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Spin dynamics in a frustrated magnet with short-range order
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We analyze the stability of Néel and collinear orders for the frustrated J,-J, model on a square
lattice as a function of S and J, /J, within the Schwinger-boson mean-field theory. For Néel order
and finite S, the domain of stability extends beyond the classical boundary J, /J, = 1, suggesting the

possibility of stabilizing (with the help of quantum fluctuations) a state that is classically forbidden.
We use the solution with short-range Néel order as an effective model for the magnetic properties of
high-T,. Cu oxides. Predictions are made for the static susceptibility, the dynamical structure fac-
tor, and the nuclear relaxation rates (all observable experimentally) at all temperatures. We show
that the spin waves are overdamped even at low 7 and that a gap opens in the spin-fluctuation spec-
trum. The susceptibility is nearly linear on a wide intermediate temperature range and obeys a Cu-
rie law at high temperature in agreement with 1/N fermionic expansion.

I. INTRODUCTION

From an experimental point of view, the magnetic
properties of the normal state of high-7, Cu oxides are
now relatively well defined. First of all, it has been estab-
lished using neutron scattering! ~3 that the antiferromag-
netic (AF) long-range order (LRO) of the parent com-
pounds is lost upon doping, but that AF short-range or-
der (SRO) is still present in superconducting compounds.
Second, NMR-NQR experiments performed on
YBa,Cu;0¢, , have shown that the static susceptibility,
as measured by the Knight shift, has a nontrivial temper-
ature dependence.*> For YBa,Cu,;0,, it is temperature
independent, like a regular Pauli susceptibility; but for in-
termediate dopings (e.g., YBa,Cu;Oq 43, T, =60 K), the
susceptibility decreases by a factor of 4 when T is lowered
from room temperature to 7T,, and the data extrapolate
more or less to zero as T goes to zero. These data have
been recently confirmed by experiments performed on
YBa,Cu,O;4 (T, =60 K), where the same T dependence as
in YBa,CuyOg¢; has been observed.® In the case of
YBa,Cu,Oy, one deals with a crystalline sample (the
lower doping is a result of stoichiometry only) and this
behavior can no longer be attributed to the effect of disor-
der.

A possible and simple way to account for these data is
to assume that the strongly correlated fermions that are
present in the CuO, planes have both itinerant and local-
ized characters. As local moments, they have only SRO
due to the frustration induced by the motion of the car-
riers. The static susceptibility then consists of two con-
tributions: a T-independent term that arises from the
Pauli mechanism for itinerant carriers, and a term that
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vanishes at T=0 and increases with T, and which comes
from the local moments. If this picture is to make any
sense, itinerant carriers should have a Pauli susceptibility
that increases with doping, and the local moments should
give a susceptibility that vanishes at 7'=0, increases with
temperature, and saturates at higher temperature. The
properties of the Pauli contribution are left for future in-
vestigation.” In this paper, we will concentrate on the
properties of a specific model of local moments with
SRO.

The first step is actually to find a model that exhibits
AF SRO. In the case of high-T, Cu oxides, the mecha-
nism that triggers the loss of LRO is not known for sure,
but it seems likely that the motion of the carriers induces
strong quantum fluctuations that destroy the staggered
magnetization. If the magnetic excitations can be
separated into itinerant and localized ones, which is the
basis of the picture we have in mind, this means that the
carriers induce effective interactions between the local
moments that will tend to destroy the staggered magneti-
zation. This idea was first formulated by Inui et al.?
who proposed a Heisenberg Hamiltonian including cou-
pling with more than just nearest neighbor (NN). At
T=0, and if frustration effects are important enough,
spin-wave fluctuations can destroy the staggered magneti-
zation, which is equivalent to a loss of LRO. But this
does not mean that the ground state retains SRO. In
fact, the nature of the ground state of the Heisenberg
model with AF nearest and next-nearest-neighbor (NNN)
couplings has been recently studied by various au-
thors,” 13 and it seems likely that spin-Peierls order ap-
pears in the region of strong frustration (J, /J, =0.5).

