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We have carried out a detailed study of the reversible magnetization of polycrystalline
YBa2Cu307 g near T, in fields II up to 5 T. The magnetization curves at high fields can be fit
to the linearized anisotropic Ginzburg-Landau model for nearly randomly oriented grains, and
the approximate orientation distribution is obtained. The fit also allows one to extract a num-
ber of physical quantities, in particular the critical fields and the generalized Ginzburg-Landau
parameter a2 near T,. Both II 2'" and z2 '" (referring to grains with c

~~ H) are enhanced over
their mean-field values by a common temperature-dependent factor just below T„which implies
that H is linear in temperature up to at least 0.5 K below T . At slightly lower temperatures,
r2 '" develops a negative slope, as expected from (isotropic) Bardeen-Cooper-Schrieff'er theory;
however, the temperature dependence is much stronger than predicted.

I. INTRODUCTION

Key features of the macroscopic magnetic behavior of
high-T, superconductors are quite consistent with con-
ventional phenomenological models for type-II supercon-
ductors. For example, anisotropic London and Ginzburg-
Landau theories have been successfully employed to
analyze the angular-dependent behavior of the critical
fields, the London penetration depth, and the field-
induced torque. Measurements of the magnetization,
however, are generally difFicult to analyze in terms of in-
trinsic, equilibrium properties that characterize the ideal
material. These non-equilibrium effects, which are due
to Aux pinning and Bow, cause the magnetization to be
irreversible and time dependent in an external field. The
intrinsic magnetization of high-T, superconductors is di-
rectly measurable only at high temperatures and high
fields, where flux-pinning efFects become negligible. In
this regime, magnetization curves are reversible.

In the present paper we are interested in the equi-
librium magnetization of polycrystalline YBa2Cu307
near T, in fields close to the upper critical field II,2. Mea-
surements of the magnetization in this region have been
reported previously, however, these authors concen-
trated on different aspects as compared to our work. In
addition to the fact that the magnetization is reversible,
another convenient feature appears in the regime near
II,2. the Ginzburg-Landau equations can be linearized
due to the smallness of the order parameter. The lin-
earized anisotropic Ginzburg-Landau theory for an ar-
bitrarily oriented single crystal predicts a magnetization
which is linear in the applied field. In fact, for a high-
s superconductor (e is the usual Ginzburg-Landau pa-
rameter) such as YBa2Cus07 s, this linear regime ex-
tends to quite low fields on the scale set by (the angular-
dependent) II,q. Full high-field magnetization curves

for a high-T, polycrystal consisting of randomly oriented
grains were calculated recently using the single-crystal
results2 (for earlier work, see Kogan and Clem ). In Sec.
III, the relevant equations are reproduced, also taking
into account possible deviations from a random orienta-
tion distribution of the single-crystalline grains.

Our main objective here is to extract the general-
ized Ginzburg-Landau parameter i~:2 from our measure-
ments, and establish its temperature dependence near
T, . This parameter is conventionally used to describe
the magnetization of a type-II superconductor near the
upper critical field at all temperatures. At T„&2 is by
definition identical to the usual Ginzburg-Landau pa-
rameter z. At lower temperatures, Bar deen-Cooper-
Schrieffer (BCS) theory predicts a distinct tempera-
ture dependence, which is strongly affected by impu-
rity scattering, anisotropy " and strong-coupling
effects. In view of the absence of theoretical pre-
dictions for K2 based on alternative models for high-T,
superconductors, we can only compare the results of our
analysis with BCS theory. It should, however, be noted
that even in this case the theory is not complete, since
the anisotropy of YBa2Cus07 s has to our knowledge
not yet been taken into account in a satisfactory manner
for an arbitrarily oriented crystal.

II. EXPERIMENTAL DETAILS

The experiment was carried out by measuring the mag-
netic moment of a polycrystalline YBa2Cu307 ~ sam-
ple as a function of magnetic field for diff'erent tempera-
tures near T, . The sample was a small rectangular piece
with dimension 0.96 x 1.65 x 3.50 mm, cut from a 0.96-
mm-thick disk. The disk was pressed from fine-grained
powder prepared with the standard method followed

by annealing in a flowing oxygen furnace to obtain full
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oxygenation. (In our sample the oxygen content is esti-
rnated to be 6.987.) Powder x-ray diffraction of another
piece from the same disk was consistent with the standard
diKraction pattern of a compound of this stoichiometry,
without showing any detectable impurity phases.

