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We describe an iterative technique for solution of the de Dominicis —Martin parquet equations for
lattice electrons and state the relationship of this approach to conserving extensions of Hartree-
Fock theory. We propose a physically motivated and computationally feasible pseudopotential ap-

proximation, which allows the solution of the parquet equations for the two-dimensional Hubbard

model. We present calculations of static and dynamic Hubbard-model correlation functions based

on the pseudopotential parquet and a simpler conserving approximation. For a wide parameter

range the pseudopotential parquet results are in nearly quantitative agreement with finite-lattice

quantum Monte Carlo results.

I. INTRODUCTION

Strongly correlated electron systems, including the
heavy-electron metals' and the high-temperature oxide
superconductors, ' have been studied using a wide
variety of theoretical techniques. Finite-temperature
studies have generally relied on some form of mean-field
theory, whether in the weak- ' or strong-coupling ' lim-
it. Mean-field theories ignore the effect of fluctuations,
which are expected to be particularly important in re-
gions of competing order (e.g. , antiferromagnetism and
superconductivity). In order to incorporate the detailed
effects of

fluctuations,

approximations which extend
mean-field theory are required. A powerful approach is
provided by direct quantum Monte Carlo (QMC) simula-
tion of correlation functions. ' This approach has a
number of limitations, however; in any case, more analyt-
ical techniques provide a useful complement to QMC.

In an earlier paper" (hereafter referred to as I) we
developed the formalism for a conserving extension of
mean-field theory for lattice electrons. The extension,
which we called the fiuctuation exchange (FLEX) ap-
proximation, self-consistently incorporates the effects of a
large class of magnetic, density, and particle-pair Auctua-
tions. This approach may be viewed diagrammatically as
an all-orders resummation of perturbation theory about
the weak-coupling, or band, limit. A similar approach
has been suggested by Ruckenstein and Schmitt-Rink'
for treating Auctuations in the strong-coupling limit.

In this paper we enlarge our discussion of extensions of
mean-field theory to include additional self-consistent-
field (SCF) approximations. In particular we consider the
group of approximations generally referred to as parquet
summations. This class of approximations was first con-
sidered systematically in a condensed-matter context by
de Dominicis and Martin' in their papers on renormal-
ization in quantum statistical mechanics. Approximate

parquet solutions for He and nuclear matter have been
studied since the work of Babu and Brown. '

We show that the FLEX approximation may be viewed
as the first step in an iterative solution of the parquet
equations for a lattice system. Subsequent iterations im-
prove the consistency of the particle-hole and particle-
particle scattering vertices which appear in complete
two-particle propagators and in the single-particle self-
energy. We introduce a physically motivated pseudopo-
tential approximation which provides a feasible means to
solve approximately the full parquet equations.

After developing the necessary parquet formalism in
Sec. II, we go on to calculate one- and two-particle Hub-
bard model correlation functions within the FLEX and
pseudopotential parquet approximations in Sec. III.
Wherever possible we compare our results directly with
QMC simulations for finite-lattice systems. We argue
that the pseudopotential parquet provides results with
nearly quantitative accuracy throughout the intermediate
coupling regime. Finally, in Sec. IV, we summarize our
conclusions on the validity of these SCF approaches and
comment on the outlook for improved solutions of the
lattice parquet equations.

II. PARQUET EQUATIONS

In Sec. II A we discuss the derivation of forrnal parquet
equations and their relationship to the FLEX approxima-
tion of I. In Sec. IIB we discuss a pseudopotential ap-
proximation that allows an explicit, but approximate,
parquet solution.

A. Formal derivation

The approximations described in I" are guaranteed to
satisfy a set of local conservation laws and to be internal-
ly self-consistent. ' ' The preservation of conservation
laws is crucial for obtaining a reasonable description of
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low-energy dynamics and transport. On the other hand,
these approximations do not satisfy a basic symmetry re-
lation implied by the Pauli exclusion principle: the full
particle-hole or particle-particle vertex I connecting two
states must be invariant under exchange, or crossing,
symmetry. In diagrammatic terms the exchange opera-
tion amounts to twisting the external legs of the vertex to
represent one of three possible channels. The channels
are characterized by the various ways in which the full
vertex may be decomposed as a ladder sum with irreduc-
ible rungs. The three possible decompositions are shown
in Fig. 1. Each W-derivable' approximation of the type
described in I generates specific expressions for the irre-
ducible vertices I ~" ( = I ~") and I ~ . The three different
summations which result from these irreducible vertices
are clearly not consistent with crossing symmetry. For
example, at Hartree-Fock level the transverse spin vertex
I ~" in the (12)-channel takes the form in Fig. 2(a). By
twisting the external legs (or, alternatively, turning the
diagram on its side) the corresponding contribution to
I + is found to be that in Fig. 2(b). This diagram is ir-
reducible in the (13)-channel, i.e., it is a separate contri-
bution to I + not present at Hartree-Fock level. The
same problem occurs when Fig. 2(a) is used to generate
contributions to the particle-particle vertex I ~+~ [Fig.
2(c)].

The lack of crossing symmetry at Hartree-Fock level
and in any higher-order N-derivable approximation limits
the quantitative accuracy of one- and two-particle corre-
lation functions. The problem is the following: the cri-
terion of N derivability ensures only that a consistent ex-
pression for the one-particle potential X appears at all
points in a calculation; it does not ensure that a con-
sistent expression for the two-particle potential 1 ""(I ~)

appears at all points. In particular, within the FLEX ap-
proximation of I, the two-particle potential which enters
the Auctuation propagator in X is always the bare in-
teraction U; on the other hand, when susceptibilities are
calculated, the two-particle potentials incorporate Auc-
tuation effects from crossed channels. If fluctuations
reduce the attractive interaction in a singular channel
from its bare value, the self-energy X calculated with the
bare potential overestimates the effect of interactions
(roughly speaking, too much electronic density is repelled
from the Fermi level). The only way to eliminate effects

(a) (l P")
~m + 0 ~ ~

(c)

FIG. 2. Illustration that the Hartree-Fock approximation is
not crossing symmetric. (a) Hartree-Fock approximation for
the complete transverse magnetic vertex. (b) Contribution to
the longitudinal magnetic and density vertices from applying
the crossing operation to (a). (c) Contribution to the particle-
particle vertex from applying the crossing operation to (a).

of this type is to arrive at a self-consistent expression for
the two-particle potentials rp", r ", and I wherever
they occur in an approximate theory. This includes oc-
currences in the self-energy and in susceptibilities (which
may be viewed as momentum- and frequency-averaged
matrix elements of the full vertex I ).

The formal means for generating self-consistent expres-
sions for two-particle potentials was developed in the
context of continuum Bose and Fermi systems by de
Dominicis and Martin' in the early 1960's. Since that
time this approach has been applied extensively in Fermi
liquid studies of He and nuclear matter. ' ' For nor-
mal Fermi systems it is necessary to solve a set of coupled
nonlinear equations for the three irreducible vertices I"P,
I "", and I . ' These equations take the diagrammatic
form shown in Fig. 3. Note that each vertex I represents
a matrix in space, time, and spin: within a single-particle
labeling scheme the matrix elements take the form I I&,

where the compound index l= [r&t&o &, rzt2ozI.
The parquet equations may be motivated formally by

iteratively improving the zeroth-order approximation

(2.1)

(a) :(rp):

(b) (b) {-ph) (birr) - + -
( ph~ r )

PP~

(c)

FIG. 1. Possible reductions of the full two-particle scattering
vertex I . (a) Particle-hole reduction based on I ". (b) Crossed-
channel particle-hole reduction based on I ". (c) Particle-
particle reduction based on I

(c)

FIG. 3. Parquet equations for irreducible vertices in the
three alternative channels. (a) I p", (b) I ", (c) I



8046 N. E. BICKERS AND S. R. WHITE

where A'" is irreducible in all three scattering channels.
The simplest choice for the fully irreducible vertex is just

(2.2)

M

where both the direct and exchange contributions to the
bare potential are implied. As discussed in I, this choice
generates the RPA two-particle propagators and suscep-
tibilities. The next contribution to A'" for a general po-
tential is the envelope graph shown in Fig. 4.
Throughout this paper we concentrate on the parquet
generated by the simpler choice of Eq. (2.2).

As mentioned above, non-Hartree-Fock contributions
to I P", I ", and I " may be generated by applying the
crossing operation to the three Hartree-Fock ladder ap-
proximations for I . It is easy to check that this pro-
cedure exactly reproduces the one-Auctuation-exchange
contributions [Fig. 5(a)] to V't' ' and V'""' found in I; the
Aslamazov-Larkin (AL) graphs, which necessarily ac-
company the one-Auctuation-exchange graphs in a strict-
ly 4-derivable approximation"' [Fig. 5(b)], appear as a
small fraction of the total set of contributions in the next
iteration of the crossing process. Note that the approxi-
mate form for the irreducible vertices after each iteration
may be obtained directly from the one-fluctuation-
exchange expressions in I if the coupling matrices v, are
replaced by V, from the previous iteration; with this
modification (and the omission of the AL graphs, which
close the approximation in the Baym-Kadanoff sense
after one iteration), the notation of I may be preserved in-
tact. Assuming the iterative improvement of the irreduc-
ible vertices by the crossing operation converges, this
process yields an explicit solution of the parquet equa-
tions with full crossing symmetry. The Hartree-Fock and
FLEX approximations may be viewed as zeroth- and
first-order elements in a hierarchy of successive approxi-
mations to the full parquet solution. Note, however, that
the full parquet is not guaranteed to satisfy the rigorous
conservation laws and thermodynamic self-consistency
criteria of the Baym-Kadanoff approximations.