Nevertheless, this does not imply that this model is un-
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able to describe AF SRO. All we have to do is to force
the system to have the right ground state by using an ade-
quate mean-field theory. Given our goal, which is to de-
scribe the magnetic properties of high-T, Cu oxides, this
is a reasonable procedure because we know that there is
antiferromagnetic SRO, but we do not know why. So, ac-
cording to our picture of carriers modifying the interac-
tions between local moments, there must be a contribu-
tion that stabilizes AF SRO against other possible ground
states. As we do not understand what this contribution
is, we include it by hand by using a mean-field theory that
produces the required ground state.

Now, if some SRO persists, the most convenient
method is the Schwinger-boson mean-field theory
(SBMFT) developed by Arovas and Auerbach to study
the finite-temperature properties of a two-dimensional
(2D) Heisenberg antiferromagnet on a square lattice.!* !>
In fact, within the SBMFT, another way to destroy LRO
at T=0 is to reduce the spin variable below a critical
value S.=~0.2. The resulting model has already been
studied,'® and the T dependence of various quantities has
been derived in the low-temperature limit. In the present
paper, we wish to study a refined version of this model.
There are several reasons for that. First of all, we would
like to get rid of the unphysical hypothesis S <S, and to
work with a model where S =%. Second, it is interesting
to go to higher temperatures. But this is impossible
within the nonfrustrated model because the high energy
excitations yield a diverging 1/T, due to density of state
effects. Finally, frustrated Heisenberg Hamiltonians con-
stitute an interesting problem per se for which a detailed
analysis within a given mean-field approximation is a
valuable piece of information.

So, we have decided to study the Heisenberg Hamil-
tonian with nearest- and next-nearest-neighbor couplings
(called J,-J, model hereafter):

H=J,35;S;+J, 3 S;'S; . (1)
NN NNN

The first thing to do is to determine for which value of
J,/J; the SBMFT predicts the disappearance of AF
LRO and the existence of SRO for §=1. A linear spin-
wave (LSW) calculation of Chandra and Doucot!’ sug-
gests that this happens for big enough J, /J,. As we shall
see below, this is also the case within SBMFT, but the
loss of LRO occurs at a larger value of J,/J, for S=1.
In fact, the LSW phase diagram giving the domains of ex-
istence of LRO for various values of S and J,/J; turns
out to be significantly different from the one we got from
the SBMFT, suggesting that corrections to the LSW cal-
culation due to higher order effects might be qualitatively
important. These results are presented in Sec. II.

The next step is to study the dynamic properties of this
Hamiltonian for a given value of J,/J; for which the
SBMFT yields AF SRO. The qualitative results with
respect to the previous analysis of such a model of SRO
include a detailed description of the spin-spin correlation
function S(q,w) for different temperature regimes, and
high T results for the susceptibility and the relaxation
rate. This is the object of Sec. III.
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II. PHASE DIAGRAM

Let us start our discussion by a short review of the
properties of the classical J,-J, model. For J,/J; <1,
the ground state is the Néel state [Fig. 1(a)]. For
J,/J, >4, J, dominates and the system separates into
two sublattices, each of them having Néel order. For
simple symmetry reasons, the classical energy is then in-
dependent of the angle 6 between the two sublattices, and
there is a continuous degeneracy between all these canted
states [Fig. 1(c)]. Finally, for J,/J; =1, the ground-state
manifold includes not only all the previous states, but
also a class of helical states [Fig. 1(b)].

In the quantum case, these conclusions can be modified
even at T=0 due to zero-point fluctuations. The main
effect is a reduction of the order parameter that can lead
in certain cases to a loss of LRO. This effect can be stud-
ied using linear spin-wave (LSW) theory.'®!° In the case
of the J,-J, model, the phase diagram giving the critical
value of the spin below which the LRO disappears as a
function of J, /J; has been determined with this method
by Chandra and Doucot.!” If the classical ground state is
degenerate, another effect of quantum fluctuations can be
to lift the degeneracy, as first proposed by Villain who
called it “order from disorder.”?°

Now, for the purpose of the present paper, all we need
is the region of existence of Néel LRO within the
SBMFT. We start by noting that this method gives ex-
actly the same reduction of the sublattice magnetization
as the LSW calculation for J, =0, i.e., for the usual AF
case. Does it mean that the phase diagram will remain
unchanged with respect to the LSW case? A priori, no.
The argument is the following. In the LSW theory, quan-
tum fluctuations cannot modify the shape of the spin-
wave spectrum, whereas in the SBMFT, there is such a
possibility. This was first pointed out by Chandra
et al.,'? who realized that Villain’s “order from disorder”
shows up as the opening of gaps in the excitation spec-
trum of twisted magnets. But if the spin-wave spectrum
is modified, the reduction of the order parameter will also
be modified, which can lead a priori to a different phase
diagram. In fact, this has been recently observed by vari-
ous authors?""?? on the basis of an essentially equivalent
method developed by Takahashi.?®> We nevertheless
present the SBMFT analysis is some details because our