A super conducting quantum interference device
(SQUID) magnetometer manufactured by Quantum De-
sign Inc. was used in this measurement. Two orien-
tations of the sample with respect to the applied mag-
netic field were investigated. In orientation I the field
was perpendicular to the original sample disk plane, that
is, parallel to the direction of applied pressure when the
YBa2Cus07 g powder was pressed into a disk. In ori-
entation II the field was perpendicular to the pressure
direction. Two different clean quartz tubes were used
as sample holders for the two orientations. The sample
was oriented inside the quartz tube by eye and tightly
plugged by quartz wool in order to prevent possible move-
ment during the measurement. A field-cooled suscepti-
bility measurement in orientation II at 10 G indicated an
onset of superconductivity around 93 K, and a Meissner
fraction of 25%. The plateau was reached at about 87 I&.

The magnetic moment was measured in the mag-
netometer by moving the sample up in discrete steps
through a superconducting pickup coil array, which is
arranged as a second-order gradiometer. The induced su-
percurrent in the coils was detected by an rf SQUID and
the voltage signal output from the SQUID was recorded
as a function of sample position. A linear drift term was
subtracted from the voltage signal from such a scan, and
the magnetic moment calculated by fitting the corrected
voltage signal to the expected pattern of a second-order
gradiometer. (This fitting procedure gave an improved
signal-to-noise ratio over the manufacturer supplied pro-
grams. ) For magnetic moments above 10 4 emu, the un-
certainty of this method of data interpretation was typ-
ically I%%up to 2% of the calculated moment, and for mo-
ments below 10 4 emu, the uncertainty was at the noise
level of the apparatus, which was about 10 emu. For
each field and temperature point, this scan was repeated
eight times. The magnetic moment values calculated for
each individual scan was then investigated, and occasion-
ally one or two scans were discarded because the calcu-
lated moment values were significantly different from the
rest of the scans in the set. Usually these erroneous re-
sults came from the first scans after the field change, and
were associated with large distortions of the SQUID volt-
age pattern which we believe was caused by Aux creeping
in the superconducting magnet after the change of mag-
netic field. The final results were obtained by averaging
the moment values of the scans for the same field and
temperature.

The experiment consisted of two series of m(H) mea-
surements (m is the magnetic moment) for the two ori-
entations. In each series, the measurements were per-
formed at constant temperature and varying field. For
each m(H) measurement, we set the magnetometer to the
desired temperature and waited for two hours to guaran-

tee the temperature stability to be better than 5 mK.
After each change of magnetic field, we waited for an-
other 8 minutes before scanning the sample, to avoid
the most serious drift period. The field was increased
in steps of 0.1 or 0.2 T until the maximum value (usually
5 T) was reached, and then decreased in larger steps to
check the reversibility. Within the temperature and field
ranges studied, the reversibility was found to be very
good (the data were in most cases only slightly above
the uncertainty margin of the data fitting in increasing
field). However, the error bars for the decreasing field
runs tended to be larger than for the increasing field
runs, suggesting that for high precision measurements
longer waiting times are necessary for larger magnetic
field changes. Also we repeated the experiments for some
of the m(H) curves to confirm the reliability of this tech-
nique, and the results essentially overlapped the previous
measurements, within the uncertainty of data interpre-
tation.

The inAuence of the quartz sample holder signal was
checked by measuring the empty holder plus the quartz
wool with exactly the same conditions as those with the
sample. Within the temperature range of our experi-
ment, 89—95 K, there was no observable temperature de-
pendence of the diamagnetic sample holder signal. The
SQUID voltage data of the sample holder, as a function
of sample position, was subtracted from those with the
sample, and the de'erences were analyzed by the method
discussed above. For all our m(H) curves, the eKect of
this correction was found to be equivalent to subtracting
from the original m(H) curve a straight line, i.e. , a dia-
magnetic signal, plus a small oA'set. As will be discussed
later, this sample-holder correction is irrelevant for our
purpose.