The irreducible vertices generated by iterative solution
of the parquet equations must appear in the calculation
of the self-energy. Conversely, the self-energy must ap-
pear in all single-particle propagators within the expres-
sions for I ", I ", and I ". This means that the set of
coupled equations in Figs. 3 must be supplemented by
one additional equation representing the self-energy.
This equation has the diagrammatic form shown in Fig.
6(a), where spin labels are suppressed. As in the deriva-
tion of the FLEX approximation in I, some care is re-
quired to prevent double-counting of low-order terms.
For example, the contribution to I shown in Fig. 6(b) is

AlV

(0) (b)

FIG. 5. Examples of one-Auctutation-exchange and
Aslamazov-Larkin (AL) graphs. (a) One-fluctuation-exchange
contribution to the longitudinal magnetic and density vertices.
(b) AL contribution to the longitudinal magnetic and density
vertices.
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irreducible in the (12) particle-hole channel and might be
included as the first rung in a ladder of irreducible ver-
tices in this channel. This contribution is generally not
irreducible in the other two channels, however, and must
not be double-counted when ladder sums are performed
in those channels. The simplest way to prevent double-
counting is to separate out the term of O(UA'") for spe-
cial treatment [in analogy with the treatment of the term
of O(v ) in I], then to commence ladder sums based on
the irreducible vertices at O[v(I „) ]. The self-energy
then takes the form shown in Fig. 6(c).

The non-Hartree-Fock contributions may be written
out explicitly as follows:

FIG. 4. First contribution to the fully irreducible vertex A'"'

beyond A'""=U. The elementary vertices are represented here
by solid dots, rather than dashed lines.

FIG. 6. Self-energy diagrams for parquet approximations. (a)
Forrnal representation of the self-energy X in terms of the full
two-particle vertex I . (b) Diagrams which potentially give rise
to double counting in X. (c) Parquet approximation for the
self-energy in terms of irreducible vertices I „.
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X (11')=X' '( l l')+ X'~"'( l l')+ X/~'( l l'),
2' '( l l') = —p g A",~ 2.3.v(1' —3)[2G(3'—1')G(2 —3)G(3—2') —G(3' —3)G(3—2')G(2 —1')],

22'33'

X'~"'(ll')=Pg G(2 —3)[—,'v„(D D)—I „+—', v (M —M)I ].
23

Xg~'( l l') = —P g G(3 —2) [v, (S—S)I,+ 3v, ( T T)—l, ],
23

(2.3a)

(2.3b)

(2.3c)

(2.3d)

Here, as in I, the R matrices are uncorrelated Auctuation
propagators which include single-particle self-energies,
but omit the vertices I"„;and now

R (q ) =R (q) [1+PI „(q )R (q ) ] (2.4)

i.e., the bare interaction U, is replaced by I „ in each
channel. By introducing subtracted propagators R —R,
the terms of O(v I „) which would lead to double-
counting are explicitly removed. Note that in an iterative
solution the I „ in Eq. (2.3) are vertices determined at the
end of the preceding iteration.

In the simplest approximation

A'(z z 3.=v(1 —2)5(2 —2')5(1 —3'), (2.5)

and the expression for X' ' reduces to that found in I. In
writing Eq. (2.3b) it has been assumed that the approxi-
mation for A'" is itself crossing-symmetric and spin-
independent, i.e., of the same form as the bare interaction
U. In practice we shall adopt the approximation in Eq.
(2.5), so that X' ' has exactly the same structure as in I.

If v„vanishes for a particular channel (as, e.g. , v, does
in the Hubbard model), then contributions from that
channel drop out of Eq. (2.3). This does not mean that
triplet-pair Auctuations are absent from the self-energy in
the Hubbard model parquet; instead, they appear in the
irreducible vertices for other channels. They could be
made to appear explicitly if subtractions were made else-
where to prevent double counting.

B. Pseudopotential approximation

The equations represented diagrammatically in Figs. 3
and 6 constitute the full parquet approximation. For an
isolated nonmagnetic impurity in a sea of conduction
electrons these equations may be solved analytically ' to
extract the x-ray edge singularity. In one dimension the
same equations constitute the basis for the
renormalization-group analysis of zero-temperature
singularities in Green's functions and susceptibilities.
Considerably less is known about the behavior of the
equations in dimensions d 2; however, in three dimen-
sions approximate solutions of the parquet equations
have been studied extensively in the theory of Fermi
liquids such as He and nuclear matter. '"

Lattice systems are in some sense more amenable to
solution than continuum systems: momentum sums are
restricted to a Brillouin zone, rather than allowed to
range throughout all space. Despite this advantage, a full
solution of the parquet equations for a square or cubic
lattice appears presently out of reach. A limiting compu-

tational factor is the inversion of large matrices necessary
to perform the ladder sums in Auctuation propagators
beyond Hartree-Fock level.

In this section we develop an approximate solution of
the parquet equations motivated by a physical idea of
Berk and Schrieffer from the 1960s. In their paper on
spin Auctuations and superconductivity Berk and
Schrieffer employed renormalized RPA propagators,
within which the bare on-site Coulomb interaction U was
replaced by a smaller effective interaction U. This ap-
proximation was motivated by the observation that corre-
lation effects (in particular, the repeated singlet-pair
scattering process represented in Fig. 7) tend to reduce
the effective interaction in the magnetic channel. Such
effects are included in the first iteration of the parquet
equations beyond the FLEX level of I. The frequency
and momentum dependence of the renormalized magnet-
ic vertex may be quite complicated; however, Berk and
Schrieffer assumed the effect could be well represented by
simply introducing a new instantaneous on-site interac-
tion U. The size of the renormalization may be estimated
by choosing particular values for the incoming and out-
going frequency and momentum. We shall call vertex ap-
proximations of this form "pseudopotentials" in analogy
with the technique used to eliminate core-electron states
in atomic calculations. As in the atomic case, we shall
choose pseudopotentials which preserve a particular ma-
trix element of the full vertex (in our case, a susceptibili-
ty), then examine the transferrablity of the approximation
for other matrix elements.

The use of pseudopotentials of this type should be
reasonable when vertex renormalization effects are
caused by Auctuations which act over a broad range of
frequencies and momenta. On the other hand, a more
precise treatment of frequency and momentum depen-
dence is certainly required for the analysis of possible
Fermi surface singularities ' in the T~O limit. In the
nearly-half-filled Hubbard model, where large-Q spin
Auctuations play a dominant role, the most important
vertex renormalization (at least at intermediate tempera-

I I
l l
I

FIG. 7. Renormalization of the irreducible transverse mag-
netic vertex by repeated scattering in the singlet particle-
particle channel.
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tures) is the change in the magnetic vertex due to non-
singular singlet-pair and density fluctuations. A pseudo-
potential treatment seems particularly well suited to this
case (as noted by Berk and Schriefter in a more phenome-
nological context).

In general, three separate pseudopotentials must be in-
troduced to describe the irreducible vertices in a
Hubbard-like model. These pseudopotentials represent
scattering in the magnetic (I ), density (I"~ ), and
singlet-pair (I, ) channels. No triplet-pair vertex appears
since the amplitude for instantaneous occupation of a site
by a spin triplet vanishes. Our procedure for iterating
the parquet equations with pseudopotentials is as follows.
(a) Calculate full frequency- and momentum-dependent
vertices within the FLEX approximation of I (excluding
the AL diagrams); (b) using these vertices calculate a sus-
ceptibility corresponding to each of the three channels.
A choice of total frequency II and total momentum Q
must be made for each channel. For the two-dimensional
Hubbard model we have in all cases taken 0=0; we have
chosen Q=(n, ~) for the magnetic and density channels
and Q =0 for the singlet-pair channel. (c) Introduce
pseudopotential vertices U, U&, and U, by demanding

x,(Q &)= x, (Q &)
1+U„g, (Q, 0)

(2.6)

U~=U, =U =U . (2.7)

At higher iteration levels the pseudopotentials are, in
general, all di6'erent. Note, however, that at half-611ing
particle-hole symmetry implies Uz = U, if the pseudopo-
tentials are referred to Q=(~, vr) for the density channel
and Q=O for the singlet. (d) Recompute the self-energy
X replacing the bare Hubbard interaction U with the
pseudopotential approximations for the vertices in each
fluctuation channel. It is at this point that a nonrigorous
approximation is first introduced. The approximate self-
energy takes the form

