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Search for a correlation length in a simulation of the glass transition

Richard M. Ernst and Sidney R. Nagel
The james Franck Institute and The Department ofPhysics, The University of Chicago, Chicago, Illinois 60637

Gary S. Grest
Corporate Research Science Laboratory, Exxon Research and Engineering Company, Annandale, New Jersey 08801

(Received 26 November 1990)

We have looked for evidence of a correlation length in a molecular-dynamics simulation of the
glass transition. We have studied the correlation functions of both the translational order of parti-
cle positions and the orientational order of nearest-neighbor bond angles, and have seen no indica-
tion of a diverging length scale. We also present data from the simulation, which extend recent lab-
oratory measurements of the frequency-dependent specific heat and thermal conductivity.

I. INTRODUCTION

The glass transition, that is the freezing of a super-
cooled liquid into an amorphous solid, has thus far frus-
trated all attempts to characterize it as a thermodynamic
phase transition. Many, perhaps all, liquids, when cooled
sufficiently rapidly to below their equilibrium freezing
temperatures, bypass crystallization and undergo such a
transition into a glass. As a liquid is cooled towards the
glass transition, its characteristic time scale grows rapid-
ly, as measured by any of a number of experimental
probes (such as viscosity or dielectric susceptibility).
Eventually, it exceeds the laboratory time scale of the
measurement itself; therein lies the difficulty in distin-
guishing a thermodynamic glass transition from kinetic
freezing. One must distinguish between a divergence of
the time scale at a nonzero temperature on the one hand
from a time scale which merely continues to increase and
which diverges at zero temperature on the other. The
problem is that we cannot practically remain in equilibri-
um close to the apparent transition temperature. A ma-
jor step toward resolving the dilemma would be the deter-
mination of an order parameter underlying the transition.
The discovery of a diverging length scale associated with
the glass transition, similar perhaps to the correlation
length in a magnetic transition, would enhance our un-
derstanding of the glass transition and of the glassy state.

Perhaps the most convincing argument favoring the
view that there is an underlying phase transition is due to
Kauzmann. ' The liquid has a larger specific heat and
therefore a higher rate of entropy increase with tempera-
ture than does the crystal. If one extrapolates to low
temperature, the liquid entropy passes below that of the
crystal at a nonzero temperature. This seems physically
implausible, although it does not violate any thermo-
dynamic laws. However, further extrapolation of the en-
tropy curve to zero temperature results in a negative en-
tropy. We cannot ignore such a situation. One plausible
resolution to the paradox is to hypothesize the existence
of a phase transition at or above the temperature at
which the liquid and solid entropies cross. Indeed, in all

known cases the apparent glass transition intervenes be-
fore this situation arises.

Experiments to date have been unsuccessful in identify-
ing the glass transition as a thermodynamic transition
with a corresponding divergent length scale. Susceptibili-
ty measurements, including very detailed studies of
dielectric response for a number of glass formers over a
broad range of temperature and frequency, indicate no
singularites near the transition temperature; one might
expect to see such singularities in a system whose correla-
tion length is diverging. Studies of nonlinear susceptibili-
ties, such as have been successful in identifying a corre-
lation length in spin glasses, have likewise shown no evi-
dence of a diverging length scale at the structural glass
transition. In another attempt to find a correlation
length characterizing the transition, a recent experiment
employed polystyrene spheres of various sizes to probe
the viscosity of an organic glass former at different length
scales. This study also yielded a null result and thus con-
tradicted an earlier measurement which had reported a
difference between the microscopic and macroscopic
viscosities.

Computer simulations are well suited to the task of
searching for different order parameters in condensed
matter systems. Molecular dynamics techniques provide,
in principle, complete information about the system un-
der study, including the position, velocity, and potential
energy of each particle. With such data, one can calcu-
late correlation functions and thermodynamic parameters
with relative ease. Moreover, computer simulations
make accessible some physical parameters, such as the
frequency-dependent thermal conductivity lc(co) and the
constant volume specific heat c„which are ordinarily
quite difficult to measure in the laboratory.

