,
2 |(1+e)e —tan"'e)/e’,

(40a)
(40b)

and N, =N,=(1—N,)/2, where e is the eccentricity of
the particle defined as ¢ /a and c /b for a prolate and an
oblate, respectively. For the sc and bcc structures, Figs.
2 and 3, the demagnetizing factors presume values which
are almost indistinguishable from those derived for an
isolated particle, Egs. (14a), and (14b). Only for the fcc
structure do the demagnetizing factors predict apprecia-

1.0 T T T ! T T T

0.8 F (PROLATE) (OBLATE) .
)
]

0.6 | =
& N,

Ny, Ny

0.4 } -

0.2 F 4

0.0 1 ' A —t 'l i

0°0 0.5 1.0 0.5 0.0

Aspect Ratio

FIG. 2. Demagnetizing factors as functions of the aspect ratio: sc structure. (a =0.3,0=b <a).
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1.0 T T T Il T T T

0.8 (PROLATE) (OBLATE) -
»
e}

0.6 | = i
& N

Ny, Ny a z

0.4 F 4

0.2 | ]

O . 0 1 1 i A 1 L

0.0 0.5 0 0.5 0.0

Aspect Ratio

FIG. 3. Demagnetizing factors as functions of the aspect ratio: bce structure. (@ =0.3,0=5b <a).

ble departure away from the isolated case. The reason
for this is that for the fcc structure with @ =0.3 the pack-
ing density of the particles is closer to the packing limit,
while that of the sc and bcc structures with @ =0.3 can
still be treated as in the dilute approximation. This point
will be discussed further below. However, the demagnet-
izing energy densities associated with Figs. 2—4 are very
different as predicted by Eq. (10).

Figures 5 and 6 show the dependence of N,, N,, and
N, on the packing density of the particles in the sc, bcc,

and fcc structures for the cases of prolate and oblate, re-
spectively. The aspect ratio for these plots is chosen to
be 0.5 and the horizontal axes are taken to be a. For
small a@’s the curves go to dilute limits which have, from
Eqgs. (14a) and (14b), the following values: N, =N, =0.41,
N,=0.17 for the prolate case, and N, =N,=0.24,
N,=0.52 for the oblate case. In the dilute situations
where a is small, the demagnetizing factors are almost in-
dependent of the particle concentration and have very lit-
tle dependence on the types of lattice structures, as we

! 1] Lf v
0.8 F (PROLATE) é (OBLATE) -
“
g
0.6 & 4
x N
t z
Nx'Ny -~
0.4 § o
0.2 | e
0.0 1 1 I 4 i 1
0.0 0.5 o] 0.5 0.0

Aspect Ratio

FIG. 4. Demagnetizing factors as functions of the aspect ratio: fcc structure. (@ =0.3,0<b <a).
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0.46 T T T T

(PROLATE)

0.42} Ny/Ny

0.0 0.1 0.2 0.3 0.4 0.5

FIG. 5. Demagnetizing factors as functions of a for a fixed
aspect ratio (b =a /2): Prolate case.

might expect. When a increases, the curves gradually
depart from their dilute values until the packing limits
are finally reached. For the prolate cases the packing
limits are 0.5, 0.5, and 0.447 (= 1/V'5), and for the oblate
cases 0.5, 0.5, and 0.354 (=V'2/4) for the sc bee, and fcc
structures, respectively. When the particles’ packing lim-
it is approached, the demagnetizing factor closest to the
direction parallel to the direction of particles in contact
will decrease, as we might expect from the fact that a
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long “‘thread” of magnetic particles have very small
demagnetizing factor along its longitudinal direction.
However, when the packing limit is reached, there is no
catastrophic changes in the values of N,, N,, and N,.
This result differs from the situation found in the
dielectric-metallic transition in which the metal particles
start to touch each other in a dielectric binder.> When
the packing limit is passed over, Eq. (9) still provides
values for N, Ny, and N,, except that in this situation
the sum of these physical factors will gradually depart
from unity.

B. Polder permeability tensor

In the following calculations we take 47mM ~H ,
~3000 G and AH =100 Oe (at 9 GHz), which corre-
spond to substantial hexagonal barium ferrite particles.
The external field H; is normalized with respect to 47 M,
and angular frequency o with respect to 4myM,. The
data for particles in the simple-cubic lattice are calculat-
ed explicitly, whereas data concerning bcc and fcc lattices
can be deduced in a similar way. Actually, not much
difference is found for the functional behavior of the per-
meability for different particle coordinates in cubic lat-
tices and it will be enough to show the permeability here
only for the simple-cubic coordination.