III. ANISOTROP IC GINZBURG-LANDAU
THEORY FOR A POLYCRYSTAL

Using the linearized anisotr opic Ginzburg-Landau
(GL) theory, Kogan and Clem2 have calculated the rnag-
netization near the upper critical field for a uniaxial su-
perconductor oriented arbitrarily in an external field II.
For a Ginzburg-Landau parameter K » 1, their result
for the magnetization component parallel to the applied
field can be written as follows:

—47fMii —
z (cos 0 + E sill 0).

H, g(8) —H
2 ~~~z0

Here

H.,(0) =
icos~ 8 + e sin 9

and 0 is the angle between the crystal symmetry axis
(c) and the direction of the applied field H. In the
field regime near H, 2, the vortices are parallel to the
applied field, and Abrikosov's structure parameter P~ ——

1.1596..., is independent of g.rs K~(0) is the gener-
alized GL parameter for 0 = 0, equal to K(0) at T,
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H, 2(0) = H, ~'", H, z(ir/2) = H„"= H,2'"/+e,

~,(0) = ~, '", r2(ir/2) = r., "=~, '"/ice.

The parameter e = Mi/Ms is the ratio of the effec-
tive masses for charge carriers propagating in the plane
and perpendicular to the plane, respectively. For a lay-
ered superconductor considered here, e ( 1; specifically,
from the measured anisotropy of the critical field slopes4

[H,'2(ir/2)/H, '2(0) 5.5j for YBa2Cus07 ~ one finds
~ - (1/5.5)' - —,', .

For convenience, we will alternatively employ the fol-

lowing notation for the angular-dependent quantities H, 2

and K2.

tions to the result derived in Ref. 13 will appear. From
the way our sample was prepared (see Sec. II), we expect
that a small fraction of the grains will be oriented with
their crystallographic a, b or c axes perpendicular to the
original disk plane, that is, along the direction the pres-
sure was applied. Let fi be the fraction of the grains with
c perpendicular to the original disk plane and f2 the frac-
tion with a or b perpendicular to the original disk plane
(a and b are taken to be equivalent). Then the rnag-
netization for the two orientations I (H J original disk
plane) and II (H ~~

original disk plane) is, respectively,
given by (f„= 1 —fi —fq is the fraction of randomly
oriented grains):

Using the above single-crystal result, it is straight-
forward to compute the magnetization of a polycrystal
consisting of randomly oriented grains whose individual
magnetization curves obey Eq. (1). If the orientation
distribution is not entirely random, additional contribu-

Mi ——f„M„+fiMi+ f2Mp,

Mii = f„M, + fiM2+ f2Ms, (4)

1 7l E 1 cos Op ) cos Op—4aM„= ~ Hq — —
~

cos8„/e+ cos go + e arcsinla
~

—H (1 —e) + ecos8n) I,2 ~~,'0 E' 3

H, 2(0) —H
2P~ ~,'(0) '

H, 2(ir /2) —H
2p~ ~22(0)

1 2 7r 1 + 6 7c —20p —sill 20p
47l Ms: ~ Hg2 (0)— E —(arcsinijl —e —E(Op ial.'cslnijl —r) —II

2P~ ~,'(0) 2 ir

Here

and

Op
——arccos

for H ) H, 2(O)

for H ( H, 2(0).

The symbol E(P')in) is the elliptic integral of the sec-
ond kind in the notation of Ref. 23. Equation (5) for
the contribution from randomly oriented grains was ob-
tained by averaging the single-crystal result, (1) over all
orientations in space. The expression (8) for Ms was

obtained by averaging the single-crystal magnetization
over all orientations with c in the original disk plane, so
that either a or b is perpendicular to this plane. This
term, which describ es a magnetization cur ve similar to
Eq. (5), contributes only to Mii (orientation II), where
the applied field is parallel to the original disk plane. (In
orientation I, these grains display a magnetic behavior
discribed by M2. ) The "cutoff angle" Op, which varies
between 0 and ir/2, defines the critical angle O discrim-
inating difFerently oriented grains whose individual II,2