(a) (b) (c)

FIG. 1. Various possible orders in the classical case: (a) Néel
state (J,/J; < 1); (b) helical states (J, /J, =1); (c) canted states
(Jy/J Z 1)
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calculation yields significant improvements with respect
to the previous results.

Let us now turn to a brief description of the method.
For clarity, we will discuss only the collinear states in the
present article.?* In the large-S limit, this is quite natu-
ral, as we expect them to be stabilized against the other
states by quantum fluctuations (order from disorder). In
fact, it can be shown that within the SBMFT these states
play no role in the interesting part of the phase dia-
gram.?

The Schwinger-boson method starts from a faithful
representation of spin operators

Si =’;_bitraaa'bia’ ’ (2a)
blb, =25, (2b)

where b;;,b;| are boson operators, and the second equa-
tion ensures that S,2=S (S+1). Then, to describe quan-
tum fluctuations in a state with LRO, Chandra et al.
pointed out that it is convenient, as in spin-wave theory,
to work in a reference frame where spins are ferromag-
netically aligned by performing a suitable local rotation.
For details of the general method, the reader is referred
to their original paper.!? For collinear states, the method
is very simple. After a rotation of 7 in spin space at the
appropriate sites, the general Hamiltonian

H= 3 J;S;S, (3)
i, j)

can be written

H=! 3 J,D}D,;—28?%

( i >ferro

13 J,Bi'B;—25%), (4)
i j) Ap

where D=b1b,,, Bi'=b bl . and ij)gerro ({ij ) ap)
means summation over pairs of parallel (antiparallel)
spins. A mean-field decoupling is then performed with
respect to the order parameters a;; =%(D,7;> and
y,.j=%(Bij~T), and the local constraint is replaced by a
global one and is treated with a Lagrange multiplier A.
The resulting Hamiltonian is quadratic and can be diago-
nalized in Fourier space by a Bogolioubov transforma-
tion. The parameters a;;, v;;, and A are finally deter-
mined by minimizing the free energy.

Let us follow the details of the method in the cases of
interest here. In the Néel case, we need two order param-

b

(a) (b)

FIG. 2. Order parameters defined in the main text for (a)
Neéel order; (b) collinear order.

7893

eters a and ¥, while in the collinear case,’* we need three
of them: a, ¥, and v, (see Fig. 2). Then, introducing the
quantities 2, and A given by

hq=4J,co0sq,cosq,a , (5a)

A =2J(cosq, +cosq, )y (5b)
in the Néel case, and by

hq=2J,cosq,a , (6a)

A =2Jcosq,y,+4J,c08q,c08q,7, (6b)

in the collinear case, the Fourier-transformed Hamilton-
ian reads

H=E + 3 (hg+A)blbgy +bg bl))
q
— 3 Ablbl +bgb_g)) (7)
q

with
E, =2J,(S?+2y?)—2J,(S?+2a?)—2MS+1)  (8)
in the Néel case, and
E,=2J,(yi—a®)+2J,(8*+2y3)—2A(S +1) 9

in the collinear case.
The energy spectrum deduced from a Bogolioubov
transformation of Eq. (7) reads

w0 =[(hg+A)P—A2]"%. (10)

To study the ground-state properties, we need the self-
consistent equations at 7=0. To include the possibility
of Bose condensation, we must introduce a quantity S*
and write them

L gt
a=S*+3 5y C0S4xC0S,, (11a)
q q
y=S*+3 ~éiL(cosq +cosq, ) (11b)
T 40q x ree
st+i=se4 3t (11¢)
: zq: 204 ¢
for the Néel case, and
S*+3 hy T (12a)
a= cosq,, , a
q 20 *
yi=S*+3 A4 cosq (12b)
1 - 2wq y
Aq
y,=S*+ 3 ——-cosg,cosg, , (12¢)
q 29q
s+i=ste 3ttt (12d)
2 % 2o,

for the collinear case. The unknowns are (a;;,y;;,A) or
(a;j,7»S*) depending on the parameters J;; and S. If
there is a solution in (a;;,7,;;,A) for S*=0, then the sys-
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tem has no LRO. But if there is no such solution, there is
Bose condensation;?® the occupation of the lowest lying
mode S* is an unknown, and A is fixed by the condition
that the frequency of this mode vanishes. In the present
context, this corresponds to LRO.