While simulation studies offer us a powerful tool, a
number of caveats must be noted. Statistical mechanics
concerns itself largely with large numbers of particles,
while present day computers allow meaningful simula-
tions of far fewer than the 10 particles we would ideally
want. (The simulation presented here contains 500 parti-
cles. ) Also, even the longest computer runs, which may
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take days or weeks of clock time, are limited to the
equivalent of nanoseconds from the point of view of the
system being simulated. Despite these drawbacks, simula-
tion "experiments" of the glass transition ' have pro-
duced data in good agreement with conventional mea-
surements in several key respects. Fox and Andersen
have demonstrated that the density of the simulated glass
state is a function of the cooling rate, and that this densi-
ty shows hysteresis as the system is heated and cooled.
They also found a departure at the glass transition tern-
perature from the liquid state behavior of both volume
and enthalpy versus temperature. Grest and Nagel have
seen a frequency-dependent specific heat in their simula-
tion. Mountain and Thirumalai see evidence of nonex-
perimental relaxation, with a relaxation rate which
diverges at finite temperature. All of these signatures
have been seen in actual glass formers.

This paper is divided into six sections: in the next sec-
tion, we discuss the simulation itself, summarizing the
molecular dynamics technique. We then present new
data on the frequency-dependent thermal conductivity
and constant volume specific heat. A section on transla-
tional order follows, in which we examine the correlation
of the particle positions over time and space. In Sec. V
we investigate the possibility of orientational ordering,
that is the correlations between nearest-neighbor bond
angles. A discussion section concludes the paper.

II. THE SIMULATION

The simulation we present in this paper is the same as
that used by Grest and Nagel. This consists of both con-
stant pressure and constant volume molecular-dynamics
simulations of 500 argonlike particles in a box with
periodic boundary conditions. The particles interact via
a modified Lennard-Jones potential

12 6
ogJ. o jJ

U, (r)=4eS(r)

UJ(r) is the interaction energy between particles i and j,
which are separated by a distance r, c. is the energy scale
of the interaction, and o.;- is the sum of the radii of parti-
cles i and j. S(r) is a smoothing function which brings
the interaction energy smoothly to zero at finite separa-
tion:

S(r)= ~ I —(r —r&) (3r, —
r& 2r)/(r, —r&), r& (r (r, —

O, r)r, ,

where we have used r& =1.9o.; and r, =2.3o.; . Forcing
the potential to zero at finite r greatly reduces the num-
ber of particle-particle interactions that need to be calcu-
lated, allowing for a system of more particles and longer
runs. However, truncating the potential, as is often done,
produces discontinuities in either U, (r) or its derivative,
and decreases the degree to which energy is conserved.
The form for S(r) shown in Eq. (2) allows us to run the

simulation for very long times (on the order of 800,000
time steps), while at the same time conserving energy to
one part in 10 . In order to inhibit crystallization, the
system is a binary alloy, with 80/o large particles of di-
ameter o., and 20% small particles of diameter 0.8o.. o.;
in the potential thus has the values: o.;.=o. between two
large particles, o.; =0.9o between a large and a small
particle, and o.

,
=0.8o. between two small particles.

Both large and small particles have the same mass, m.
All quantities quoted in this paper are stated in terms

of the natural units of the potential; thus distances are
measured in units of o., temperatures are given as
T*=Tkii/e (kii is Boltzmann's constant), and time is
given in units of r=o(m/e)' . In our simulation we
used a time step At=0.0025~. We studied the system at
several different temperatures, ranging from T*=1.00 to
T*=0.02. The apparent glass transition temperature is
about T*=0.40, while the freezing temperature is
T*=0.80 at p*=0.95 (p* is the density in units of o. ).
Thus, T*= 1.00 is a well equilibrated liquid, and
T =0.17 is a solid, virtually devoid of structural rear-
rangement on the time scale of this simulation.

Cooling of the system (which is done at constant pres-
sure) is accomplished by lowering the temperature of a
heat bath, to which the system is weakly coupled, by
AT*=0.1 and equilibrating for 60&. The process is re-
peated until the desired temperature is reached, at which
point the coupling to the heat bath is turned off. The end
product of this cooling process is used as the starting
state for each of the long micr ocanonical constant
volume and constant pressure runs. In the constant pres-
sure simulation, the walls are allowed to move, and the
wall mass is taken to be the same as that of the particles
so that the wall motion occurs at high frequency and does
not affect the low-frequency dynamics in which we are
principally interested.