X (k) =—g [G (k —
q ) V' '(q)+ G(k —

q ) V'~"'(q)1

q

Here y„ is the result from using the full frequency- and
momentum-dependent vertices, while y, is the corre-
sponding uncorrelated susceptibility, i.e., the result ob-
tained using fully dressed single-electron propagators, but
omitting the vertex I „(see Fig. 8). The sign in the
denominator is minus for the magnetic channel and plus
for the other two. Note that at Hartree-Fock level

where

V' '(q) = U g „(q), (2.9a)

V'&"'(q) =-,' UU, y,„(q) 1+ Uqypq q

+—UU y q(q)
3 1

2 ~ 1 —U ypqq
(2.9b)

V'~~'(q) = —UU, g (q) —1
1

1+Up q
(2.9c)

This simple form follows immediately by replacing the
full vertices I, with pseudopotentials in Eq. (2.3). The
approximation of instantaneous on-site pseudopotentials
allows the fluctuation propagators to be calculated ex-
plicitly by summing geometric series, as in the RPA.
More generally, these propagators can only be calculated
by numerical matrix inversion: it is this step which
makes full solution of the parquet equations unfeasible at
present (at least in two and three dimensions). (e) After
converging the self-energy recompute the vertices I „us-
ing the pseudopotentials U„ in crossed channels. (f)
Iterate steps (a—e) until the pseudopotentials (and the
self-energy) converge. (g) Calculate detailed frequency-
and momentum-dependent correlation functions using
the resulting full vertices I', . Note that it is crucial to
use the full vertices rather than the pseudopotentials to
calculate functions like the singlet d-wave and triplet p-
wave pair susceptibilities.

The pseudopotential approximation described above is
nonrigorous and precludes the treatment of a number of
interesting problems. In particular, triplet fluctuations
(which appear only in crossed-channel contributions to
the Hubbard self-energy when the representation of Fig.
6 is employed) are omitted completely from the iterative
process (see Fig. 9). So long as these fluctuations are
small and nonsingular, this omission is reasonable. How-
ever, in cases where a triplet-pairing instability is possible
(as in the low-density limit of the Hubbard model), these
fluctuations may strongly aQ'ect both the self-energy and
the irreducible vertices in crossed channels. The restric-

+G( —k+ q ) V'P~'(q )), (2.8)

Xr= x, +~it, i~
FIG. 8. Uncorrelated and vertex-corrected susceptibilities g„

and Xr.

FIG. 9. Rewriting of a triplet fluctuation contribution to the
self-energy in terms of longitudinal magnetic and density fluc-
tuations. The shaded vertex "h" represents a contribution to ei-
ther the magnetic or density vertices (i.e., I or I &).
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tion to instantaneous on-site pseudopotentials is then un-
suitable. The same problem arises whenever extended-
range fluctuations play an important quantitative role;
e.g., a more complicated approximation would be neces-
sary to treat renormalization effects due to d-wave
singlet-pair fluctuations. We comment briefly on the
form of possible extended-range pseudopotentials in Sec.
IV.

III. RESULTS

0.0

—0.2

—0.4

0k(&)

—0.6

4x4———8x8
16x16

In this section we present results obtained for the Hub-
bard model using the FLEX approximation of I and the
pseudopotential parquet approximation discussed in Sec.
II B. We begin with a detailed examination of technical
points involved in the solution, including effects of a finite
momentum mesh, finite frequency cutoffs, and the quanti-
tative importance of the Aslamazov-Larkin"' graphs.
We go on to compare results obtained using the FLEX
and parquet approximations with results from finite-
lattice QMC simulations. Properties discussed include
the single-particle Green's function; particle-hole and
particle-particle susceptibilities; and equal-time two-
particle correlation functions.

In the QMC calculations ' used for comparison
below, we have introduced auxiliary fields via Hubbard-
Stratonovich transformations to put the Boltzmann
weight factor exp( /3H) in —single particle form, then
summed over the auxiliary fields using Monte Carlo. The
calculations yield finite-temperature, imaginary-time one-
and two-particle correlation functions. The results are
exact for the finite lattices studied, except for the pres-
ence of (a) statistical errors and (b) errors due to finite
discretization in the imaginary time direction. The sta-
tistical errors in the calculations reported below are gen-
erally comparable or smaller in size than the symbols in
the figures; the discretization errors are typically on the
order of a few percent. Both types of error can be sys-
tematically reduced. The calculations use matrix stabili-
zation techniques to reach lower temperatures; however,
minus sign problems still limit the temperatures that
can be reached (except at half-filling).

A. Finite discretixation in momentum space

—0.8 k=(~,0)

u/t=4
T/t=0. 25
(n) =0.84

—1.0
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 10. Dependence of the FLEX Green's function Gq(~)
on discretization scale. Results are shown for 4, 8, and 16
meshes at the intermediate temperature T/t =0.25. The mean
density is ( n ) =0.84.

+G„(r), (3.1)

1.0

0.8

I ~ ~ u/t=4
T/t=0. 25
(B)=0.84

I

~ i

The quantitative error from solving SCF equations on
a finite mesh varies with the temperature scale. We illus-
trate the effect of discretization within the FLEX approx-
imation in Figs. 10—13. Results are shown for the
imaginary-time Green's function Gk(r), k=(m. ,0); and
the occupancy factor nk=(ci, cI, ). The mean density is
fixed at (n ) =0.84, and U/t=4. In Figs. 10 and 11
T/t=0. 25, while in Figs. 12 and 13 T/t=0. 05. The
Careen's function is calculated using the formula

0
GI, (r) = g e " [Gk(ini„) —Gk(I'~„) J

Error in SCF calculations of infinite-lattice properties
arises from (a) the SCF approximation itself and (b) the
numerical approximations necessary to solve a specified
set of SCF equations. In this and the following two sec-
tions we consider error arising from the second source.

In order to convert equations involving Brillouin zone
integrations to tractable matrix equations, a momentum
mesh must be introduced. Ideally a variable mesh should
be employed to emphasize Fermi-surface structure while
avoiding needlessly detailed treatment of the high- and
low-momentum regions. We have, however, to this point
employed square meshes which divide the Brillouin zone
into uniform blocks. Each block consists of an infinite set
of distinct states represented by a single k point. The sit-
uation is different in true finite system calculations, where
k points represent single states, whose occupancy is
governed by the Pauli exclusion principle.

0.6

0.4

02 — + 4x4
o 8x8

0.0

16x16 ~
~ ~ ~ ) ~ ~

I I I I I I I

FIG. 11. Dependence of the FLEX occupancy factor nk on
discretization scale. Results are shown for the triangular con-
tour I ~X—+M~I in the 2D Brillouin zone. Parameters are
as in Fig. 10. Note the development of an apparent Fermi sur-
face discontinuity along I X and MI .



8050 N. E. BICKERS AND S. R. WHITE 43

0.0

ok(7.)

—0.6

k=(~,0)

4x4—8x8
16xl 6

u/t=4
T/t=O. O5

(n)=0.84

—1.0
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 12. Dependence of the FLEX Green's function on
discretization scale at low temperature ( T/t =0.05).

onalization and QMC studies. On finite lattices the effect
of low-energy fluctuations is limited by the presence of a
gap in the excitation spectrum. For this reason, long-
range order exists at all temperatures in a periodically
continued finite system; the presence or absence of long-
range order in the corresponding infinite system can be
determined using finite-size scaling. In contrast, SCF ap-
proximations are more likely to underestimate the degree
of long-range order when solved on coarse k-space
meshes. This is because the Auctuations corresponding to
a single value of Q enter with finite weight in discrete
Brillouin zone sums; the contribution of a singular mode
diminishes as the fineness of the mesh is increased and
the sum more closely approximates the underlying in-
tegral. In Fig. 14 we compare finite-mesh effects in
FLEX and QMC calculations of the staggered suscepti-
bility y (r), q=(tr, tr). The temperature and density are
fixed at T/t =0.25 and (n ) =0.875. The FLEX calcula-
tions shown omit the Aslamazov-Larkin (AL) diagrams.
The imaginary-time correlation functions are calculated
as before:

where 0 is the high-frequency cutoff ( 40t i—n this case)
and 6& is the noninteracting Green's function calculated
with the chemical potential p of the interacting system:

yq(r) = T e '™'[Xq(tv ) Xq(i—v )]

(3.3)

(3.2)

The extension of the frequency sum to infinity is neces-
sary to prevent the appearance of oscillations with fre-
quency II in the Fourier transform (see Sec. III B).

In general, results from the 8 and 16 discretizations
differ negligibly for temperatures of order Tlr =0. 1 and
higher. In most of the remaining figures in this paper an
8 discretization is employed. An exception is the plot of
t-matrix eigenvalues in Sec. III D, for which a 16 discret-
ization was employed to treat substantially lower temper-
atures.

Note that the effects of discretization in SCF solutions
are quite different from finite-lattice effects in exact diag-

2.0

1.6

I

u/t=4
T/t=O. 25
(n)=0.875

I I———4x4 FLEX
8x8 FLEX

o 4x4 QMC
o 8x8 QMC

with g the noninteracting susceptibility corresponding
to the interacting chemical potential. The cutoff used in
the Fourier transform of susceptibilities (in this case
:- —10t) is generally smaller than in the calculation of the
single-particle Green's function [Eq. (3.1)].