(O) is above (O ) Op) and below (O ( Op) the applied field
H. If H & H, q(0), the minimum upper critical field, all
grains are superconducting, and gp = 0. Only in this
field regime is the total magnetization of a polycrystal,
in the framework of the linearized theory, in fact linear in
H. Finally, it should be mentioned that demagnetization
efFects are negligible in the present field range, because
the magnetization is very small.
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IV. EXPERIMENTAL RESULTS AND
FIT TO THE THEORY

In this section we will discuss our experimental results
and fit the data to the theory outlined above. Figure 1(a)
shows the raw data for several temperatures around T„
measured in sample orientation I (where the field was
applied perpendicular to the original disk plane). The
maximum scatter in the data is approximately 10 emu,
which is smaller than 10 the size of the symbols. The lin-
ear dependence of the magnetic moment on the field for
the temperatures 92 —95 K indicates that we are looking
at the normal state, with signs of superconductivity ap-
pearing below 1 T at 92 K. The nonzero and temperature-
dependent slopes of the dashed lines in Fig. 1(a) are due
to the competing influences from a sizable paramagnetic
contribution and diamagnetic (superconducting) fluctu-
ations, including also a temperature-independent contri-
bution from the sample holder (see Sec. II).

Figure 1(a) also shows six magnetization curves below
T„ for temperatures between 89.0 and 91.5 K. The ver-
tical arrows mark the fields H,q(0)=H, &'", below which
a careful analysis reveals a narrow linear regime. This
linear regime occurs due to the fact that, below HI2'",
all (potentially superconducting) grains are in the super-
conducting state, and that the field is still high enough
for the linearized theory to hold (at least for the ma-
jority of the grains). At fields exceeding H, 2'", more and
more grains are driven normal according to their orienta-
tion in the field, yielding a nonlinear total magnetization.
Also, the linear regime below H, &'" is expected to eventu-
ally give way to a regime exhibiting a progressively more
pronounced downward curvature in the magnetization at
lower fields, indicative of the breakdown of the linearized
theory. The linear portion is indicated for exemplary
purposes by the 90.5-K curve.

The exact position of the vertical arrows which mark
the upper end of the linear regime (H, 2'") was deter-
mined in a systematic way as follows. In Fig. 1(b) we

have difFerentiated the magnetization curves of Fig. 1(a)
with respect to the Beld. The narrow linear regime shows
up in the diR'erentiated curves as characteristic shoulders
which we use to identify H, &'". The dashed curves in
Fig. 1(b) are extrapolations from the high-field regime to
fields below H, &'". The arrows indicate these character-
istic fields. One can see that the identification of H, z'"

is not always unambiguous, in particular with the 90.0-K
curve; to be specific, for this temperature we have cho-
sen H, 2'"——3.3 T in the subsequent further evaluation of
our data. (The temperature dependence of H~z'" will be
discussed later. )

Figure 1(c) shows our data for the magnetic moment
for the same temperatures below T, as before, for sample
orientation II (see Sec. II). We observe qualitatively the
same features as with orientation I, apart from a diA'erent

linear background due to a diA'erent sample holder which
had to be used for technical reasons. Furthermore, since
the statistics for orientation II was not as good as with
the previous measurement, it is very diFicult to deter-
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FIG. 1. (a) Measured magnetic moment as a function of
applied field for several temperatures above and below T, for
sample orientation I (see Sec. II). The error bars are smaller
than —the size of the symbols. The vertical arrows indicate10
the critical fields H,2'" as obtained from (b) The dashed lines
emphasize the linear behavior above T,. (b) Differentiated
data from (a) for the determination of H,~" (arrows). The
dashed lines are approximate extrapolations from the high-
field regime to fields below II,2'". The broken arrows indicate
uncertainties in the definition of II,&'" for the 90.0-K curve.

(c) Same as (a), for orientation II (see Sec. II).
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m(T, H) —a(T) —b(T) H
expt =

V
(10)

with m(T, H) the measured magnetic moment of the
sample including the signal from the sample holder
[Figs. 1(a) and 1(c)],and a and b temperature-dependent
coefFicients to be determined from a fit to the theory; V
is the real superconducting volume as obtained from the
sample dimensions, its weight, and the low-field Meissner

mine the fields H, 2'" in the same way as before. Also,
as can be seen by carefully comparing Fig. 1(a) with
Fig. 1(c), the kink for the second sample orientation is
slightly less pronounced. This will be attributed later in
this section to a small deviation from a random orienta-
tion distribution of the grains, consistent with the way
the sample was prepared. For these reasons, we have de-
cided to employ the values for H, &'" determined in the
previous analysis [Fig. 1(b)]; they are consistent with the
data in Fig. 1(c), as expected.