In general, for a given set of J; and for small S, the sys-
tem will have short-range order: S*=0 and the spectrum
has a gap. If the gap is finite for all values of S, the sys-
tem cannot sustain LRO of the assumed symmetry. But
if the gap vanishes for a certain range of spin values,
there is Bose condensation, and LRO. In practice, one
determines S, as follows: (i) Assume that both S* and
the gap vanish (the second condition fixes A); (i) solve the
self-consistent equations giving a;; and y;; (iii) deduce S
from the last equation. The results for the Néel and col-
linear cases are given in Fig. 3, where we have plotted
1/S, as a function of J,/J,. The main features agree
with Xu and Ting.?? For the collinear case, there is no
qualitative difference with the LSW theory: 1/S,. van-
ishes at J, /J, =1, where the classical system undergoes a
phase transition. For the Néel case, on the contrary, the
phase boundary goes noticeably beyond J, /J; =1, which
means that the spin liquid region found by Chandra and
Doucot is considerably modified, and actually disappears
for physical values of the spin.

Now, the large-S limit of this region of existence of
Neéel order is quite subtle. We have found that for S —
the boundary does not drop vertically to J,/J;~0.7, as
proposed by Xu and Ting,?? but turns back to reach the
classical limit J, /J; =Z. We think that physically this is
the only reasonable situation. In fact, when S goes to
infinity, we have to connect one way or another to the
classical result. In the classical case, the Néel state is un-
stable, which means that there are imaginary frequencies.
So, increasing S should yield a vanishing spin-wave veloc-
ity before S becomes infinite. This actually cannot be ob-
served in our calculation because quantum fluctuations
will destroy the LRO before the spin-wave velocity van-

1/
-

Collinear

i
!
1
]
-

0 i A i i i i A "
00 01 02 03 04 05 06 07 08 09 10
1,0,

FIG. 3. Phase diagram obtained with the SBMFT. The solid
line shows 1/S, (Néel), the dashed line 1/S, (collinear), and the
dashed-dotted line the first-order transition boundary: Below
the dashed-dotted line, the collinear state has a lower energy
than the Néel state.
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ishes. What we expect to observe is then a loss of LRO
on increasing S. In other words, this region of Néel LRO
has to be bounded from below. This is indeed what our
numerical simulation has shown (see Fig. 3).

Another interesting question is raised by the coex-
istence of both types of order for J,/J;=0.5. Within
our approach, all we can do is to compare the ground-
state energies of both states. They are given by

E,, =E,,tE., (13)

where E_ is the constant part of the Hamiltonian [see
Egs. (7)-(9)] and E,,, = 3 4@, is the zero-point energy.
A straightforward calculation yields

E, (Néel)=—2J,(2y*—5°)+2J,(2a*—S?) , (14a)

E,  (collinear)= —2J,(yi—a®)—2J,(2y3—S?%) . (14b)

These formulas can actually be obtained directly from
Eq. (4). Let us note that these expressions are slightly
different from those obtained by Xu and Ting?? using
Takahashi’s method.?* This is the essential difference be-
tween his variational approach and the large-N approach
of the SBMFT. We have numerically computed these en-
ergies. It turns out that the collinear state is lower in en-
ergy in the region below the dashed-dotted line in Fig. 3.
This means that there is a first order phase transition
from the Néel state to the collinear state upon increasing
S. However, we do not claim that we can make any
statement as to what the real ground state is. Our
Schwinger-boson approach is a mean-field theory, and its
approximations are difficult to control. The nature of the
ground state is actually still controversial (see Refs. 9-13
and 27). A likely candidate seems to be the spin-Peierls
state first proposed in that case by Read and Sachdev,!! a
state beyond the reach of the present mean-field theory.

