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Thermodynamic local-occupation averages and local-number-occupation fluctuations are studied
in small-cluster many-body systems by introducing a single-site chemical potential at a particular
site. This procedure allows the study of differential properties of thermodynamic functions by pro-

viding continuous variation of local occupations.

The method, which starts from the quantum-

mechanical grand canonical ensemble, gives a criterion to distinguish particular features of the
small cluster that are likely to survive in the thermodynamic limit from those discontinuities that
are characteristic of the finiteness of the cluster and the resulting discreteness of the energy spec-
trum. In particular the Mott-insulating state (a discontinuity in the chemical potential at a particu-
lar occupation) can be clearly tested this way. Similar indications are obtained for spin-polarized

states and for particle-pairing conditions.
tetrahedron—are used as examples.

I. INTRODUCTION

Since its introduction' in 1963 the Hubbard model has
been frequently used in the literature to investigate a
whole range of many-body effects: ferromagnetism, anti-
ferromagnetism, metal-insulator transition, charge-
density waves and spin-density waves to name only a
few.!”® The model has been applied to a variety of lat-
tices of different dimensions,>>’ and general theorems
have been proved in some cases.® Unfortunately, no
three-dimensional macroscopic Hubbard system is sus-
ceptible to exact treatment. However, considerable in-
sight into macroscopic systems can be obtained from the
exact solution of small subsystems, which, though not ex-
pected to unfold the whole story, can sometimes provide
important clues to the problem. This exact small-cluster
approach has been used successfully in situations where
local many-body effects are important: clusters of size
two to eight,”’"%> photoemission!®> behavior in Ni,
intermediate-valence!* ! behavior in Ce, magnetic behav-
ior'® in Fe, alloying in the Cu-Au system,!” many-body
effects in a heavy-fermion system,'® thermodynamic prop-
erties,'® valence-bond formation,?® as well as in under-
standing of the two-dimensional (2D) electronic proper-
ties in the Cu-O planes of high-temperature superconduc-
tors.2!

In this paper we focus on the study of properties of a
small open subsystem of the cluster, one that exchanges
particles with the rest of the system, in order to infer the
behavior of the global properties of the system as a
whole. In particular, an attempt is made to extract phys-
ical properties out of the analysis of the quantum-
mechanical particle-number fluctuation in the subsystem
as a function of various parameters. Exact calculations
were performed on two systems: a four-atom linear chain
with periodic boundary conditions?® and a four-atom
tetrahedral cluster with periodic boundary conditions,
the smallest nontrivial fcc cluster. The Hamiltonian
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Two four-site Hubbard-model clusters—a ring and a

chosen is the Hubbard model with hopping matrix ele-
ment ¢ >0 between nearest neighbors only, and an on-site
interaction U, which can be repulsive or attractive:

Hy=—t 3 (cmcja+c Cio +U2ﬁ,1ﬁ,l ,
(ij)o

(1.1a)

where i,j are the atomic site indices, { - -+ ) indicates
nearest-neighbor pairs, and o is the spin index. For nota-
tional simplicity, henceforth, it would be convenient to
choose [¢| as the unit of energy and express H,, U, and
temperature T in dimensionless form: H =H,/|t,
x=U/|t|, and 7=kyT/|t|, respectively, where kjy is
Boltzmann’s constant. Thus the Hamiltonian can be re-
cast in the form

H=-— (% ( Cio j0+cjacla)+x2 ﬁlTﬁll
ij)o

(1.1b)

Since the many-body correlations are short ranged in
the Hubbard model, it is interesting to study the local
particle-number fluctuation A at a particular site, labeled
a, as a function of n, x, and 7. Here n, the average num-
ber of electrons at the « site, is given by (7)), the en-
semble average of 7=m,; +7, , the particle-number
operator at the relevant site. The local particle fluctua-
tion A is defined as

A=A(n,x,7)=(aN—UaN?.

The generalized grand canonical ensemble average of
any observable A is defined by

~w_ Tr{ 4 exp[ —(H —MN —u#)/7]}
{an=
Tr{exp[ —(H —MN —pun)/7]}

where M is the chemical potential associated with the to-
tal partxcle -number operator N = > ,f; in the system, and
u is an “extra” local chemical potential associated with
the «a site, the usefulness of which is discussed below. In
these expressions, the subscript / in the summation over

(1.2)

,  (1.3)
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f; runs over N, sites, where N, is the total number of
sites in the system.