We now proceed to the discussion of our fit procedure
using the theory summarized in Sec. III. In order to
obtain from our data the bare magnetic moment of the
sample due to the vortex state alone, the background
magnetization originating from three contributions has
to be subtracted from the measured signal. These three
contributions are the paramagnetic moment due to non-
superconducting phases, the (superconducting) diamag-
netic fluctuation contribution, and the signal from the
sample holder. The first two contributions are certainly
temperature dependent. The signal from the empty sam-
ple holder including the quartz wool was determined in
Sec. II to be linear in the field, with a small nonzero
oAset at H =0; no significant temperature dependence of
the sample holder signal could be detected.

In order to assess the field and temperature depen-
dence of the magnetic moment due to the full back-
ground, we go back to Fig. 1(a) and consider the mag-
netization curves for the temperatures 92 —95 K. These
curves suggest that the magnetization above (the zero-
field) T, (= 92.1 K), including the sample holder contri-
bution, is of the form a(T) +b(T) H, with temperature-
dependent coefTicients a and b. In particular the oAset a
obviously develops a strong temperature dependence be-
low about 93 K, because of enhanced diamagnetic Auc-
tuations. It is expected that this trend continues below
the zero-field T„due to the finite transition width of the
Meissner signal observed in our sample (Sec. II). Fur-
thermore, superconducting grains will tend to induce or
enhance, via proximity eA'ect, diamagnetic fiuctuations
in adjacent, nonsuperconducting grains. It is therefore
tempting to assume a magnetic background of the same
linear form as observed above 92 K, also for temperatures
where some of the grains exhibit a vortex state. We will

show in the following that with this assumption, it is in-
deed possible to obtain an excellent fit of our data to the
linearized Ginzburg-Landau theory outlined in Sec. III.

The bare experimental magnetization due to the vortex
state alone is thus given by the following expression:

signal. For our sample, V=1.03 x 10 cm .
Equation (10) for the two sample orientations has to be

fit to the theoretical magnetization curves Eqs. (3) and
(4) for orientations I and II, respectively. It turns out
that if we assume a random orientation distribution of
the grains [fi ——f2 ——0 in Eqs. (3) and (4)], then only the
data for orientation II can be fit in a satisfactory manner.
This is understood as follows in terms of a certain degree
of alignment of grains. As can be seen from Eq. (4), M&i
contains, apart from the "random" term, two additional
contributions arising from grains with their c axes per-
pendicular to the field (~q), and randomly distributed
in the sample plane along which the field is applied (M3).
The contribution Mq, however, has the same form as the
background, and is thus in our analysis absorbed in the
fitted coefficients a and b Als. o, the contribution M3
looks (if plotted) somewhat similar to M„. Therefore,
if the total fraction of aligned grains is not too large,
the full magnetization for orientation II will resemble the
"random" curve, and the fractions fi and f2 cannot be
determined. For orientation I, however, the situation is
diAerent. Equation (3) for Mi includes the contribution
Mi from grains with their c axes parallel to the applied
field, which cannot be absorbed in the background. This
contribution will show up in the measured magnetization
as a characteristic distortion of the "random" curve that
can be used to determine fi from the optimum fit.

Figures 2(a) and 2(b) show the fits for the two sample
orientations for all measured temperatures. The theory
curves are based on an anisotropy parameter c = I/30.
From the best fit for orientation I we obtain fi ——0.07
with an estimated uncertainty of about +0.01. Since we
cannot determine fq from our analysis, we assume for
definiteness that the same fraction of grains is aligned
with their a and b axes along the original sample disk
axis 88 is aligned with their c axes. Thus we set fz = 0.14;
it follows that the fraction of randomly oriented grains
f„= 0.79. An alternative choice for f2 does not sig-
nificantly alter our results, as long as f2 is still small.
From the fact that the fits in Figs. 2(a) and 2(b) work
so well we conclude that (i) the assumption of a linear
magnetization background is justified and that (ii) the
anisotropic Ginzburg-I andau model for polycrystals in-
deed describes our data.