The simulation shows many indications of a glass tran-
sition and of glassy dynamics. The system can be
quenched into a low-temperature solid which remains
amorphous over the entire duration of the simulation
run. As the glass transition temperature T*=0.40 is ap-
proached, the diffusion constant goes smoothly to zero,
and the specific heat drops precipitously over a narrow
temperature interval. Enthalpy, which decreases linearly,
and density, which increases linearly, with decreasing
temperature in the liquid, both begin to deviate smoothly
from the liquid behavior at T*. The specific heat (at both
constant pressure and constant volume) has also been ob-
served to be frequency dependent. A frequency-
dependent c is in agreement with experiments' ' which
show that low-frequency relaxation modes contribute
significantly to the enthalphy. These results were dis-
cussed in greater detail by Grest and Nagel.

III. THERMODYNAMICS AND TRANSPORT

A. Thermal conductivity

Several theories which have been developed to include
the presence of slowly relaxing modes in a glass conclude
that the thermal conductivity should become frequency
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+JEy(0)JE (t)+J~,(0)J~,(t) ),
where the thermal current JE is defined by

(3)

dependent in the vicinity of the glass transition. Jackie'
presents a phenomenological model based on therrno-
viscoelastic theory which assumes that configurational
modes, in addition to phonons, conduct heat. The result
is a thermal conductivity with a small (a few percent)
frequency-dependent component. Oxtoby' describes a
hydrodynamic theory which also includes slowly relaxing
internal modes. He concludes that the thermal conduc-
tivity is frequency- and wave-vector dependent. In his
model, an apparent frequency-dependent specific heat is
regarded merely as a convenient way to allow the in-
clusion of the time development of the slow modes.

Generally, laboratory experiments measure some com-
bination of c and ~. Only recently' has it been possible
to distinguish clearly between the two quantities. While
these results have shown a very distinct dependence of
the specific heat on frequency, no frequency dependence
was found in the thermal conductivity to within the ex-
perimental error of a few percent. The simulations of
Grest and Nagel have already shown a frequency-
dependent specific heat (both c and c, ). The existence of
a frequency dependence in the measured value of c, ap-
pears to refute the contention of Zwanzig '" that the only
frequency dependence should occur in (c —c, ). We
present here a calculation of the time dependence of the
thermal conductivity.

We have calculated the thermal current correlation
function (derived from the Kubo-Greenwood formu-
ia21) .

1
CE(t) = (JE„(0)JE (t)

As in Ref. 8, in order to find the frequency-dependent
specific heat we first calculate the kinetic energy correla-
tion function K(t):

X( [T(t+s)—T][T(s) T]—),K(t)=
T2 (6)

where T(s) is the instantaneous temperature at time s. T
is the average temperature, and the angled brackets
represent an average over starting times s. The specific
heat in the microcanonical ensemble is related to K(t) by

oo

c(co)= ——f K(t)e' 'dt
3 0

We show in Fig. 1(b) the curves of K(t)/K(0) for the
same temperatures as in Fig. 1(a). Notice that
CE(t)/CF(0) decays to zero, whereas in the vicinity of
the glass transition (T*=0.40 and 0.32), K(t)/K(0) does
not. This indicates that there is considerable time (or fre-
quency) dependence in the specific heat, but not in the
thermal conductivity below a typical phonon frequency.
There is very little statistical uncertainty in the result, as
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V is the volume of the system, v, is the velocity of particle
i, v i is the x component of that velocity, r; is the separa-
tion between the particles, and the derivative is taken
with respect to the x component of the particle separa-
tion. JE~ and JE, are similarly defined. The frequency-
dependent thermal conductivity is

1~(co)=f CF(t)e' 'dt . (5)

The correlation functions, Cz(t)/Cz(0), for the con-
stant volume simulation are plotted in Fig. 1(a) for a
variety of temperatures. We observe the same qualitative
results as Amar and Mountain found for the soft-sphere
model. Note that at each temperature, the correlation
function decays to zero within a very short time. The re-
laxation time for these decays is approximately 0.5~, in-
dependent of temperature. This is just below a charac-
teristic period for a phonon in the system. This result is
obtained in the same range of temperatures for which the
specific heat was found to be frequency dependent.

0.5

0.0
—0.5

0.0 0.1 0.2 0.3 0.4 0.5

FIG. 1. {a) C~(t)/CF(0), the thermal current correlation
function calculated at constant volume vs time for different tem-
peratures. (b) The kinetic energy correlation function
K(t)/K(0) calculated at constant volume vs time for different
temperatures. In both (a) and (b), the dashed curves represent,
from top to bottom, T*=0.81, 0.52, 0.40, 0.32, 0.17, and 0.02.
For clarity, the curves are offset vertically from one another by
0.5.
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the correlation functions are well averaged and show no
features (to better than l%%uo) in the t)0.5r range. The
simulation thus extends the range of validity of the labo-
ratory result, and does so with considerably less uncer-
tainty.