Note that for both the 4 and 8 meshes the QMC re-
sult is larger than the FLEX, consistent with the argu-

'l .0

0.8

I ~ ~ u/t=4
T/t= 0.05
(n) =0.84

~ i

Xq(r)

0.8 ooo
~ t

0.6 0.4
q=(~,~)

0.4
+
0

0 2 — + 4x4
o 8x8
~ 16x16 ~

0.0

FIG. 13. Dependence of the FLEX occupancy factor on
discretization scale at low temperature ( T/t =0.05).

0.0
0.0 0.2 0.4 0.6 0.8 1.0

FICr. 14. Dependence of the FLEX magnetic correlation
function pq(w) on discretization scale at intermediate tempera-
ture (T/t=0. 25). For comparison, the finite-size dependence
of the QMC correlation function is also shown. Note that the
QMC result is markedly more size dependent and that the size
dependence within the two calculation schemes is in opposite
directions.
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ments above. Note also that the QMC result is consider-
ably more size dependent. The agreement between
FLEX and QMC calculations for this property (which is
particularly sensitive to finite-size effects) would be ex-
pected to improve further on finer meshes.

B. Finite frequency cutoff

When SCF equations are solved on the imaginary axis,
an approximate discretization of the energy variable is
not necessary: the Matsubara frequencies naturally pro-
vide a discrete mesh. It is still necessary, however, to in-
troduce a high-energy cutoff' on frequency sums. In this
section we discuss the quantitative effect of this cutoff on
calculated properties.

We have generally used a constant cutoff 0 of 10t or
40t for calculations of single-particle properties. For ex-
ample, the mean density takes the form

imposed cutoff, are unaffected by an extension. The ex-
tension serves only to eliminate high-frequency "ripple"
in calculated Fourier transforms.

In Fig. 15 we compare results for the single-particle
Green's function Gk(r), k=(~, 0), obtained using cutoffs
0=10t and 40t (2.5 and 10 times the half-width of the
noninteracting 2D band). The temperature T /t =0.25,
and the mean density (n ) =0.84. Comparisons for the
staggered susceptibility y (r), q=(vr, m), are shown in
Fig. 16. In each case the cutoff for the final calculation of
the vertex-corrected yq(iv ) is ~v ~

~:-=0/4. The
dependence on the cutoff is considerably stronger for the
susceptibility than for the Crreen's function. (In fact, the
large-Q magnetic susceptibility, which involves a nearly
singular vertex correction, exhibits the most cutoff depen-
dence of any correlation function. ) In most of the
remaining figures in this paper the cutoff 0 is set at 40t.

(n ) =1+2 g Gk(ice„) . (3.4) C. Contribution of Aslamazov-Larkin diagrams

Sums of this type may be approximately extended to
infinity by adding in contributions for co„~ )II from the
corresponding noninteracting system with the same
chemical potential. We have generally avoided this pro-
cedure, except when computing Fourier transforms after
the completion of a self-consistent calculation [see Eqs.
(3.1) and (3.3)]. The reason is technical: when complete
vertices of the form

(1—VR) 'V

are computed, a large-scale matrix inverse is required. In
the simplest case the complete vertex takes the form

U

1 —Ug q(iv )

with

In general two sorts of contributions to the irreducible
vertex V for particle-hole and particle-particle scattering
emerge from functional differention"' ' of the FLEX
self-energy: (a) exchange of a single RPA-like fiuctuation
and (b) conversion of the initial-state pair to two distinct
RPA-like fluctuations and subsequent recombination in
the final state. We shall call the second set of contribu-
tions Aslamazov-Larkin (AL) diagrams by analogy with
the corresponding terms in the fluctuation conductivity
of superconductors.

The AL diagrams are expensive to calculate in compar-
ison with the one-fluctuation —exchange diagrams, since
they require an additional sum on internal frequency and
momentum. They must, however, be included to make
calculations of the two-particle G reen's function
rigorously conserving. As an example, their effect can be
demonstrated by calculating the uniform susceptibility
for magnetic and density excitations, y (Q=O, iv ) and

Xq(iv )= ——g g Gk+q[i(~„+v )]Gq(i~„) .
N

(3.5)

0.0
———A=10t

A=40t

(When g is calculated in this manner, factors of G must
be set to zero when their frequency labels fall outside the
imposed cutoffs. ) It is simple to extend the frequency
sum in Eq. 3.5 to infinity using noninteracting Green s
functions. The extension is not so simple, however, when
a full matrix inverse must be performed. Since the in-
stantaneous portion of the irreducible vertex allows arbi-
trarily large energy transfers in particle-hole and
particle-particle scattering, a nonconsistent treatment of
high-energy contributions may introduce large errors,
particularly in nearly singular matrix inverses. For this
reason we have chosen not to extend frequency sums to
infinity within self-consistent calculations. The effect of
temperature-independent high-frequency cutoffs may
then be studied systematically.

The frequency extensions used in Fourier transforms
have a different purpose. In this case low-frequency com-
ponents, which have previously been calculated with an

—0.2

Gk(v)

—0.6

k=(~,0)

u/t=4
T/t=0. 25
(n)=0.84

—1.0
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 15. Dependence of the FLEX Green's function Gk(~)
on frequency cutoff 0,. Finite cutoff corrections are relatively
insensitive to temperature for T/t (O.5.
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2.0 I

U/t=4
(n) =0.875

gm
no AL)
AL)

x (Q«)

x (n~)

1.0

0.5

0.0
0.5 0.6 0.7 0.8 0.9 1.0

FIG. 19. Temperature dependence of the zero-frequency
staggered magnetic susceptibility from FLEX and QMC. Note
that one-Auctation-exchange vertex corrections substantially in-
crease g over g; in contrast, the AL diagrams reduce g and
worsen the agreement with QMC.

however, in a rigorously conserving approximation.
In an iterative solution of the parquet equations (see

Sec. II), the AL diagrams appear first at the next level
beyond the appearance of the one-fluctuation-exchange
diagrams. At this level the AL diagrams serve as the
"two-rung" contributions to full ladders based not on the
bare vertices, but on the compound vertices introduced in
I. Compound vertices also appear on fluctuation propa-
gators in the self-energy at this level, partially o6'setting
the AL contributions as remarked earlier.

In detailed calculations two treatments of the AL dia-
grams are possible: (a) if it is essential to satisfy conserva-
tion laws exactly within numerical accuracy, the dia-
grams must be retained. This might be the case, for ex-
ample, in low-frequency transport calculations. (b) In a
systematic iterative solution of the parquet equations the
diagrams should be omitted. We shall adopt the second
point of view throughout the remainder of this paper. In
this light the parquet approach is considered fundamen-
tal; the partial quantitative success of the FLEX approxi-
mation derives from its being a step in the iterative solu-
tion of the full parquet.

(
—PvR )/=A(t

may be solved by exact diagonalization using a standard
routine. In the nearly half-filled Hubbard model the larg-
est eigenvalue at high temperatures occurs in a magnetic
channel with total momentum Q near (m, m). The exact
momentum (subject to the discretization scale) is depen-
dent on both filling and temperature. As the temperature
is lowered, a competing eigenvalue appears in the singlet
particle-particle channel with discrete d-wave rotational
symmetry. This d-wave eigenvalue rapidly dominates all
other particle-particle eigenvalues.

At lower temperatures the evolution of the leading ei-
genvalues in the magnetic and d-wave singlet channels
may be followed using the projection technique described
in Sec. IVB of I. The behavior of the eigenvalues for
various fillings based on a 16 Brillouin zone discretiza-
tion is shown in Figs. 20 and 21. In some cases magnetic
eigenvalues are shown for multiple values of Q, in order
to trace out the motion of the maximum away from (~, vr)

as the temperature is decreased. Several points should be
noted: first of all, for the fillings (n ) =1 and 0.96 the
Q=(vr, vr) magnetic eigenvalue reaches unity, signaling a
magnetic ordering "transition. " This transition has
mean-field character, as in Hartree-Fock theory, and
should be interpreted as a crossover to a region with an
exponentially large correlation length. Further from
half-filling the magnetic eigenvalues saturate or slowly
decrease, and the d-wave eigenvalue eventually reaches
unity instead. Again the approximation leads to a transi-
tion with mean-field character, rather than the
Kosterlitz-Thouless behavior which must be present in
two dimensions.

The resulting phase diagram (Fig. 22) indicates the
qualitative nature of the normal-state —ordered-state

1.0

0.6

0.4

D. T-matrix eigenvalues 0.2

As discussed in Sec. IV 8 of I, SCF techniques may be
used to search for normal-state instabilities which signal
second-order phase transitions. We have previously pub-
lished an approximate phase diagram ' for the partially
filled Hubbard model, obtained using the FLEX approxi-
mation (without AL diagrams). In this section we briefiy
review our earlier work and comment on the changes
which result from (a) the inclusion of the AL diagrams
and (b) the extension to a parquet approximation.