What is then the physical meaning, if any, of the region
of stability of the Néel order? We interpret this as a sta-
bility against long-wavelength fluctuations of the order
parameter. But for the same value of J,/J,, the corre-
sponding classical state is unstable and cannot serve as a
starting point in a 1/S expansion. The existence of a
quantum state with LRO that cannot be obtained by a
perturbation of the corresponding classical state is not
new in the context of spin systems. Studying the bound-
ary between ferromagnetism and helimagnetism in a hex-
agonal model, Harris and Rastelli?® have found that
quantum fluctuations can stabilize a helical state which is
forbidden classically, yielding what they have called a
quantum helix. The SBMFT allows one to describe this
effect because in this method, the quantum fluctuations
modify the coupling constants, i.e., the dynamics of the
order parameter. Further work along these lines is in
progress.?

Finally, we should mention that this phase diagram is
not complete. The noncollinear classical ground states
define LRO that can be sustained outside the regions
where the collinear ones can. Nevertheless, this corre-
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sponds to S <0.42 and is physically not very interesting.
For all physical values of the spin, we have preliminary
results that indicate that these states are never stabilized
agaiznsst one of the collinear states considered in this pa-
per.

III. SPIN DYNAMICS

Let us now turn to the study of the spin dynamics. We
first note that the frequencies wy correspond to the spec-
trum of the mean-field Hamiltonian and should be con-
sidered as elementary excitations. On the other hand the
collective modes are directly obtained from the dynami-
cal spin correlation function defined by S(q,)
Zfdtei“”(Sq(t)~S_q(0)), ©>0. It can be written
S(q,0)=S,(q,0)+S,(q,w), where S,(q,w) and S,(q,®)
have a different physical origin and are given by

S1(q,0)= 3 (Ut q—ViVprg)ni(1F+ny4q)
k

X¥(oy—wy gt o), (15)

$5(q0)= 3 (Uyvy 4 q— Vit q)(1+ny)
K

X(1+nk+q)8(wk+a)k+q_a)) N (16)

n,=1/ (eﬁw“* 1) is the bosonic thermal factor, 8 the in-
verse temperature, and u, =[(A+h, +w,)/20,]"? and
v =sgn(AY[(A+h, — o) /20, ]'/? are the coefficients of
the Bogolioubov transformation that diagonalizes the
mean-field Hamiltonian. The physical processes respon-
sible for the first term are the simultaneous emission and
absorption of two elementary excitations. This term van-
ishes identically at T=0 because thermally activated ex-
citations are no longer available. On the other hand, the
second term corresponds to the emission of two elemen-
tary excitations. This process is allowed even at zero
temperature.

In the following we shall investigate the behavior of
S(q,w) in the disordered phase. We have chosen a value
of J,=0.65 (J,=1), while the spin is set to S=1. This
corresponds to a point in the phase diagram close to the
boundary of the region of AF LRO. Let us emphasize
again here that we do not consider J, as a real physical
quantity but rather as a parameter we adjust to get the
generic form of the dynamical correlation function for
SRO antiferromagnets. So, we disregard the collinear
phase which is predicted by the theory and we assume
that we have instead a disordered Néel state.

Before we turn to the study of the disordered state let
us summarize some of the main results relative to the
pure Heisenberg model (J,=0).1* At T=0, S(q,w) was
shown to diverge on a surface in the 3D w-q space given
by ®=w, in complete agreement with large-S spin-wave
theories. At finite temperature a gap develops
[A(T)~Texp(—C/T)<T] leading to an exponential
decay of the static spin-spin correlations. Near
qo=(m/a,m/a) (on the scale of the correlation length)
the spin waves become overdamped, while sufficiently far
away from q, they recover a large lifetime. In other
words, the spin waves are still defined in real space on the
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scale of the correlation length (exponentially large at low
temperature). Our motivation to study here the disor-
dered phase is threefold. (i) First, we are stimulated by
the excellent agreement found for S(q,®) between the
SBMFT and exact diagonalizations on small clusters.>°
(ii) Second, we expect a behavior of S(q,w®) qualitatively
different from the pure Heisenberg model. Indeed, the
gap formation has a different origin in each case. For
J,=0, the disordering of the spins (at long distance) is
due to thermal fluctuations and the gap is always ex-
ponentially small compared to 7 while in the case of in-
terest here the disordering is due to frustration and at low
temperature the gap becomes larger than 7. (iii) Third, a
disordered spin state is realized in the new high-T, super-
conductors upon doping the Néel state. In the supercon-
ducting phase correlation lengths as short as 1 or 2 lattice
spacings are typically observed. Moreover, the quantity
S(q,w) is directly accessible by inelastic neutron scatter-
ing (at least for q~q,) and therefore a direct comparison
with experiment is in principle possible.

