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One-hole spectral densities in the polarized t-J model
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We study the dynamics of one hole in the polarized t-J model. The model describes the physics of
holes in polarized antiferromagnetic systems and the one-particle excitations in strong-coupling su-
perconductors as well. The spectral densities of a single hole are calculated numerically using exact
diagonalization of small clusters with toroidal boundary conditions. The quasiparticle spectrum is
analyzed in detail. We show that a coherent quasiparticle peak is well defined for J/t )0.2. The
dispersion relation of the quasiparticle is obtained for di6'erent magnetizations. The results are used
to discuss the characteristics of one-particle excitations in small-coherence-length superconductors.

I. INTRODUCTION

Since the discovery of high-T, superconductors, much
effort has been devoted to the study of low-dimensional
electronic systems, in particular, the one- and two-band
Hubbard models. These models have been extensively
studied in the strong-coupling regime (U&)t). In this
limit, the one-band Hubbard model can be mapped onto
the so-called t-J model. ' This mapping is, however, ap-
proximate: second-nearest-neighbor hopping terms of or-
der t /U are neglected. The t-J Hamiltonian is believed
to contain the relevant physics for high-T, superconduc-
tivity and has been widely used in this context.
Perhaps the main reason for the study of this model is its
simplicity together with the fact that it contains what is
considered the essential ingredients for the understanding
of high- T, materials: charge and spin excitations in
different energy scales. For one electron per site, the
model reduces to the Heisenberg model where only spin
excitations are possible. This case corresponds to the
Mott insulating regime of the original Hubbard model.
For less than one electron per site, charge excitations be-
come important.

Resorting to different approximations, a number of
analytical approaches have been reported for the
ground-state properties of a single hole. Shraiman
and Siggia found, using a variational method and spin-
wave techniques, that the momentum of the hole is
k=(+sr/2, +~/2), which lies on the Fermi surface of the
noninteracting (U=O) system. Analogous results have
been obtained using variational and diagrammatic tech-
niques and numerically exact diagonalization. ' Also,
dynamical properties have been reported using numerical
techniques. ' These results show that for J-=t a well-
defined quasiparticle peak is identified, whereas for small
enough J/t an incoherent spectrum carries most of the
spectral weight. These studies are concerned with the
movement of a hole in an antiferromagnetic background.
On the other hand, some work has been done to obtain
the spectral densities p(k, co) in the phase with no antifer-
romagnetic long-range order, i.e., the spin liquid phase. "
Unfortunately the numerical simulations in the spin
liquid phase are difficult to handle and do not allow one

to check the conjectures made.
Recently, another realization of the t-J model has been

devised in connection with one-particle excitations of
strong-coupling superconductors with local attraction. '

It is well known that the negative-U Hubbard model with
n particles is equivalent to the positive-U case with one
particle per site and a net magnetization per site given by
S, =(1—n)/2. ' The dynamics of a single unpaired par-
ticle moving in the background of strongly bounded
paired particles is described by the polarized t-J model.

The main purpose of the present work is to describe
the dynamics of holes in the polarized t-J model. We in-
terpret our results either as corresponding to a conven-
tional t jmode-l with an additional parameter (an exter-
nal magnetic field) or to the case of a single one-particle
excitation in the strong-coupling superconductor men-
tioned above. The results presented below are obtained
by exact diagonalization of finite clusters.

The rest of the paper is organized as follows: In Sec. II
we present the mode1. In Sec. III we present the obtained
results, and Sec. IV includes a summary and discussions.