In Table I, we list the parameters a and 6 correspond-
ing to the fitted linear magnetization background [Eq.
(10)). As expected, the observed trend in the magneti-
zation above 92 K [Fig. 1(a)] continues below this tem-
perature. Also, our preliminary experiments on oriented
grains in epoxy, for c

~~ H, directly reveal a similar lin-
ear background above H, 2(T), for T ( 92 K. We find
that both a{T) and b(T) display qualitatively the same
temperature dependence as shown in Table I.

We will now extract, from the above fits, physical pa-
rameters characterizing the superconductor. From the
scaling factors for the magnetization curves in Figs. 2(a)
and 2(b) that were needed in order to match the experi-
mental data with the theory curves we obtain the general-
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FIG. 2. Normalized magnetization, with extraneous con-
tributions removed, as a function of H/H, 2'" as obtained from
Fig. 1 employing the fit procedure described in the text. The
plotted quantity is (—4s.M)2P&(r2 '") /H, 2'". Data. points
at fields below the 'inear regime are omitted. The theory
curve (solid line) is given by Eq. (3) [Eq. (4)] with c =
and fr ——fq/2 = 0.07 (f, = 0.79). The scaling factors for
the experimental data for each temperature are chosen such
that the values at H/Hg "=1 (arrow) match the theory curve.
This gives aq '" (T). (a) Sample orientation l. (b) Sample ori-
entation II.

ized Ginzburg-Landau parameter x~&'" —z2(0) [see Eqs.
(3) and (4)]. Figure 3 shows a plot of K2

'" as a function
of temperature for the six temperatures investigated, for
both orientations. The small, but apparently systematic
discrepancies between the two orientations which are seen
in the figure reflect the degree of reliability of our anal-
ysis. They may indicate distinctly difkrent temperature
efFects in the vortex state for grains with their c axes

parallel and perpendicular to the field, which are not in-
cluded in the present Ginzburg-Landau treatment. Since
the fraction of oriented grains is small, the discrepancies
are not very pronounced.

Figure 3 clearly shows a nonmonotonic temperature
dependence of x2 '". We first comment on the upturn for
temperatures near T,'. In order to relate this behavior
to the temperature dependence of the critical fields near
T„we have plotted our measured H, 2'" [see Fig. 1(b)] in
Fig. 4. A similar upward deviation with respect to the
mean-field behavior can be seen in these data just below
T„as also observed in II,~ measurements on twinned sin-

gle crystals. ~ In fact, according to Figs. 3 and 4, these en-
hancement factors for II,2'" are approximately the same
as for Kz

'" at each temperature. This implies, using the
relation

II,gK2~K1
2 II,

near T„ that the thermodynamic critical field H, is ap-
proximately /inear in temperature up to at least 0.5 K
below T, (Fig. 4). An alternative way of visualizing this
relationship is to consider the area under the magneti-
zation curve when both H, &'" and ~&'" are enhanced
over their mean-field values by the same factor. Since
the magnetization slope is proportional to 1/le&, this
area, and therefore H„will follow the mean-field behav-
ior as a function of temperature. Using standard ther-
modynamic relations, the measured slope of H, gives a
value for the (zero-field) specific-heat jump of KC/T, =
(dH, /dT) /4' 0.056 —0.065 3 /Kz mol, in good agree-
ment with directly measured values for YBa2Cu307
[0.046 J/K mol (Ref. 24), 0.055 3/K2mol (Ref. 25),

0.067 J/K mol (Ref. '26)]. Furthermore, from the
extrapolated Ginzburg-Landau parameter zz '"(T +T,)—

35 and the H, slope indicated in Fig. 4, we

obtain, using the exact numerical Ginzburg-Landau so-
lution for H, i, z dH, i(9 = 0)/dT = dH, i "/dT = —2.1

rnT/K. We finally note that our directly measured H, 2'"

slope in Fig. 4 ( —1.56 T/K) is somewhat smaller than
the single-crystal result~ (—1.9 T/K).