The summation in S(q,w) was performed on finite lat-
tices of typical sizes 400X400 or 600X 600. Although
the spectrum o, is periodic of period qg, the dynamical
spin correlation function is defined in the full Brillouin
zone as expected since there is no LRO, hence no dou-
bling of the unit cell.’! Indeed, this can be seen directly
from formulas (15) and (16) remembering that v, changes
sign when k crosses the cosk, +cosk, =0 pseudo-Fermi
surface. Three-dimensional plots of S(q,®) are shown in
Figs. 4—6 for various temperatures and q <q,. We show
here the fluctuations in the vicinity of the AF wave vec-
tor where most of the spectral weight is concentrated at
low temperature (around q~O0 the spectral function is at
least one order of magnitude smaller). Besides, we con-
sider the low frequency regime (v ~0—20 meV) because
it is experimentally the most relevant. At T =0, as
shown in Fig. 4, only S, gives a nonzero contribution.
There is rigorously no weight for o <2a)q0(T=O) and a

sharp edge appears in S(q,w) when © = 20(q—q,)/2- Since

J,/3,=065 , T=0

FIG. 4. Dynamical structure factor S(q,w) vs @ and q * qq at
temperature 7=0 (J, =1). The calculation was performed on a
400X 400 lattice.
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the spectrum w, has a gap there is a minimum energy to
create a pair of excitations. The edge is reminiscent of
the spin-wave modes but the dispersion 0 =wg—q),> is

quadratic near q=q, due to the gap and the maximum is
not very pronounced. With increasing temperature (Figs.
5 and 6) the gap in the spectrum increases so that the
contribution due to S, appears at larger frequency and
the edge first rounds off because of the finite temperature
and then becomes sharper again because of the reduction
of the bandwidth. The integrated intensity of S,, howev-
er, is reduced by 7. Simultaneously, at low energy spec-
tral weight grows with increasing temperature due to the
S, component. Since thermal excitations are primarily
created around q~gq, the dynamical structure factor
diverges at q; and w =0, i.e., S(qg,w) < 8(w) at any finite
T. From Fig. 5, it is clear that the spin-wave edge is split
into two broad maxima. However, this structure might
disappear if fluctuations are treated in a more elaborate
way, for instance in the random-phase approximation
(RPA).

Let us now briefly discuss the case q~0. From Egs.
(15) and (16) it is easy to realize that the behavior of the
structure factor around ¢ =0 or q=q, is very similar
since O 44, = Dk- The only difference comes from the

squares appearing as prefactors. S, is enhanced near q
by the factor [(A+hy)/w,]*> 1. On the other hand, in
S, the prefactor vanishes at exactly q=0 and 5,(0,w)=0
at all temperatures. At T=0, S(0,w)=0 for any frequen-
cy. We conclude then that the integrated spectral weight
in the vicinity of q=0 is in general negligible compared
to the one in the region around qg, at least at low temper-
ature. We would also like to note that because of the gap
our results do not give the hydrodynamic behavior at
long wavelength speculated by several authors.3>3* How-
ever, the possible existence of a diffusive behavior and of
a pseudogap near q=0 is not expected to change the vari-
ous physical properties studied here which are essentially
dominated by the q, fluctuations.

With increasing T the bandwidth is reduced and above

J,/J,=065 , T=0.05

FIG. 5. Dynamical structure factor S(q,») vs w and q < q, at
temperature T=0.05 (J,=1). The calculation was performed
on a 600X 600 lattice.
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J,/J,=0.65

o2
> S
S S S
TSI
2559
2SS
255
3D
23

FIG. 6. Dynamical structure factor S(q,®) vs w and q < q, at
temperature 7=0.2 (J; =1). The calculation was performed on
a 400X 400 lattice.

some critical temperature (~0.87 at J, =0.65) the spec-
trum becomes dispersionless, o, =AMT)=TIn(1 +1/S).
The structure factor is then q independent and fulfills
25(q,0)=S(S+1)8(w) (S, vanishes at the transition).
We believe that this second-order transition is an artifact
of the mean-field approach, but that it signals the cross-
over of behaviors between correlated spins at low T and
free spins at high 7. In the real system this crossover is
expected to be smooth with T. It is also interesting to
note that the fermionic 1/N expansion gives a very simi-
lar result.33%