Figure 7 shows, according to Egs. (32a) and (32b), the
resonant frequency as a function of the particle aspect ra-
tio A =b /a, where a is chosen to be 0.3 (in units of the
length of the lattice unit cell). Two values of the external
field have been considered: H;=0.5 and 2. The left-
hand side of the figure is for the prolate case (increasing
A for the horizontal coordinate), the right-hand side is
for the oblate case (decreasing A for the horizontal coor-
dinate), and the central line separating the two sides

1.0 T L] T B L]
(OBLATE)
0.75 | 1
: becce
fcc :
N, ]
oy sc
0.5 P [+ 1
]
o
w
N, ,N I
x'
0.25 } Y Z sc -
fcc : bece
0.0 A 2 1 N
0.0 0.1 0.2 0.3 0.4 0.5

FIG. 6. Demagnetizing factors as functions of a for fixed aspect ratio (b =a /2): oblate case.
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2.0 T T T

I. L) v T
(PROLATE) g (OBLATE)
(H, = 2.0)
1.5 | : a J
(H, = 0.5)
— A
0
= =
= 5
£ :
\g 1.0 v 1
N
Q
o,
0.5 |
0.0 1 L n I " 1
0.00 0.25 0.50 0.75 .00 0.75 0.50 0.25 0.00

ASPECT RATIO (b/a)

FIG. 7. Resonant frequency as a function of the aspect ratio (b /a) of particles in a simple-cubic lattice: a =0.3, H,=0.5, 2.

represents the sphere case a =b =0.3. For H,=2 the
particles are saturated for all the values of the aspect ra-
tio and the resonant frequency dictates a smooth function
over A. For H,=0.5 the particle’s magnetization is non-
saturated for prolates. It can be saturated for disklike ob-
lates as discussed previously following Egs. (17a) and
(17b). It is shown in Fig. 7 that a cusp ( 4 =0.305) exists
in the resonant frequency curve corresponding to
H;=0.5, which separates the curve in two parts: non-
saturated (left) and saturated (right).

Figure 8 shows a three-dimensional plot of the reso-
nant frequency as function of the particle volume fraction

Re (wy/4myM,)

FIG. 8. Resonant frequency as a function of the particle
volume fraction v, external field H, for prolates (b =a /2) with
a simple-cubic coordination.

v and the external field H,. The particles are prolates
with b =a /2. In this plot v is taken from 0 to 0.13 (max-
imum particle loading in this case), H, from O to 2, and
the vertical axis, the resonant frequency, from O to 1.5.
For small H, values the particle magnetization is non-
saturated, and in this region the resonant frequency de-
creases with the increase of H,. When H goes beyond a
certain value, the particle magnetization becomes sa-
turated and the resonant frequency in this region in-
creases with the increase of H,. The profile of the reso-
nant frequency therefore shows a two-dimensional cusp-
like surface whose acute end points are located in the
horizontal a-H, plane. The locus of these end points is
shown in Fig. 9. From Figs. 8 and 9 it is seen that the
resonant frequency has very little dependence on a if a is
small. This situation corresponds to the dilute loading of
the particles.

Figures 10 and 11 show, according to Eq. (37a), the
real and imaginary parts of u, as functions of the particle
volume fraction v and frequency w /47y M, respectively.
The particles are prolates with b =a /2, and the external
field H is chosen to be 0.5. In these plots v is taken from
0 to 0.13 (maximum particle loading in this case), and
o/4myM; from O to 2. From these figures it is seen that
resonance is most pronounced when the particle loading
is high. The largest amplitude of resonance occurs at
a =0.5, where the peak values of u,(real) are 3.3 and
—1.12 and the peak of u,(imaginary) is 6.93. Away from
the resonance p,(real)=1 and u,(imaginary)=0. Plots
for u, and k can also be obtained from Egs. (37b) and
(37c). However, they would show almost identical ap-
pearances as for u; in Figs. 10 and 11 and are therefore
omitted. We mention here only that the maximum peak
values (at @ =0.5) are 4.46 and —0.33 for u,(real), 6.71
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FIG. 9. Saturating field of Fig. 8.

for p,(imaginary), 2.21 and —2.09 for «(real), and 6.42
for k(imaginary). The common feature of u;, 15, and « is
that they have very little dependence on a when a is
small, again, the situation of dilute particle loading.