II. MODEL

The starting point is a Hubbard model with on-site in-
teractions only and a nearest-neighbor hopping matrix
element. We consider a square lattice in two dimensions
(2D). The Hamiltonian in the usual notation reads

H= t g c; c, +—Ug n;&n;&,
(i j )o I

where c; creates an electron with spin o. at site i and
n; =c; c; . The parameters t and Uare, respectively, the
hopping matrix element and the in-site interaction. We
consider the case

~
U~ ) ) t and site occupation n ~ 1. For

positive U (repulsive case) a canonical transformation
which projects out the doubly occupied sites can be per-
formed to obtain the t-J model, which is given by

H= t g (1 n, )c; c—, —(1 n. )—
(i,j )a

+J g S;.S~+ ,'n;nj. +H' . —
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Here the hopping term describes the jump of an elec-
tron in the projected Hilbert space, which excludes dou-
bly occupied sites. The second term describes the antifer-
romagnetic coupling between the spins of electrons in
singly occupied nearest-neighbor sites. The coupling con-
stant J is given by J=4t /U. Finally, the last term H',
which is usually neglected, describes second-nearest-
neighbor hopping of the order t /U with and without a
spin-Aip process. In what follows, we also neglect this
term. We add to the t-J model an external magnetic field
h which polarizes the spin.

On the other hand, for large negative U, an analog pro-
cedure can be carried out. In fact, the negative-U Hub-
bard model can be mapped onto the positive-U Hubbard
model with an external magnetic field. Instead of making
use of this transformation, which is valid for arbitrary U,
we consider the large

l
U limit and project out the singly

occupied states. This leads to the following Hamiltoni-
an:"

H=J g S,'S' ——,'(S,+S, +S; S,+)—h QS
I

electron can be mapped as follows onto the ordinary t-J
model. It is convenient to divide the Hamiltonian into
two terms HJ and H, . The first term is Hz=+, HJ(i),
where HJ(i) describes the spin dynamics with the un-
paired particle located at site i. The zero-point fluctua-
tions will distort the superfluid order parameter in the
neighborhood of the unpaired electron, in analogy with a
fixed hole in the Heisenberg model. The second term H,
describes the hopping of the unpaired electron. When
the electron jumps from site i to site j, a tilted spin, which
corresponds (in the electron language) to a linear com-
bination of empty and double occupation, jumps back-
ward from site j to site i. In this process, the z corn-
ponent of the spin is conserved. The phase in the x-y
plan changes. This is clearly seen in the classical limit,
where the initial and final states (lg, ) and lg ), respec-
tively) are given by

lg, ) =c, Q (u +Uc,t, c,t, )lo)
I

and

Now the spin variables up and down correspond to an
empty and a doubly occupied site, respectively. The lon-
gitudinal antiferromagnetic term describes a repulsion be-
tween nearest-neighbor pairs, while the ferromagnetic
transverse term describes a hopping of a pair through vir-
tual pair-breaking processes. The external magnetic field
h plays the role of a chemical potential since the total
magnetization is given by the total number of particles,
S'= —,'(1 n). The stre—ngth of the coupling is again
J=4t /lUl. This spin Hamiltonian is equivalent to a
purely antiferromagnetic Heisenberg model. This can be
seen by performing a rotation in ~ around the z axis for a
given sublattice. This changes, in one sublattice, S and
S by —S" and —S, and consequently the sign of the
transverse term. In this spin language, states with long-
range magnetic order can be identified with a superAuid
phase of the original electron system, the superfluid order
parameter being the magnetization in the x-y plane. The
orientation of (S+ ) is the phase of the superfiuid order
parameter. On the other hand, the paramagnetic spin
state corresponds to the normal state of the bound-
electron system with no phase coherence between the
pairs (or spins, depending on the language used).

Some insight into the background distortion caused by
the motion of a single unpaired particle can be gained if
one analyzes the classical limit in which the spin Auctua-
tions are suppressed. In this limit, the ground state of the
spin system alone corresponds to spins tilted with respect
to the z axis in such as way as to satisfy the constraint of
fixed magnetization. The order of the projected com-
ponents in the x-y plane depends on whether one uses the
ferromagnetic or antiferromagnetic description. If the
ferromagnetic description of Hamiltonian (3) is used, the
ground state in the classical limit and in the electron
description is given by'

lPo} = g (u +uc&&d, & )l0) .