For a coarse Brillouin zone and intermediate tempera-
tures the eigenvalue problem

0.0
0.00 0.04 0.08 0.12 0.16 0.20

FIG. 20. Maximum t-matrix eigenvalue for d-wave singlet
particle-particle scattering, A,d. A 16 Brillouin zone discretiza-
tion is employed. Results are shown for six densities varying
from (n ) =1.0 to 0.8 by increments of 0.04. An eigenvalue of
unity signals a (mean-field-like) transition to a superconducting
state.



8054 N. E. BICKERS AND S. R- ~HITE

1.0

0.8

0.6

(n) =0.8

0.4

0.2

aQ

7v, vr)
7r, 7rr/8
~,S~/4

0.0
0.00 0.04 0.08 012 016 020

T/t
FIG. 21. Maximum t-matrix ei enva

ic e- o e scattering with total momentum Q, k (Q). R—m

e same six densities used in Fi . 20. F

away from Q=( ) n
t e maximum ei en'genvalue moves

at low temperatures. ~
mensurate ei env

p s. One or more incom-

phase boundary. It suggests ths s e presence of a re ion of
superconductivity mediated b thes e y t e antiferromagnetic

istence of su
uc uations, but oes not rigorously establ' h h

such a phase. Furthermore the h
a is t eex-

has nothin to
re, e p ase diagram

ing to say about the nature of the d
awa from hy alf-filling; calculations in b th th

e groun state
'n o t e weak- and

43

strong-coupling limits suggest the roues e ground state remains
e ic near n =1, but becom( ) =, o es incommensurat

existence of a first-order
es is implies the

rs -or er oundary separatin a low-
temperature inc ommens tura e p ase from a hi h-
temperature commensurat h

The

ig

e exact shape of the ma netic-su

y, owever, that a magnetic state with finite T
way directl to a su

e wi nite T~ gives

Fi ures 20—
y o a superconducting state with fi T, .nite

'g s 20—22 are results from the FLEX a
tion without AL d'

e approxima-

susce ti
iagrams. As ar ueg in the last section,

cep ibilities become less accur t h h
are included; presumabl the

cura e w en these dia rah 'g ms

ma rix eigenvalues. In particular, the AL correction
g ' 'g

~ is is enough to destro t
temperature ma netic h

y e finite-
agne ic phase transition found in Fig. 21.

e physical basis for this destruction f 1ion o ong-ran e or-

o t e iterative parquet solution.
~ ~

As a next step, it is natural to ask the fate of the t-

ame irre ucible vertices appear in the cin e complete
r ex an in the self-energy X, the a-

pearance of a finite-temperature 1

e ap-
ure po e in would neces-

sari y e accompanied by a divergent 6 t
'

n o: assuming the pertinent zero-frequency Auc-
tuation propagator varies as 1/ with
from the orderin vecto

q, wit q the deviation
e or ermg vector Q, the contribution to the self-

energy diverges as

0.15

u/t=c

-lnA .dq
A q

(3.8)

0.10

Such a diver enceg cannot occur, however within lf-
consistent sso'ution. For this reason b t

in a se
, su jec to t e as-

1.0

0.05 0.9

0.8

0.00
0.0 0. 1

1 -(n)
0.2

0.7
No AL———AL

FIG. 22. Phase dia rdiagram for the partially filled Hubba
el, determined from the e'

e u ard mod-
m e esgenvalues in Figs. 20 and 21.

a i iona transitions (e.g. , a first-ordera i r
' ', rs -or er transition from a com-

sura e to incommensursurate antiferromagnetic state) ma

ic an superconducting states is onl a ui e
the eye. All transitions t b
sense, as discussed in t e

i ions are to be interpreted in a mean-field
usse sn t e text. Note finally that the d-

transition temperatur t 1 —( ) = . ha
e -wave

from Fig. 20.
e a — n =0.2 hahas been extrapolated

0.5
0.0

u/t=~
(n)=1.0

0. 1

T/t
0.2

FIG. 23. EfFect of AL diagrams on the commensurate
netic eigenvalue A, (Q)

n e commensurate mag-e, = ~,~). A 4 Brillouin zone di
lo d f th 1

is (n ) =1.0. Th
or is ca culation onl y. The mean density

e AL diagrams weaken the ver
destroy th b l'e insta i ity altogether.

e vertex sufficiently to



43 CONSERVING APPROXIMATIONS FOR. . . . II. 8055

sumed form for the fluctuation propagator, the full par-
quet equations suppress any phase transition in one or
two dimensions to zero temperature. In one dimension
the parquet approach is known to yield the correct zero-
temperature critical behavior of susceptibilities when log-
arithmic singularities are summed using the
renormalization-group formalism.

Since the parquet approach prevents finite-temperature
instabilities in low dimensions, we have not applied the
pseudopotential approximation of Sec. II to study the t-
matrix eigenvalues. Instead we view the phase diagram
obtained within the FLEX approximation as indicative of
a tendency toward anisotropic pairing at low tempera-
tures. More definitive statements may require the exact
solution of the parquet equations (without the pseudopo-
tential approximation).

10

0.0

u/t=4
(n)=1.0

0.2 0.4 0.6 0.8

Um———Ud —U

1.0

E. One-particle correlation functions

In the remainder of this paper we concentrate on cal-
culating correlation functions for comparison with QMC.
While finite-discretization effects in SCF calculations are
not equivalent to finite-lattice efFects in QMC, such com-
parisons should be valid when both effects are small. We
begin by comparing results for the single-particle Green's
function Gi, (r) and lt-space occupancy factor ni,

The imaginary-time Green's function Gk(~) may be
compared directly with QMC results to evaluate the ac-
curacy of an approximation. Since the SCF calculations
yield imaginary-frequency functions, Fourier transforms
must be performed using the method of Eq. (3.1). (The
QMC simulations are performed in real space and imagi-
nary time, so finite Fourier transforms to k space have
been performed to obtain the QMC data shown below. )

The temperature dependence of the three pseudopoten-
tials U, Ud, and U, for the parquet calculations are
shown in Figs. 24 and 25. Results are shown for a 4
discretization with densities (n ) =1.0 and 0.875. In all
cases U/t =4. For half-filling the density and singlet
pseudopotentials are identical. This is a consequence of
the pseudopotential definitions and particle-hole symme-
try: Ud is defined in terms of yd (Q, i v =0) with
Q=(~, vr), while U, is defined in terms of y, (O, iv =0);
at half-filling

FIG. 24. Temperature dependence of the parquet pseudopo-
tentials U, U„, and U, for (n ) =1.0. Note that the attractive
magnetic vertex is weakened in magnitude, while the other two
repulsive vertices are enhanced. Within our calculational
scheme (see Sec. II B), the density and singlet pseudopotentials
are identical at (n ) =1.0. Results from 4' and 8 discretiza-
tions are the same within 2%%uo.

nz= —lim Gz(r)=1+ lim Gk(r) .
7.~P &~0

(3.10)

The Green's function may be decomposed formally as

G„(&)=——ye "e ' - "~(m~c„~n)~',
Z „

(3.1 1)

where
~
n ) and

~
m ) are eigenstates of H pN. In num—er-

ical calculations it is generally dificult to obtain detailed
information on high-energy excitations (large E E„), —
since these contributions to Gz(r) die rapidly away from

10
u/t=4
(n)=0.875

Um

Ud

U S

properties. For example, the occupancy factors nk may
be obtained directly as

Xd(Q, O)=X, (0,0) . (3.9)

Several points should be noted about the behavior of
the pseudopotentials. First of all, fluctuations in crossed
channels increase the repulsion in the density and singlet
channels and decrease the attraction in the magnetic
channel. The latter effect is quantitatively most impor-
tant, since only the magnetic channel becomes singular.
All three pseudopotentials are weakly temperature-
dependent, as anticipated from the qualitative Berk-
Schrieffer arguments of Sec. II. Finally, the potentials
are almost independent of the discretization scale: this is
important calculationally, since results from the coarse
discretization may be used as the initial input for the
fine-scale calculation.

In principle, the imaginary-time Green s function
Gk(r) contains complete information on single-particle

0.0 0.2 0.4 0.6 0.8 1.0

FIG. 25. Temperature dependence of the parquet pseudopo-
tentials U,„, U„, and U, for (n ) =0.875. As in Fig. 24, results
from 4 and 8 discretizations are the same within 2%%uo.
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r=0 and r=P.
In Figs. 26 and 27 we compare results for the Green's

function from SCF and QMC calculations for two param-
eter choices. Results are shown for half-filling (Fig. 26)
and (n ) =0.875 (Fig. 27). For (n ) =0.875, the FLEX
approximation captures the qualitative trend in function-
al forms, while the parquet approximation is quantita-
tively accurate. On the other hand, neither approxima-
tion is accurate at low temperatures for (n ) =1.0. The
deviations at half-filling may be due to a number of
sources. First of all, it is possible the disagreement sig-
nals a breakdown of the parquet approach: presumably,
a single-particle gap 6 exists at zero temperature for all
values of U when ( n ) = 1 (as in one dimension). The be-
havior of the parquet equations for temperatures T (6 is
then uncertain; even if the parquet approach remains
robust, errors introduced by our pseudopotential approx-
imation may be unacceptable in this case. As a second
possibility, if the temperature in Fig. 26 is actually larger
than the zero-temperature gap, the disagreement may be
due to the contrasting finite-size behavior of the parquet
and QMC solutions. At sufficiently low temperatures,
the finite lattices studied by QMC always have ordered
spins and a well-defined single-particle gap. In contrast,
the parquet solution (even when obtained using a discre-
tized Brillouin zone) corresponds to an infinite system
with a finite magnetic correlation length and no single-
particle gap. At a specified temperature the two ap-
proaches should disagree if the QMC lattice size is small-
er than the correlation length.