Since the total magnetization commutes with the
Hamiltonian  the uniform  static  susceptibility
x= [8d7(Sq_o(7):Sq—o(0)) reduces to B times the
equal-time correlation function:

_B - -
X—Efda)S(q—O,w)—%nk(l-i—nk). 17

X is shown in Fig. 7 versus 7. We can distinguish three
temperature ranges. First, at low temperature the gap in
the spectrum produces an exponential behavior. Second,
for intermediate temperature Y is nearly linear. Third,
when T is increased further the short-range correlations
are suppressed by thermal fluctuations and the suscepti-
bility obeys a Curie law x «<S(S+1)/7. This is again in
very good agreement with the fermionic mean-field ap-
proach.®

Finally we investigate the nuclear relaxation rates
given by

1

——= 3 F S(qoy), (18)

where wy is the Larmor nuclear frequency (wy <<J,;)
and Fg is a form factor accounting for possible nonlocal
couplings between the nucleus and the electronic spins.
We consider the three form factors 1, 1+cosqx+cosqy,
and 1+cosg, +cosg, +cosg,cosg, corresponding to the
Cu, O, and Y nuclei, respectively.>®>7 Since the spectral
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FIG. 7. Static susceptibility vs temperature (calculated on a
200X 200 lattice).

function has no weight at low energy 1/7 vanishes at
T=0 as shown in Figs. 8(a) and 8(b). At low temperature
the behavior is exponential as noted earlier.?> For O and
Y sites, the form factors are responsible for the suppres-
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sion of the q, fluctuations leading to a drastic decrease of
the relaxation rates compared to the Cu one [Fig. 8(a)].
However, this is effective only at low temperature,
T <0.1 (assuming J; ~1500 K, this means T <150 K).
At higher temperature, when the spectrum becomes
dispersionless, all the relaxation rates become nearly
identical [Fig. 8(b)]. The only processes contributing to
the relaxation of the nuclear spins are the simultaneous
emission and absorption of two excitations of same ener-
gy above the gap. However, at the second order transi-
tion the bandwidth drops to zero while the density of
states becomes infinite at @ =A. Therefore 1/T diverges
at the transition as the spins become free. The same ar-
tifact occurs for fermionic mean-field theory.>> In real
systems, this density of state effect is expected to be
smoother so that 1/7, may saturate eventually at large
temperature as seen experimentally.

IV. CONCLUDING REMARKS

Searching for a model to describe part of the magnetic
fluctuations in high-T', superconductors, we have studied
the J,-J, frustrated Heisenberg model by the Schwinger-
boson mean-field theory. The (1/S,J,/J,) phase dia-
gram exhibits significant differences with that obtained by
an LSW analysis. The most surprising feature is that, in
the quantum case, long-range Néel order can be stabi-
lized for J, /J, > 0.5, i.e., in a region where it is classical-
ly forbidden. When this is not the case (e.g., J, /J | =0.65
for S=1), the system has short-range Néel order, in
agreement with neutron-scattering data obtained on

0.2 03 04 05
T/ I,

0 0.1

FIG. 8. Nuclear relaxation rates vs temperature (calculated on a 160X 160 lattice). The full temperature range and the low-
temperature region are shown in (a) and (b), respectively. Due to a very small but finite nuclear frequency wy 1/T, vanishes above
some critical temperature ~0.87.



7898

high-7, Cu oxides. A detailed analysis of the spin dy-
namics shows a number of interesting features of this
model. At low temperature, the results are qualitatively
similar to those obtained for the J; model with
S <S,~0.2. In particular, a gap opens in the spin-wave
spectrum, leading to a drastic increase of the spin-wave
lifetime at short wavelength and to an exponential behav-
ior of the static susceptibility and the Cu relaxation rate.
At higher but still low temperature, one gets a linear be-
havior for the susceptibility and for the various relaxa-
tion rates. This is the most promising result insofar as
high-T, Cu oxides are concerned. Finally, at higher tem-
perature, there is a phase transition to free spins, in quali-
tative agreement with large SU(N) theories. At the tran-
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sition, 1/7; diverges, while beyond this point, the sus-
ceptibility recovers the usual Curie behavior.
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