The system described above with a single unpaired

IQJ ) =cJ (u —Uc, tc, ) ) Q (u +vc, tc, ( )l0) .
I&i

(6)

The change in spin in the coherent factor of site i corre-
sponds in the spin language to a change in the x-y com-
ponent of the spin. If the antiferromagnetic picture is
used, both the z component and the phase in the x-y
plane are conserved.

To summarize the discussion made above, we consider
the polarized t-J model, which can be used to study the
motion of a hole in a polarized antiferromagnetic back-
ground or the single-particle dynamics in a superconduc-
tor with strong on-site attraction.

In Sec. III we present results for the frequen-
cy-dependent correlation function p(k, co)=

& &Dick ( t)ck l Po ), where
l go ) is the ground-state

wave function of the polarized Heisenberg Hamiltonian,
ck creates a particle, and the subindex ~ indicates a
Fourier transformation. In the case of the positive-U
Hubbard model, ck creates a hole of spin o., i.e., destroys
one of the spins of the lattice with S, =o.. In the pres-
ence of an external magnetic field which polarizes the sys-
tem, the correlation function p(k, co) depends on the spin
o.. If we use the model to describe single-particle excita-
tions in a strong-coupling superconductor, c& creates an
electron which will move in the presence of the strongly
bound pairs. In this case, spin-up and -down electrons
will behave in the same way. The extra particle can be
created only in the empty sites or, in the spin language, in
sites occupied by a spin up. If we calculate p(k, co) corre-
sponding to a hole in the Heisenberg model, to obtain the
spectral density of an electron in the superconducting
background we have to take o.= 1 and change k by
(m, vr) k. The change in the v—ector wave number k is
due to the fact that in one picture ck creates a hole,
while in the other it creates an electron. If we consider
the fully polarized state with M =

—,', all many-body eAects
disappear, and the minimum energy for a hole corre-
sponds to k=(~, vr). In the negative-U case, this state
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and for large magnetizations it goes from ~-=—4t to 4t.
This result agrees with the analysis of Brinkman and
Rice. They showed, using the self-retracing path ap-
proximation, that the bottom of the incoherent band is at
co= —2&3t. This is in agreement with the results ob-
tained for M=0, where the total spin of the system with
the hole is S=—,'. By increasing the magnetization, the
total spin increases, and the bottom of the incoherent
band shifts toward lower values, reaching —4t for the
completely polarized system.

As J increases, the spectral density changes and gives
rise to a well-defined quasiparticle peak. This is clearly
shown in Figs. 3 —5 where we present the results for
k=(~/2, ~/2), and different values of J and magnetiza-
tion. As can be seen in the figures, for all magnetizations,
by increasing J the quasiparticle peak increases in intensi-
ty and separates from the incoherent spectrum. For the
unpolarized system, the dispersion relation of the quasi-
particle peak has a minimum for k=(vr/2, n/2) The e.n-
ergy of this peak as a function of J goes as J with
a=-0. 73. ' This result can be interpreted in terms of
strings created by the hole as proposed in Ref. 5 and dis-
cussed in some detail in Ref. 10.

For the polarized system, as we show below, the
minimum energy of the quasiparticle is no longer at
k=(vr/2, ~/2) For all .k's, the behavior of the spectral
function is qualitatively the same. For all J, the quasipar-
ticle line carries a small weight which increases as J in-
creases. As an example, in Fig. 6 we present results for
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FIG. 3. Spectral functions for M=O, k=(m/2, ~/2), and
different values of J. (a) J=0.4, (b) J=0.7, and (c) J=1. FIG. 5. Same as Fig. 3, but with M= —4.
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k = (0,0) and M = —0.25. Note that in this case the spec-
tral density has less structure than for k =(n/2, m/2).

The energy of the quasiparticle peak for different mag-
netizations as a function of k is shown in Fig. 7. The en-
ergies of both spin-up and -down holes are shown. For
k&(0,0), the spin-up hole, i.e., a hole in the majority-spin
subspace, has always smaller energy than the spin-down
hole. This can be interpreted as an indication that for
J/t=0. 2 the energy of the state with one hole is smaller
if the total spin is smaller. It has been shown that the
Nagoka state, which corresponds to the stabilization of
the ferromagnetic state by introducing a hole to the sys-
tem, occurs in our small cluster only for J/t (0.075. For
k=(0,0), we always find degeneracies between the ener-
gies of the quasiparticles with majority and minority
spins. This is probably due to the fact that for this value
of k the total spin of the system with one hole is not given
by the minimum total spin compatible with S, .