10

B. Constant pressure and constant volume speci6c heats

Comparing the constant pressure and constant volume
specific heats c and c„,with the coe%cient of thermal ex-
pansion a, and the isentropic compressibility ~, allows us
to gauge the degree to which the two simulations (con-
stant pressure and constant volume) represent the same
system. Since the constant pressure simulation includes
movable walls which interact with the particles, it is pos-
sible that the dynamics of the system may be adversely
affected. In equilibrium,

0
0 4 6

T*n2/x, p

10

T~2
(c —c„)

cU p~s

where a and x, can be calculated from

FIG. 3. (c~ —c, )e~/c, vs T*n /~, p. The comparison shows
the equivalence between the simulations of constant pressure
and constant volume.

and

( [ V(s) —V] [ V(s) —V] ),1

VT assumption that the dynamics of the walls of the box do
not compromise the simulation.

a= —
c~ ( [T(s)—T][V(s) —V] ), .N (10)

p is the density, V(s) is the volume at time s, and V is the
time-averaged volume. The expressions in angled brack-
ets are averaged over the time s. u and ~, are plotted as
functions of T in Fig. 2. As can be seen in Fig. 3, the
equality of Eq. (8) is very closely obeyed. This indicates
that the constant volume and constant pressure simula-
tions can be treated as the same system under different
external conditions. These results are consistent with the

IV. TRANSLATIONAL ORDERING

While glasses lack the long-range translational order of
crystals, the possibility of persistent short- or medium-
range order still exists. We look, therefore, for evidence
of freezing into long-lived clusters of solid material
within the liquid, which grow as the system is cooled
through the transition.

The space-time correlation function, or density-density
correlation function

N N

G(r, t ) =—g + 5( ~r;(t +s ) —rj(s) ~

r)—
S

1.0—

0.8—

0.6—

I

/
/

/
/ r

/ r
/

measures the average probability of finding a particle at
time t, a distance r away from where a particle was at
time 0. The angled brackets indicate an average over
starting times, s. The 5 function is discretized, so that
5(r)=1 for 0(r ~br, and 5(r)=0 otherwise. We note
that, beyond the obvious smoothing at large values of Ar,
none of the results in this paper are affected by the choice
of bin width Ar.

The pair distribution function
0.4— /
0.2— Po

(12)

0.0
0.0 0.2 0.4 0.6 0.8

I

1.0

FIG. 2. Coe%cient of thermal expansion, a, and isentropic
compressibility, ~„vs temperature. The compressibility has
been multiplied by 10 for clarity. The solid and dashed lines are
guides to the eye.

indicates the direction-averaged local density a distance r
from the average particle (po is the average density).
When analyzing results for G(r, t), we focus on values of r
which correspond to peaks in g (r), that is, nearest neigh-
bors, next nearest neighbors, and so on, since these are
the positions where most particles reside and where the
best averaging can be accomplished.

Figure 4 shows g(r) for six temperatures studied. The
most notable feature is the broad peaks, characteristic of
amorphous systems. A split second peak has often been
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—T' = 0.17
—T' = 0.39
. . T' = 0.80

0
0

FIG. 4. The pair correlation function, g(r), vs distance for
the temperatures T*=0.17, 0.39, and 0.80. g(r) is normalized
to unity at large values of r.

pointed out as a hallmark of glassiness, ' and we see some
evidence of such a peak, albeit a diffuse one, particularly
at the lowest temperature, T =0.17. The split second
peak is not as sharp as those seen by others because our
system is a binary alloy. In a monatomic system we
found a more sharply split second peak. Notice also the
growth of the peaks, in particular the first peak, as the
temperature decreases.