IV. CONCLUSIONS

We have calculated the demagnetizing factors associat-
ed with magnetic spheroidal particles arranged in cubic
lattices. For a dilute concentration of particles, the
demagnetizing factors do not vary with the concentration
and are independent of the type of lattice structure.
When the particle concentration increases further and
approaches the percolation limit, the demagnetizing fac-
tor, associated with the direction in which the particles
are touching, decreases. There is no abrupt change in the

Re[[l

FIG. 10. Real part of pu, as a function of the particle volume
fraction v and frequency /47y M|, for prolates (b =a /2) with
a simple-cubic coordination.

demagnetizing factors for the case when the particle den-
sity reaches the percolation limit.

The total free energy of the particle contains the
demagnetizing energy terms which represent the self-
demagnetizing energy and magnetostatic energy coupling
from other particles. Although the free energy is purely
magnetic, elastic and other energy terms may be added to
the total energy of the particle.

Based upon the above free energy, the permeability
tensor of the spheroidal magnetic particles dispersed in
the same cubic lattices was calculated. The dependence
of wy, W1, 4y, and k on the particles’ dimension and as-
pect ratio have been formulated without assuming the di-
lute particle-loading approximation. We found that the
ferromagnetic resonant (FMR) frequency and the per-

Impl

FIG. 11. Imaginary part of u, as a function of the particle
volume fraction v and frequency w/4myM, for prolates
(b =a /2) with a simple-cubic coordination.
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meabilities show significant variations only when the par-
ticle volume loading is high. No anomalous behavior is
found for the permeability even at the percolation limit.
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APPENDIX
The prolate spheroidal coordinate (u,v,¢) is defined as
x =c sinhu sinv cos¢ ,
y =c¢ sinhu sinv sing ,

z =c coshu cosv ,

Ik=fffd7e“ik'r

single
particle

and the volume element is
dr=dx dy dz
=¢3(sinh?u +sinv)sinhu sinv du dv d .

Consider a single spheroidal particle where the coordi-
nate origin locates at the particle center. The particle
surface is bounded by

u=uy=cosh™!(a/c) .

Let the wave vector k have the spherical coordinate
(k,Bg,dp). This implies

k-r=k(x sinf,cosd,+y sinfysiny+z cosdy)
=ck[coshu cosv cosfy+sinhu sinv sinf,cos(¢ — )] .

Therefore,

u
=c3fo ‘du foﬁdv(sinhzu +sin?v )sinhu sinv exp(ick coshu cosv cos6y)I; ,

where integral I, is defined by
I,= fozﬂd¢exp[ick sinhu sinv sinfycos(¢— ;)]
=2mJy(ck sinhu sinv sin6)

and J, is the Bessel function of order zero defined by

To)=— [Tdye

— it cosm
27 Yo

Therefore, I, can be rewritten as

Ik=27-rc3fo *du(sinhu)I,

with I, defined by

I,= fﬁl la'n(coshzu —n?)explick cosOycoshun)J,[ck sinfgsinhu (1—n?)

=2f01d77(008h2u —n?)cos(an)Jo[B(1—n*)1/?] .

Here, variables a, 3, and 1 are defined by, respectively,
a=ck cosf,coshu ,
B=ck sinf,sinhu ,

7=COoSv .

1/2]

After using the following equality,!! as well as its second derivative,

. _ sin(a*+p%)'?
fo dy cos(an)Jo[ﬁ(l—Uz)l/z]_W ’

one obtains
c2k?cos?6y+1

I. =4 3 a/cd 2
k= Ame fx 5 [ ‘é‘ c2kX(£*—sin6,)

3 cos?0,£2 ]

c2k(£2—sin%6,)?

3 cos?6,E?
1 o8 cos[ck (£2—sin%6,)]'? | ,

sin[ck (£2—sin6,)!/?]
ck (£2—sin?6,)'?

CPkAE—sin20y) ¢ kAE —sin’6,)
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where £ is defined by
&=coshu .

Now, changing the variable from £ to s defined by
s=c&

and noticing that

k’sin*0,=k}+k?,
k*cos’8,=k? ,

one obtains Eq. (13a). Equation (13b) can be obtained
from Eq. (13a) if ¢ is changed to —ic and the integration
limits of s are changed from “c to a@” to “0 to b.”
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