The results of Fig. 7 can be summarized as follows:
For the highly polarized system a hole with spin o. equal
to the majority spin leads to a narrow quasiparticle band
with the minimum at k=(m, n). This band shape resem-
bles the case of the fully polarized situation, although the
band width is much smaller. As the magnetization de-

creases, the bandwidth decreases and the minimum shifts
toward (ir/2, ir/2). For zero magnetization, the
minimum reaches (vr/2, n/2) and the dispersion relation
is smaller to that of a particle moving in a lattice which
has doubled its periodicity. In the present calculation,
however, the degeneracy between the points
k=(ir/2, ir!2) and k=(ir, 0) is due to a finite-size effect as
discussed in Ref. 10.

It is interesting to analyze the weight of the quasiparti-
cle line. In all cases, the quasiparticle peaks correspond-
ing to k's close to the bottom of the band have more
weight than those corresponding to the top of the band.
For the k's at the top of the quasiparticle band, the
weight can be very small even for intermediate values of
J/t. To illustrate this behavior, we show in Fig. 8 the
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FIG. 7. Dispersion relations for different magnetizations.
The solid line corresponds to a hole with spin o. equal to the
minority spin of the system and the dashed line to a hole with
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—,', and

(d) M=O. The points on the x axis correspond to k=(0, 0),
(~/2, 0), (m6), (~, ~/2), (~,~), and (~/2, ~/2), respectively. The
circled point in (a) has zero weight in the spectral density and
was obtained by exact diagonalization.
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The spectrum is completely incoherent and the band-
width increases with M.

For J larger than 0.2t, there is a well-defined quasipar-
ticle peak at least for those k's close to the bottom of the
quasiparticle band. In all cases, for all magnetizations
and k's, the amplitude of the quasiparticle peak increases
as J increases and separates from the incoherent spec-
trum. The quasiparticle band is always narrow, except in
the fully polarized case, and its minimum shifts with the
magnetization. For spin-up holes, the minimum shifts
from k=( tr/2, ~/2) to (tr, tr) as the magnetization in-
creases from M=0 to —,'. Conversely, the bottom of the
band for the minority-spin hole shifts from k = (tr/2, 7r/2)
to (0,0).

If these results are used to describe the dynamics of an
electron in a strong-coupling superconductor with local
interactions, the magnetization plays the role of the su-
perconducting electron density. For low or intermediate
densities (M ~

—,), the quasiparticle peak corresponding to
the dressed electron forms a narrow band with its
minimum energy for a value of k near the center of the
Brillouin zone. It reaches the point I only in the limit of
zero density. For a half-filled band, the minimum is lo-
cated at the point X=(sr/2, tr/2). However, for this case
the superconductivity competes with the charge-density

wave state, an effect that we have not considered.
A single electron moving in a strong-coupling super-

conductor is dressed by the superconducting fIIuctuations,
giving rise to a heavy quasiparticle which is, essentially, a
particle in a so-called pairing bag. ' ' The size of the bag
is a function of the pair-pair coupling J. The size of the
bag decreases as J increases. In the present case, where
all the calculations were done in a finite cluster, we ex-
pect important finite-size effects for very small values of
J. We stress that although the superconducting order pa-
rameter is depressed in the neighborhood of the particle,
in analogy with the depletion of the magnetic order pa-
rameter for the case of a hole in an antiferromagnet, the
pairing is not weakened. In the present strong-coupling
case, the energy needed to break a pair is always U: only
the phase of the order parameter is distorted in the sur-
roundings of the unpaired electron. In this sense, the
denomination pairing bag is not appropriate to describe
this strong-coupling limit.
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