Figure 5 shows 6(r, t)/G(r, O) for the peak values of r
We include the first four peaks in g (r), since they are well

defined and are contained wholly within the box which
defines the system size. At all temperatures and peak po-
sitions, there is an initial very fast relaxation, followed by
a slower decay to a nonzero asymptote. We have
identified the short-time behavior as motion due to vibra-
tions about local equilibrium positions. The structural
relaxation shown by the slower decay is what interests us.
At high temperature the relaxations all follow a smooth
curve. The relaxation at the lowest temperature,
T*=0.17, does not follow any smooth form as was found
at higher temperatures. This is likely because at this low
temperature particles relax extremely slowly so that the
entire simulation spans less than one decay time.
Sufficient averaging of the data is thus not possible at
T*=0.17. If we look at G(r, t)/G(r, O) for values of r
corresponding to the minima of g ( r), the correlation
functions grow with increasing t, but still show much the
same exponential approach to their final values as do the
peaks. Since these off-peak correlation functions convey
the same information as the peaks, we focus only on the
peaks. We again note that the choice of a binning width
b, r does not affect the structure of G (r, t).

We have fit the correlation functions to a simple ex-
ponential with a nonzero asymptote:

G ( r, t ) = A [6„—( G„I)exp( —t /~G ) ] . — (13)

6„ is the infinite-time asymptote, and ( AG „)defines the
amount by which the correlation function decays from
t =0 to t = ~. ~& is the exponential relaxation time of
G(r, t). Since the first few time points for each correla-
tion function are primarily due to vibrational relaxation,
we exclude these points from our fits. We typically ig-

1.0

o.s )

o.s &

0.5-

1.0

Q.s I

(0) 7 ~0.17 p 5

0.4

1.0

0.9

Q.s i

~0.7 ~

+ 0.6-

(b) T' 0.31 p5

OA

(c) T'-0.36

0.3
0

1.0

0.9

0.8

100
0.3

150 0
1.0,

0.9

o.s l

- ~0.7-~

.Ro.s ~

I

50 100
tA

0.3 I

150 0 10 20 30
0 t/X

0.9

0.8

I

40 50

0.5

OA

(d) T 0.39 p5

OA

( }T 0.45 05

0.4-

(f} 7 ~0.80

0.3
0 10 20

t/c

0.3
40 0

I I

10 20
t/w

0.~ I I I

30 5.0 0.5 1.0 1.5 2.0 2.5
t/c

FIG. 5. The space-time correlation function, G(r, t) vs time. Figures 5(a)—5(f) represent T*=0.17, 0.31, 0.36, 0.39, 0.45, and 0.80,
respectively. At each temperature, the curves, from bottom to top, correspond to the first through fourth peaks. The smooth curves
are the best fits to the exponential form of Eq. (13). The data for T*=0.17 (a) could not be fit to the functional form.
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nore the data for t & ~; we have checked that the particu-
lar choice of a low-time cutoff does not change the fitted
value of rG (the fit parameter which interests us most) by
more than a few percent. The structural relaxation por-
tions of all of the correlation functions are observed to be
exponential, and are ftt by Eq. (13) quite well.

We have looked for an increase in the relaxation time
measured at different values of r at different tempera-
tures. The existence of such an r-dependent relaxation
time would indicate the presence of an underlying length
scale. If the system were freezing into progressively
larger clusters as we cool through the transition, we
would see all four peaks with short relaxation times at
high temperatures; as the temperature is lowered, the
curves for small values of r would begin to increase before
those corresponding to larger values of r. Figure 6 shows
7 G, the fitted exponential decay constant for the first four
peaks in g(r), plotted as a function of temperature. No-
tice that all four peaks have roughly the same relaxation
rates at each temperature, with very fast relaxation at
high temperature and relaxation too slow to quantify at
the lowest temperature. We see here no length scale asso-
ciated with the glass transition. Instead, we must con-
clude that by this probe, at least, the system simply be-
comes more and more viscous, regardless of the length
scale at which we view it.

While G(r, t) cannot be measured directly, its spatial
Fourier transform F(q, t) can be determined by neutron
spin-echo scattering. Mezei, Knaak, and Farago have
measured F(q, t) for the ionic system Cao 4Ko s(NO3)] 4

for times less than 2X10 sec. By using inelastic neu-
tron scattering, one can also determine the temporal
Fourier transform, S(q, co). All of these measurements
indicate that, as expected, the relaxation time is increas-
ing as T decreases. In accord with our results for G(r, t),
they give no indication of a correlation length which in-
creases as the temperature is reduced. Similar results
have also been obtained from molecular dynamics simula-

tions of binary Lennard-Jones systems by Ullo and Yip.
The curves for F(q, t) obtained in our simulation are very
similar to those of Ullo and Yip.