Away from half-filling, the parquet calculation of Gk
remains accurate for all values of T studied here. Never-
theless, our results do not rule out a breakdown of the
parquet solution at significantly lower temperatures.
Furthermore, the pseudopotential approximation may at
some point fail while the exact solution remains valid.
The strongest argument for the continued validity of the
full parquet equations at lower temperatures is their suc-
cessful use in the analysis of singular contributions to
correlation functions in one dimension.

For completeness, in Figs. 28 and 29 we compare cal-
culations of the occupancy factor nk along a contour in

the Brillouin zone. As before, results are shown for
( n ) = 1.0 and 0.875.

0.0
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F. Susceptibilities

In this section we compare results for particle-particle
and particle-hole susceptibilities. Our imaginary-axis
technique yields zero-frequency (iv =v=0) susceptibili-
ties directly; in principle, this is enough to allow a search
for second-order phase transitio;::is. On the other hand,
more detailed real-frequency information can only be ob-
tained by analytic continuation from the imaginary axis.
Progress in this area is discussed in Sec. III G. As before,
comparisons with QMC results can still be made directly
in imaginary frequency or time.

We begin with comparisons for various singlet-pair
susceptibilities. Evidence from a number of sources sug-
gests the partially filled Hubbard model has a tendency
toward d-wave pairing. T-matrix eigenvalue studies (see

—0.6

—0.8

—1,0

U —0———FLEX
Parquet

~ QMC

u/t=4
T/t=0. 17
(n)=1.0
k=(n, o)

0.0 0.2 0.4 0.6 0.8 1.0

FIR. 26. Comparison of FLEX, parquet, and QMC Crreen's
functions Gq for half-filling at T/t =0.17. All results are for an
8 mesh. The U =0 Careen's functions are shown to set the scale
for correlation effects. (a) k = (0,0), (b) k = ( m/2, 0), (c)
k=(~, 0).
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FICx. 28. Comparison of FLEX, parquet, and QMC occupan-
cy factors nk for half-filling at T/t =0.17. All results are for an
8 mesh. The occupancy factor is plotted along the Brillouin
zone contour I ~X~M~I .
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Sec. III D) provide the most detailed picture of pairing
strengths; static susceptibilities based on instantaneous
pair-creation operators provide less detailed information,
but are more readily calculable by QMC techniques.
Such a susceptibility takes the form

y, = f dr(a, (r)a,'(O)), (3.12)
0

where
—0.8 —g g(k)ck&c

1

N
(3.13)

—1.0
0.0 0.2 0.4 0.6 0.8 1.0 Note b s creates a singlet (triplet) state for a function g(k)

with even (odd) parity. The state b,~~0), with ~Q) the
empty band, is normalized to unity provided

0.0
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(c)

1.0
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T/t=0. 25
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0
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I =(~,0)
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0.0 0.2 0.4 0.6 0.8 1.0

Flax. 27. Comparison of FLEX, parquet, and QMC Green's
functions 6„ for (n ) =0.875 at Tjt =0.25. All results are for
an 8 mesh. (a) k=(0,0), (b) k=(m/2, 0), (c) k=(m. ,0).

FIG. 29. Comparison of FLEX, parquet, and QMC occupan-
cy factors nk for (n ) =0.875 at T/t =0.25. All results are for
an 8 mesh. Note that the parquet and QMC results agree
within calculational accuracy along the entire contour.
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(3.14)

The real-space wave functions corresponding to vari-
ous choices of g are summarized in Table I. Note that
while the states b,

~
fI ) are orthonormal, the states

b,
& ~0), with ~0) the many-electron ground state, are not.

For this reason, states belonging to the same representa-
tion of the rotation group are mixed by the action of the t
matrix and do not correspond to independent scattering
channels. (As an aside, this implies that sufficiently near
an s-wave instability the susceptibilities corresponding to
all three s-wave pair-creation operators should diverge. )
The states belonging to different representations (s and d,
for example) do not mix at any level. Note also that the
wave functions b, t ~0) correspond to instantaneous pair-
ing; exact t-matrix eigenstates are strongly dependent on
relative time (or frequency) due to the presence of the
background Fermi sea. This means that the susceptibili-
ties specified by Eq. (3.14) are not optimal for detecting
instabilities.

FLEX and parquet results are compared with QMC
simulations in Figs. 30 and 31. All results are for a 4
Brillouin zone, and the fillings are (n ) =1.0 and 0.875.
Note first that the susceptibilities are in most cases
markedly reduced from their values for U=0. This is the
expected eA'ect of the single-particle self-energy, discussed

g(&)

1

cosk~ +cosky
cos(k +k~)+cos(k —k~)

cosk~ cosky

cos(k +k ) —cos(k —k~)
&2 sink

&2sin(k +k~)

Real space

On-site s
NN s(s*)

NNN s(s., )

NN d(d 2 2)

NNN d(d~y)
NN p

NNN p(p„)

at greater length below. The FLEX approximation for
(n ) =0.875 generally leads to an overcorrection, for the
reasons mentioned in Sec. II A: the magnetic fluctuation
propagator in X is too singular, since it contains the bare
matrix element —U, rather than the weaker vertex I
In contrast, the pseudopotential parquet results are al-
most quantitatively accurate away from half-filling. As
in Fig. 26, agreement with QMC is not exceptional at
half-filling. The previous comments on gap formation at
half-filling (Sec. III E) hold here as well.

Since the temperature range in Figs. 30 and 31 is too
high to see direct signs of superconductivity (the max-

TABLE I. Real-space wave functions for simple choices of
g(k). Note that NN stands for nearest neighbor and NNN for
next-nearest neighbor.
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FICs. 30. Comparison of FLEX, parquet, and QMC results
for seven particle-particle susceptibilities at (n ) =1.0. All re-
sults are for a 4 mesh. The choices for the pair wave function
are (a) s, (b) s, (c) s ~, (d) d &» (e) d„~, (f) p, and (g) p„~. The
unexceptional agreement between the SCF and QMC results at
low temperature may be associated with magnetic gap forma-
tion in the 4 QMC lattice (compare Fig. 26).

FIG. 31. Comparison of FLEX, parquet, and QMC results
for seven particle-particle susceptibilities at (n ) =0.875. All
results are for a 4 mesh. The pair wave functions are (a) s, (b)
&*, (c) & ~, (d) d &» (e) d„~, (f) p, and (g} p~~. The parquet re-
sults are in nearly quantitative agreement with QMC over a
wide temperature range.
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imum estimate for T, in Sec. III D is only T, /r =0.03), a
more indirect approach is necessary. It is possible to
separate the effect of single-particle renormalization from
the enhancement (or suppression) caused by the two-
particle vertex: formally, the susceptibility may be writ-
ten

xg =xg+~xg (3.15)

where Ag contains the ladder sum based on the irreduc-
ible vertex (see Fig. 8). The contribution g~ is a physical-
ly unmeasurable quasiparticle density of states, which
takes the place of the bare density of states in the strong-
ly correlated system. Due mainly to the effect of low-
frequency magnetic fIuctuations,

(3.16)

for all the wave functions in Table I. This single-particle
renormalization is responsible for the large suppression of
the full susceptibilities shown in Figs. 30 and 31.

In order to have a superconducting instability the irre-
ducible vertex must counteract the self-energy. The
crossover in opposing effects need only occur at a temper-
ature marginally higher than T, itself. Nevertheless, po-
tentially unstable channels can be identified at high tem-
peratures as those with strongly temperature-dependent,
positive values of Ag~. Plots of Ag for the previous pa-
rameter choices are shown in Figs. 32 and 33. The s

and p ~ (next-nearest-neighbor p) enhancements are
weakly positive, but nearly temperature independent. On
the other hand, as expected from the earlier eigenvalue
analysis, the d 2 2 enhancement grows rapidly with de-
creasing temperature. Note that FLEX and parquet re-
sults for Ay are nearly the same. This is expected for
the following reason: Ay roughly measures the product
of a vertex and an effective density of states. Within the
parquet scheme, corrections which strengthen an attrac-
tive vertex tend to diminish the effective density of states.
The product of the two is only weakly affected.