Another characteristic feature in Fig. 3 is the neg-
ative slope of z&~'" that develops at temperatures be-
low 90 K. A negative slope for K2 is expected in
the framework of the BCS model, for weak s and
strong coupling, ' isotropic and anisotropic super-
conductors. Also, these theories predict a much larger
slope for clean than for dirty superconductors. From
Fig. 3, we obtain for the normalized asymptotic slope
approximately (z2'")' T,/K —12, which is almost ten

TABLE I. CoeKcients a and 6 for the linear magnetization background [see Eq. (10)] for the two sample orientations.

a memu
a memu
b (memu/T)
b (memu/T)

Orient.
I
II
I
II

91.5 K
—0.049
—0.091
0.1275
0.0980

91.0 K
—0.110
—0.164
0.1282
0.1018

90.5 K
—0.175
—0.223
0.1312
0.1058

9O.O K
—0.270
—0.338
0.1392
0.1148

89.5 K
—0.413
—0.495
0.1486
0.1280

89.0 K
—0.521
—0.590
0.1494
0.1268
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FIG. 3. The generalized Ginzburg-Landau parameter
az '" (T) as obtained from the fit shown in Fig. 2, for both
sample orientations. Note the upturn near T,.

times larger than the isotropic, weak-coupling BCS re-
sult in the clean limit (—1.37). From the above
work, however, it is known that both anisotropy and
strong-coupling eKects can significantly enhance the tem-
perature dependence of x2. For instance, the exper-
imental value —2.9 for (t;2 '")' T, /v observed in pure
single-crystalline niobium has been quantitatively at-
t, ributed to Fermi-surface anisotropy and (to a lesser
degree) strong-coupling corrections. i7 A recent weak-
coupling BCS calculationis for a I:o:3single crystal with
c

~~
H however, predicts a somewhat reduced slope, as

compared with the isotropic theory. To our knowledge,
there exist unfortunately no calculations on the tempera-
ture dependence of z2 for an arbitrarily oriented layered
single crystal. We can therefore not compare our ex-
perimental result on ~2 with a detailed BCS calculation.
Also, to our knowledge, there exists no theory of rq based
on alternative models for high-T, superconductors.

V. CONCLUSION

The main results of our extensive study of the dc mag-
netization of a 1:2:3polycrystal near the upper critical
field are the following. Our fitting procedure, which is
based on the linearized anisotropic Ginzburg-Landau the-
ory, allows us to determine the fraction of grains in the
sample which are oriented with their c axes along the ap-
plied field. The quality of the fit is excellent, which sug-
gests that the underlying theory is applicable. In partic-
ular, we conclude that in the present regime, Abrikosov's
structure parameter P~ is indeed isotropic, is and that
therefore the vortices are not significantly tilted with re-

FIG. 4. H,z'"(T) and H, (T) as obtained from I'ig. 1(b)
and Eq. (11), respectively. The data for H, are based on

the averaged results for rz '" for the two sample orientations

(Fig. 3). Note the upward curvature of H,~'" near T„and the
linear behavior of II, .

spect to the direction of the applied field.
From our analysis we also obtain the minimum up-

per critical field (referring to grains with c
~~ H) and the

generalized Ginzburg-Landau parameter e~z'" in the tem-
perature regime from 89.0 to 91.5 K. Both quantities are
enhanced over their mean-field values in a similar way
just below T„which indicates a common origin of this
eA'ect. It also indicates that the thermodynamic critical
field H, is approximately linear in temperature between
89.0 and 91.5 K. From the obtained well-defined H, slope,
we derive a value for the specific-heat jump EC/T, which
is in very good agreement with recent calorimetric mea-
surements on polycrystals.

Finally, we observe a crossover for z&
'" to a negative

slope below 90 K. The value of the slope is about ten
times as large as expected for weak-coupling, isotropic
BCS superconductors. Unfortunately, the full BCS cal-
culation including a reliable anisotropy model for arbi-
trarily oriented grains is not available for comparison.
Also, higher fields will be needed in future experiments
in order to substantiate the present results regarding the
temperature dependence of v2.
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