V. ORIENTATIONAL ORDERING

Following the work of Steinhardt, Nelson, and Ron-
chetti and Jonnson and Andersen, we turn our atten-
tion to bond orientational ordering. Motivated by ideas
such as hexatic ordering in two-dimensional solids, they
looked not for the sort of translational ordering of parti-
cles apparent from the density-density correlation func-
tion, but for correlations in the nearest-neighbor bond an-
gles. The procedure involves evaluating the spherical
harmonics, Yl (H, p), using the bond angles as argu-
ments.

By averaging over bonds, they quantified the degree to
which the bonds, on average, display the general symme-
try of the different spherical harmonics used. Random
bond angles tend to cancel out in the average over bonds
of the spherical harmonics, while correlated bond angles,
no matter where they are located in the system, add
coherently.

In our simulations we first evaluate
N 2 '1/2

4 1 bonds

2l+1 ~ N g Im(
m = —1 bonds i =1

(14)

While QI does not by itself measure any length scale
dependence in the orientational ordering, it indicates the
sort of angular symmetry present in the sample. This
quantity was calculated by Steinhardt et al. , and calcu-
lating QI here will serve as an additional basis for com-

parison between our results and theirs. The sum is taken
over all bonds labeled by i In Fig.. 7 Q& is evaluated for a
range of l values and temperatures. For the purposes of
this and all other bond correlation functions, nearest
neighbors are taken to be those particles whose separa-
tion is less than the value of r corresponding to the first

30—
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FIG. 6. The exponential relaxation time, ~G, obtained from
fits of the data in Fig. 5 to the form of Eq. (13). Notice that all

peaks show approximately the same relaxation time at each
temperature, and that the relaxation times increase at low tem-
peratures.

FIG. 7. The quantity Q& for four temperatures. Notice the

growth of Q, =6, corresponding to threefold symmetry, as the

temperature decreases.
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gles, and along with an I= 10 peak, is characteristic of the
icosahedron, a locally energetically favorable
configuration for Lennard-Jones solids. While the data
for Ql does suggest icosahedral symmetry, it is not the
most sensitive test of such local ordering. Since icosahe-
dra (unlike cubes, for example) cannot tessellate space, we
should not expect icosahedral ordering to be present over
length scales much greater than the nearest-neighbor
spacing. The average in QI, which is taken over the en-
tire system, is therefore less than would be expected for a
pure icosahedron. Our results agree qualitatively with
those of Steinhardt et al.

We now expand the search for bond orientational or-
dering by looking at correlations between bonds in both
time and space. We first examine the spatial correlation
of bond positions. In direct analogy with the particle
space-time correlation function, we look at

FIG. 8. The bond pair correlation function, go(r), vs distance
for the temperatures T*=0.17, 0.39, and 0.80. go(r) is normal-
ized to unity at large values of r.

bo~d ~' +'~ bonds~'~

G (r, ts)=( g g (Il R(t+ )s
—R (s)) —r)),

i=1 j=1

(15)

minimum in g(r) The .position of the bond is the mid-
point of the line joining the two particles, and the polar
and azimuthal angles 0 and cp are taken with respect to a
coordinate system fixed by the box. By averaging over allI values, we insure that the choice of a particular coordi-
nate system does not affect the results.

The important feature to note in Fig. 7 is the steady
growth in the 1=6 peak as the system is cooled. This
l=6 peak indicates threefold symmetry in the bond an-

where R; and R- denote bond positions, and the angled
brackets again denote an average over starting times s.

We undertake exactly the same sort of analysis with
Go(r, t) as we did with G(r, t) go(r) is. analogous to g(r)
and is simply the probability of finding a bond a distance
r away from any other bond. Figure 8 shows

g()(r) =Go(r, t =0)/r2

for three temperatures studied. We see exactly the same
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FIG. 9. The bond correlation function Go(r, t) vs time. Figures 9(a)—9(f) represent T*=0.17, 0.31, 0.36, 0.39, 0.45, and 0.80, re-
spectively. At each temperature, the top curve corresponds to the second peak, and the bottom curve corresponds to the first peak.
The smooth curves are the best fits to Eq. (13). The data for T*=0.17 (a) could not be fit to the functional form.
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FIG. 10. The exponential relaxation time, ~GO, obtained from
fits of the data in Fig. 9 to the form of Eq. (13). Notice that
both peaks show approximately the same relaxation time at
each temperature, and that the relaxation time increases as the
system is cooled.