Next we consider calculations of the wave-vector-
dependent magnetic susceptibility g&. (The density, or
charge, susceptibility may also be computed. ) In Figs. 34
and 35, we show comparisons for the static susceptibility
at several points in a 4 Brillouin zone. The parquet cal-
culation is quite accurate away from half-filling, except
for the Q=(~, 7r) component. We believe the (ir, ir) sus-
ceptibility is particularly subject to finite-size effects, and
that this largely accounts for the deviation. To support
this argument we compare parquet and QMC results for
4 and 8 Brillouin zones in Fig. 36. The disagreement
between the two approaches decreases by about 50% in
the larger system.

The parquet approach is also in good agreement with
QMC for the finite-frequency susceptibility g (iv ). To

0.2
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FICx. 32. Comparison of FLEX, parquet, and QMC results
for the vertex correction Ay in the particle-particle susceptibili-
ties. As in Fig. 30, the density is (n ) =1.0, and a 4~ mesh is
employed in all calculations. The pair wave functions are (a) s,
(b) s*, {c)s„,{d)d, (e) d, (f) p, and (g) p . As in Figs. 26
and 30, agreement between SCF and QMC results at low tem-
peratures is unexceptional.

FICJ. 33. Comparison of FLEX, parquet, and QMC results
for the vertex correction Ay in the particle-particle susceptibili-
ties. As in Fig. 31, the density is (n ) =0.875, and a 4 mesh is
employed in all calculations. The pair wave functions are (a) s,
(b) s (c) st (d) d p pp (e) d~~, (f) p, and (g) p„~ . In this case
both the FLEX and parquet results are in reasonable agreement
with QMC (see discussion in the text).
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o)

10

0 ———4x4
Bx8

I
— u/t=4

(n) =0.875

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.1 0.2 0.3 0.4 0.5

FICx. 34. Comparison of parquet and QMC results for the

zero-frequency magnetic susceptibility y (Q) as a function of
temperature. The density is (n ) =1.0, and a 4' discretization is
employed. The Coulomb correlation is U/t =4. Parquet re-
sults are represented by lines, QMC results by symbols.

FIG. 36. Comparison of finite-mesh eff'ects in parquet and
QMC results for the zero-frequency staggered susceptibility,

(~,~), at (n ) =0.875. Note that the level of disagreement is
reduced by roughly a factor of 2 by increasing the mesh scale
from 4 to 8 .

illustrate the comparison most clearly, we plot the prop-
erty

byq(r): y(r) —Tyq(iv—=0) (3.17)

for three values of q in Fig. 37. [The parquet curves are
calculated by Fourier transform using Eq. (3.3).] Note
that for q=O hg should be identically zero by a global
conservation law; small deviations appear in the parquet
result since the approach is not rigorously conserving.
Note also that the finite-frequency property Ay is quite
accurately reproduced for q = ( m. , m ) despite the devia-
tions in the zero-frequency result.

G. Real-frequency correlation functions

In order to recover information on real-frequency, or
dynamic, correlation functions from the solution of
imaginary-axis equations, it is necessary to perform a nu-
merical analytic continuation. This process is subject to
the same instabilities which accompany inverse Laplace
transforms. The analytic continuation of QMC data is
particularly difficult due to the presence of statistical
noise. A number of techniques, some involving the use of
model default functions, have recently been proposed to
deal with this problem.

The analytic continuation problem for SCF data is
much better conditioned due to the absence of noise. In
this case the Pade, or rational, approximant technique
provides a viable solution. This method was first used in
the present context by Vidberg and Serene. ' The
method consists of determining a rational function A /B
which matches an imaginary-axis function at a set of
Matsubara points, then using the ap pro xim ant
coefficients to extend the function to the entire complex
plane. We have adapted the Vidberg-Serene algorithm to
calculate the one-electron spectral density

(3.18)

and the magnetic spectral density

1
o q(co) = ——Imps(co+ iO+ ) . (3.19)

0.0 0.2 0.4 0.6 0.8 1.0

FIG. 35. Comparison of parquet and QMC results for the
zero-frequency magnetic susceptibility y (Q) as a function of
temperature. The density is (n ) =0.875, and other details are
as in Fig. 34.

The reliability of the continuations depends on (a) the ac-
curacy of the imaginary-axis calculation and (b) the num-
ber of points N& used in fitting the approximant. The
values of N required for our calculations are reasonably
small, since the momentum-resolved spectral densities are
relatively structureless.

Reliability checks are provided by sum rules:
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1.0
drop~ co =1,

f" d~f(~)p„(~)=n„,

dcob co crq co =Sq,

(3.20a)

(3.20b)

(3.20c)

(a)Parquet
~ QMC

0.5

where S& is the magnetic structure factor
(m, (Q)m, (

—Q)); and f and b are the Fermi and Bose
functions. In numerical checks, we cut off the integrals
at +10t. Note that both n& and S& are equal-time corre-
lation functions which may be calculated directly as
infinite Matsubara sums. Since data is available only at a
finite set of points, we have extended both sums to
infinity using the noninteracting correlation functions.

Results for a representative set of spectral densities are
shown in Figs. 38 and 39. The sum rules for these densi-
ties are satisfied at the 1% level. Note that the peaks in

pk for the noninteracting and interacting systems occur at

&Xg D. D ~~ was
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FICx. 37. Comparison of parquet and QMC results for the
finite-frequency part of the magnetic correlation function,
byq{r). The density is (n ) =0.875. (a) q=(0, 0), (h) q=in. ,0),
(c) q=(n. , m. ).

FIG. 38. Spectral density pk from Pade continuation. An 82

discretization is employed. For each pk shown, sum rules

{3.20a) —(3.20b) are satisfied at the 1% level. Results are shown
for U/t =4 and U=O (5 functions). (a) k=(3~/4, 0), (b)
k=(m, O).
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nearly the same values of co —p. This is expected since
the total filling remains the same. The prominent inelas-
tic peak in cr0 for Q=(vr, rr) diminishes in calculations
with a finer mesh.

Analytic continuation may -also be used to study the
detailed frequency dependence of the self-energy and con-
ductivity. Both properties are subjects of great interest,
but we defer their discussion for future work.

H. Equal-time correlations

and the magnetic structure factor

S(2= (m, (Q)m, (
—Q) &,

m, (Q)= —ge 'm, (R;) .
N

(3.23)

Such correlation functions are the most time consuming
to calculate using methods based on imaginary frequency
and momentum, since they require extensive summations.
For example,

Since QMC simulations are generally performed in real
space and imaginary time, the simplest correlation func-
tions to measure are on-site, equal-time properties. These
include the magnetic moment

S(2= ( T,m, (Q, r~O)m, ( —Q, O) &

=T g e yo(iv )=T gg&(iv ) . (3.24)

(m,'& =((n „n,—)'&,

the average double occupancy

&d &=(n, n, &=, [&n &
—&m,'&], (3.22)

In turn

(m, &=—QS&=—g y&(iv ) .2 =1 =T
Q Q, m

(3.25)
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0.25

0.00

I

u/t=4
(n)=0.875
q=(n, ~)

1 0
07———05
0.25

10

The calculation of a single vertex-corrected component of
y0(i v ) is time consuming; the calculation of ( m, & for
an N discretization with I total Matsubara frequencies
requires roughly N L /16 as much time (the factor of —,',

is gained by using symmetries efficiently). For this reason
we have not studied equal-time correlation functions in
great depth.

In Figs. 40 and 41 we summarize results for the par-
quet approach for a 4 Brillouin zone with (n & =0.875.
The frequency sums which arise have been extended to
infinity using noninteracting correlation functions. The
agreement between parquet and QMC results is quite
good for the local quantities (m, & and (d &: this is ex-

pected, since finite-size effects should be small for these
properties. Note that for U/t =4 the double occupancy
is reduced by approximately 50% and is almost tempera-
ture independent.
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FIR. 39. Spectral density o.~ from Fade continuation. A 4
discretization is employed. For each cr& shown, sum rule (3.20c)
is satisfied at the 1% level. (a) Q=(m, ~r), (b) Q=(ir/2, 0).

FICr. 40. Comparison of parquet and QMC results for the
magnetic structure factor So at (n ) =0.875. Agreement is al-
most quantative, except at Q=(ir, ir).
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FICx. 41. Comparison of parquet and QMC results for the lo-
cal moment ( m ) and mean double occupancy ( d ) at
(n ) =0.875. The corresponding temperature-independent re-
sults for U =0 are indicated by arrows at the left.

IV. CONCLUSIONS

The principal conclusions to be drawn from this study
of SCF approximations for the 2D Hubbard model are as
follows: (i) the fiuctuation exchange (FLEX) approxima-
tion introduced in I allows a semiquantitative description
of one- and two-particle properties, and suggests a d-
wave superconducting instability may occur near half-
filling; (ii) the FLEX approximation may be viewed as the
first nontrivial step in an iterative solution of parquet
equations for models of this type; (iii) a pseudopotential
treatment of irreducible particle-hole and particle-
particle vertices allows a feasible approximate solution of
the parquet equations; (iv) except at half-filling, the pseu-
dopotential approach brings results for one- and two-
particle correlation functions into nearly quantitative
agreement with finite-lattice QMC simulations in the in-
termediate coupling limit.

A number of important questions remain for further
investigation in this area. On the technical side, the
robustness of the pseudopotential approximation must be
more thoroughly examined. We have not studied in de-
tail the dependence of results on the values of total
momentum and energy chosen to define the pseudopoten-
tials; nor have we mapped out the dependence of the irre-
ducible vertices on relative momentum and energy. It
would be desirable to carry out calculations using vertices
which incorporate at least partial dependence on the rela-
tive variables, perhaps using a separable parametrization
based on orthogonal functions. Some such extension of
the present approach is certainly necessary to study sys-
tems with strong-d wave singlet and p-wave triplet Auc-
tuations. An exact parquet solution for two-dimensional
models must at present await further advances in com-
puter power.

The approaches used here are clearly not limited to the

two-dimensional repulsive-U Hubbard model. (i) There is
interest in studying the repulsive Hubbard model in one
and three dimensions: in one dimension exact results ex-
ist for a large number of thermodynamic properties and
for the singular part of some dynamic correlation func-
tions. Further, both QMC and SCF calculations require
substantially less computer power in one dimension.
While computer requirements are more severe in three
dimensions, the benefit of calculations would be particu-
larly great in this case: the majority of strongly correlat-
ed materials which have been described by Hubbard
models are three dimensional. (ii) Interest has also been
expressed in the behavior of the attractive-U Hubbard
model. In this case density and particle-pair Auctua-
tions, rather than magnetic Auctuations, are expected to
dominate the behavior. (iii) The simplest context for ex-
amining SCF approximations (particularly parquet solu-
tions) in greater detail is provided by the Anderson im-
purity model (effectively a zero-dimensional Hubbard
model). In this case results for comparison are available
from a wide variety of sources, including numerical re-
normalization group, Bethe ansatz and QMC studies.
Furthermore, calculations require only a frequency vari-
able, rather than both frequency and momentum. (iv) A
simple electron-phonon model has been previously exam-
ined using the SCF approach. ' Such models are of in-
terest for potential competitions between s-wave super-
conductivity and Peierls and/or charge-density-wave or-
der. (v) A variety of extended Hubbard models can be
treated using the techniques developed in I and this pa-
per. Note, however, that the fIuctuation propagators
which describe models with several bands or extended-
range interactions are more complex than the Hubbard
propagators, and computer requirements are substantial-
ly greater.

Finally, an important area for further study is the ex-
tension of the present techniques to the zero-temperature
limit. For this purpose a method to single out Fermi sur-
face behavior is required. One can imagine dividing the
self-energy and irreducible vertices into parts correspond-
ing to high and low frequencies (and momentum); then
solving for low-frequency variables using "frozen" high-
frequency variables, determined explicitly at higher tem-
perature. The Anderson impurity model and one-
dimensional Hubbard model provide natural testing
grounds for future studies of this type.

ACKNOWLEDGMENTS

We acknowledge useful discussions with K. S. Bedell,
D. L. Cox, K. F. Quader, R. T. Scalettar, and J. W.
Serene. We especially thank D. J. Scalapino for stimulat-
ing discussions throughout the course of this work. This
project was initiated at the Institute for Theoretical Phys-
ics in Santa Barbara and completed at the International
Center for Theoretical Physics in Trieste. N.E.B. thanks
both Institutes for their hospitality. This work was sup-
ported in part by the National Science Foundation under
Grants Nos. DMR89-13850 (N.E.B.) DMR86-15454
(S.R.W.), and PHY82-17853 (N.E.B.); by the Office of



8064 N. E. BICKERS AND S. R. WHITE 43

Naval Research under Grant No. N00014-90-J-1747
(N.E.B.); and by the Faculty Research and Innovation
Fund at USC (N.E.B.). Most of the computer calcula-
tions were performed on the Cray X-MP and Y-MP at

the San Diego Supercomputer Center. We thank SDSC
for its support. This research was also supported in part
by the University of California at Irvine through an allo-

cation of computer time.

'See, e.g., G. R. Stewart, Rev. Mod. Phys. 56, 755 (1984).
J. G. Bednorz and K. A. Muller, Z. Phys. B 64, 18 (1986).
M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng,

L. Gao, Z. J. Huang, X. Q. Wang, and C. W. Chu, Phys. Rev.
Lett. 58, 908 (1987).

4D. J. Scalapino, E. Loh, and J. E. Hirsch, Phys. Rev. B 35,
6694 (1987).

5N. E. Bickers, D. J. Scalapino, and R. T. Scalettar, Int. J. Mod.
Phys. B 1, 687 (1987).

A. E. Ruckenstein, P. J. Hirschfeld, and J. Appel, Phys. Rev. B
36, 857 (1987); G. Baskaran, Z. Zou, and P. W. Anderson,
Solid State Commun. 63, 973 (1987).

G. Kotliar, Phys. Rev. B 37, 3664 (1988).
D. J. Scalapino, Frontiers and Borderlines in Many-Particle

Physics (Societa Italiana di Fisica, Bologna, 1988), p. 363.
S. R. White, D. J. Scalapino, R. L. Sugar, E. Y. Loh, J. E. Gu-

bernatis, and R. T. Scalettar, Phys. Rev. B 40, 506 (1989).
~ A. Moreo, D. J. Scalapino, R. L. Sugar, S. R. White, and N.

E. Bickers, Phys. Rev. B 41, 2313 (1990).
N. E. Bickers and D. J. Scalapino, Ann. Phys. (N.Y.) 193, 206
(1989).

A. E. Ruckenstein and S. Schmitt-Rink, Phys. Rev. B 38, 7188
(1988).
C. de Dominicis and P. C. Martin, J. Math. Phys. 5, 14 (1964).
S. Babu and G. E. Brown, Ann. Phys. (N.Y.) 78, 1 (1973).

~5M. Pfitzner and P. WolAe, Phys. Rev. B 35, 4699 (1987).
'6K. F. Quader, K. S. Bedell, and G. E. Brown, Phys. Rev. B 36,

156 (1987), and references therein.
G. Baym and L. P. Kadanoff; Phys. Rev. 124, 287 (1961).
G. Baym, Phys. Rev. 127, 1391 (1962).
For a more detailed derivation of the parquet equations in the
context of lattice electron systems, see N. E. Bickers, in

Proceedings of the Adriatico Research Conference on Strongly
Correlated Electron Systems, edited by Yu Lu (World
Scientific, Singapore, in press).
L. G. Aslamazov and A. I. Larkin, Fiz. Tverd. Tela (Len-
ingrad) 10, 1104 (1968) [Sov. Phys. Solid State 10, 875 (1968)].
B. Roulet, F. Gavoret, and P. Nozieres, Phys. Rev. 178, 1072
(1969).

See, e.g., J. Solyom, Adv. Phys. 28, 201 (1979).
N. F. Berk and J. R. Schrieffer, Phys. Rev. Lett. 17, 433
(1966).
E. Y. Loh, J. E. Gubernatis, R. T. Scalettar, S. R. White, D. J.
Scalapino, and R. L. Sugar, Phys. Rev. B 41, 9301 (1990).

2~N. E. Bickers, D. J. Scalapino, and S. R. White, Phys. Rev.
Lett. 62, 961 (1989).

The phase diagram published in Ref. 24 was obtained using an
earlier version of our FLEX code. This code contained
several interpolation routines which were less accurate than
the procedure used here. This accounts for the small quanti-
tative difference in results for eigenvalues and transition tem-
peratures.
The behavior of parquet equations in the vicinity of 2D
Kosterlitz-Thouless transitions is an interesting unsolved
problem, which we do not consider here. See also the discus-
sion in H. J. Schulz, Europhys. Lett. 4, 609 (1987).

8S. R. White, D. J. Scalapino, R. L. Sugar, and N. E. Bickers,
Phys. Rev. Lett. 63, 1523 (1989).
M. Jarrell and O. Biham, Phys. Rev. Lett. 63, 2504 (1989).

30R. N. Silver, D. S. Sivia, and J. E. Gubernatis, Phys. Rev. B
41, 2380 (1990).

'H. J. Vidberg and J. W. Serene, J. Low Temp. Phys. 29, 179
(1977).
No magnetic sum rule analogous to Eq. (3.20a) appears, since
o.

& is an odd function of co.
33We have not used QMC results for this purpose, since we wish

to test only the reliability of the continuation at this point,
not the overall quality of the approximation.
To obtain local instantaneous correlations, it might be more
efficient to solve the SCF equations directly in space and
imaginary time.

35S. Schmitt-Rink, C. M. Varma, and A. E. Ruckenstein, Phys.
Rev. Lett. 63, 445 (1989).
P. W. Anderson, Phys. Rev. 124, 41 (1961).

7R. T. Scalettar, N. E. Bickers, and D. J. Scalapino, Phys. Rev.
B 40, 197 (1989).

3sN. E. Bickers, Q. Luo, R. Noack, D. J. Scalapino, and R. T.
Scalettar, unpublished.