FIG. 11. The function g6(r) vs distance for the temperatures
T*=0.17, 0.39, and 0.80. The general oscillatory shape of the
curves is in marked contrast to the data in Ref. 28. Higher tem-
peratures have higher peaks and deeper troughs than do the
lower temperatures.

qualitative behavior as in g(r): broad peaks which grow
with decreasing temperature and a split or broadened
second peak. Notice that the positions of all of the peaks
in go(r) occur at roughly half the distance from the origin
as do the corresponding peaks in g(r). This is reasonable
since, if we consider the distances between nearest-
neighbor bonds in an hcp lattice, for example, the bond
positions also form an hcp lattice with half the original
lattice spacing.

In Fig. 9, we see for Go(r, t) qualitatively the same be-
h avior as in G(r, t). In this case, however, only the first

f
two peaks in go(r) yield a definable decay in G (r t) as
unction of t. Peaks beyond the first two, while well

I

defined in go(r), do not yield well-characterized relaxa-
tion curves in Go(r, t) As. with G(r, t), before the
structural relaxation begins to be observable we see an in-
itial very fast relaxation which we attribute to vibrational
motion. We fit the correlation functions [ignoring the
first few time points, as with the fits to G(r, t)] to the ex-
ponential form of Eq. (13), where the decay time is now
denoted as ~GO. ~GO is plotted as a function of tempera-
ture in Fig. 10. As for G(r, t), there is no indication in
Go(r, t) of a length scale since both peaks for a given
temperature relax at roughly the same rate.

We now examine the spatial and temporal correlations
between bond angles. The correlation function we use is

4 6 bonds b d

)'s ((), , p,. )l's ((),,qi,. )()((R;(S+s)—R (s)l ))s
m = —6 i=1 j=1

Go(r, t)
(16)

which is a generalization of the function G (r) used b
28Stienhardt et al. We sum over all bonds i at time t +s

and bonds j at time s. The denominator Go(r, t ) normal-
izes out the varying contribution to the sum at different
values of r due to different bond densities.

Figure 11 shows g6(r)=G6(r, t =0). [What we call
g6(r) is exactly the function G6(r) as specified by
Steinhardt et al. Our algorithm for computing g6(r)
differs from theirs as will be discussed below. ] Notice
that g6(r) is a dainped oscillatory function, with sizable
excursions to negative values. This result is in marked
contrast to the results of Steinhardt et al. , who see a
smooth monotonic decay of G6(r) at all temperatures.

In addition to a disagreement with Steinhardt et al. as
to the shape of the curves at each temperature, we also
find a different temperature dependence in G6(r). They
fit the G6(r) data to an exponential

[G6(r) exp( r—/g6) ], —

and treat g6 as a correlation length. As the system is
cooled, they see a growth in g6 which diverges at the glass

6 rtransition temperature. In contrast, we cannot fit G (r)
with a simple function of the form they used since our
data are dominated by oscillatory behavior. We therefore
have to treat each peak position separately. We see very
little difference in g6(r) from one temperature to another.
The peaks in g6(r) remain in roughly the same positions,
with only small shifts to lower values of r as the tempera-
ture drops. At T"=0.80, we also see a trough in g6(r)
preceding the first peak, which is not present at other
temperatures.

Since our results differ so markedly with those of
Steinhardt et al. , we have attempted to reproduce their
results using the coarse-graining prescription contained
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in their paper. Their procedure involves subdividing the
system into a lattice of 16X16X16 boxes. Each bond
makes a contribution to the sum of the spherical harmon-
ics at the eight vertices of the box in which it is con-
tained. The contribution of the bond to a given vertex is
weighted by its proximity to the vertex. It is the
(16X 16 X 16) vertices which are then correlated to give
the coarse-grained function G6(r)

The results for the coarse-grained G6(r) are shown in

Fig. 12 by the curves denoted "vertex coarse grained. "
Notice that much of the structure in G6(r) is washed out
by the coarse graining, and that this method yields results

closer to the smooth monotonic decay seen by Steinhardt
et al. They also mention a Fourier-transform technique,
which may have further filtered out the oscillations in
G6(r) E. ven using the coarse-graining procedure, we still

o not see any dramatic temperature dependence, and we
still cannot fit our data with a smooth monotonically de-
creasing function. Figure 12 also contains curves calcu-
lated using an alternate coarse-graining algorithm. In
this second case, each bond contributes an unweighted
amount to the center of the box in which it is contained.
The (16X16X16) centers are then correlated. These
curves, labeled "center coarse grained" are almost identi-
cal to the results obtained by our previous coarse-
graining procedure.

In order to make a more direct comparison with the re-
sults of Steinhardt et al. , we have also calculated g6(r)
for a monatomic system at T'=0.75, which is below its

F0

glass transition temperature. These results are show i
tg. 12(c). Our results for this system are much the same

as for the binary system and show strong oscillations as a
function of r. They thus differ considerably from the
course-grained results of Steinhardt et al. We also sh
in h

easos ow
in t at figure the two course-grained averages which
again tend to wash out the oscillations. It is not clear to
us that the course graining, which removes most of the
structure in the curves, is justified. We will not use any
coarse graining in the subsequent calculations.

Figure 13 shows G6(r, r) for six temperatures studied.
We plot correlation functions for only the first two peaks
in g6(r) Ther.e are three discernable peaks in g6(r), but
the third peak yields no well-defined relaxation in
G6(r, t). At all temperatures, both peaks show essentially
the same form of exponential decay as was seen in the
other correlation functions. The first peak here shows a
much longer decay time than is shown by the second
peak.

Th e G6(r, t) data were fitted to the same exponential
form [Eq. (13)] as were the other correlation functions.
As the temperature decreases, the decay times ~ f
both

7G6, Of

ot peaks increase, but we see no indication of preferen-
tial freezing at any length scale at any temperature. The
ratio of ~G6 for the first peak to that of the second peak
shows no meaningful trend, and is not monotonic in tem-
perature. Results for the decay times ~ are summa-G6
rized in Fig. 14. Note that the second peak shows no re-
laxation at temperatures T* ~0.31, and at T =0.17 even
the first peak does not decay. We conclude that the data
do not support the notion of length scale-dependent
freezing in of bond-orientational order.

-0. .0 0.5 1.0
monatomic

I I

1.5 2.0 2.5 VI. CONCLUSIONS

FIG. 12. g6(r) compared with the corresponding coarse-
grained quantity specified in Ref. 28. Figures 12(a) and 12(b)
represent T =0.39 and 0.80, respectively, and 12(c) represents
a monatomic system at T =0.75. The center and vertex
coarse-graining procedures are discussed in the text. Some of
the structure in g6(r) is evidently averaged out by coarse grain-
ing.

The molecular dynamics data indicate that the thermal
conductivity of the glass is independent of frequency,
while the specific heat is clearly frequency dependent.
Our simulation is thus in agreement with the only labora-
tory measurements to have determined the two quantities
separately. Apparently, the current models for heat
transport in glasses have overemphasized the importance
of the frequency dependence of the thermal conductivity.
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FIG. 13. The bond correlation function G6(r, t) vs time. Figures 13(a)—13(f) represent T*=0.17, 0.31, 0.36, 0.39, 0.45, and 0.80,
respectively. At each temperature, the top curve corresponds to the second peak, and the bottom curve corresponds to the first peak.
The smooth curves are the best fits to Eq. (13). The data for T*=0.17 could not be fit meaningfully to that functional form.

Comparison of the constant pressure and constant
volume simulations indicates that the two represent the
same system, and that the computational mechanism
needed for the constant pressure simulation does not ad-
versely a6'ect the results. This encouraging result shows
that simulations can be used to study both constant pres-
sure systems, which are experimentally accessible, as well
as constant volume systems, which ordinarily are not.

We have examined the molecular dynamics data for

30—

10—

evidence of a correlation length by studying both transla-
tional and bond-orientational ordering. We find no evi-
dence of length scale-dependent freezing as the simulated
system is cooled through the glass transition. The limita-
tions inherent in computer simulations have already been
noted, but we do not believe that the lack of a positive re-
sult is a direct result of these limitations. While the sys-
tem is quite limited in size (the box contains about eight
particles on a side), this is the scale at which we would
have expected to see correlated clusters of particles or
bonds. The correlation functions we studied were al-
lowed to decay to their asymptotic values, so the relative-
ly short-time duration of the simulation should likewise
not have obscured the results. Had we simulated a larger
system for a longer time, we presumably would have seen
much the same behavior but with less noise.

The conclusion we draw from this work is that if there
is a correlation length in glassy systems, it does not show
itself in the density-density correlation function, nor in
the orientational correlation functions we have calculat-
ed. These results parallel the laboratory experiments,
which also have been unable to identify a diverging
length scale.

0
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