It should be noted that the ordinary grand canonical
ensemble corresponds to the particular value p=0. In
that particular case the averages shown in (1.3) reduce,
for 7—0, to averages over expectation values in the
ground states of (1.1b) belonging to various total numbers
of electrons, N, which is the eigenvalue of N, and takes
only integral values from 0 to 2N,,. To determine which
ground states of given integral N values do actually con-
tribute to this average, the ground-state energy eigenval-
ues of (1.1b) should be plotted as a function of the integer
N. A “hull” is then constructed by joining these points in
pairs such that all points lie either on the hull or above it.
Only the ground states for those integral numbers of elec-
trons that lie on the hull do contribute to the averages in
(1.3); ground states which are above the hull do not con-
tribute. For example, if the ground states for N =2,
N=3, and N =4 are such that

Eg(N =3)>[Eg(N =2)+Eg(N =4)],

then the contribution to (1.3) for u=0, 7—0 and for the
average total particle number (( N )) (integral or fraction-
al, including (N » =2, (N ) =3, and (N ))=4) in the
range 2 < (( N )) <4, arise solely from the ground states of
N =2 and N =4, without participation of the N =3
ground state.

In the ensemble with =0, M is a monotonically in-
creasing function of n, as is required by the chemical sta-
bility of the system. In view of the discussion to follow, it
is to be noted that a discontinuity in the chemical poten-
tial M at a given value n =n*, i.e.,

M,—M_>0, (1.4)

where M, and M _ are the values of M as n* is ap-
proached, respectively, from the positive and negative
sides, characterizes, by definition, a Mott insulator at the
occupation n *.

II. CALCULATION AND RESULTS

In order to calculate the local particle-number fluctua-
tion A for general values of n and x, one has to take
recourse to numerical calculations. To perform the en-
semble averages (1.2) it is convenient to work in the basis
of the eigenstates of the generalized Hamiltonian
H'=(H —MN —pu#). Reduction in the size of the ma-
trices to be diagonalized can be achieved by taking note
of the following quantities that commute with the gen-
eralized Hamiltonian H':

(i) ]/\7, the total number operator;

(ii) S,, the z component of the total spin-angular
momentum;

(iii) 82, the total spin operator;

(iv) the permutation operator of some site indices.

For convenience, the calculations reported here have
made use of the constants of motion (i), (ii), and (iv) only,
which reduces the original problem of diagonalizing a
256 X256 matrix to ones of size no greater than 18X 18.
Exact analytical results, however, are obtained for certain

limiting values of n, x, and 7. Thus, we have the follow-
ing results:

A(n,x =0,7)=n(2—n)/2 ; (2.1)
A(n,x —w,7)=n(l—n), 0=n=<1,
=(n—1)X2—n), 1<n=<2; (2.2)
A(n,x > —o0,7)=n(2—n) ; (2.3)
Aln,x,7—> o )=n(2—n)/2 . (2.4)

It is also straightforward to show that, for bipartite?’
lattices A is symmetric about » =1, i.e.,

Aln,x, 7)=A2—n,x,7) . (2.5)

Equation (2.5) holds for the four-atom ring, but not in
general for the tetrahedral cluster, because fcc is not a bi-
partite lattice.?” It should be noted here that A for a fully
spin-polarized (loosely speaking ferromagnetic) state, for
all interaction strengths, assumes the value equal to that
of the x — o limit as given by Eq. (2.2).

We now focus our attention on the zero-temperature
(7—0) properties in order to deal with some of the
difficulties involved in extrapolating small-cluster results
to the thermodynamic limit at low temperatures. The
difficulties arise from the discreteness of the energy spec-
trum of finite clusters. In particular, use is made of the
additional local chemical potential u to distinguish be-
tween the “genuine” singularities in A (those that survive
as the number of sites is increased up to the thermo-
dynamic limit) and the “‘spurious” singularities (those
that are present only because of the finiteness of the clus-
ter).

We begin with a zero-temperature identity that relates
the local particle-number fluctuation to a derivative of
the ground-state energy:

dE;(n,x)
dx

where E;(n,x) is the ground-state energy per site corre-
sponding to the occupation n. This result is proven in
Appendix A. It is to be noted that when =0, i.e., in the
exact grand canonical ensemble average, all sites are
equivalent, so that n={ N )) /N, is the fractional occu-
pation, i.e., the number of electrons per site. An impor-
tant result for studying the Mott-insulator state is ob-
tained by taking the derivative of (2.6) with respect to n
and then the difference between values obtained by ap-
proaching the point of discontinuity from the positive
and the negative sides; this procedure yields

—r 9 ar —
=2 (M, —M_),

Aln,x,7=0)=n(1—n)+2 , (2.6)

2
an

EIN
on

(2.7)
+

where M, =[dEs;(n,x)/dn ], corresponding to the par-
tial derivatives on the right and left, respectively. Equa-
tion (2.7) establishes a direct relationship between the
discontinuity in the slope of A with that of the chemical
potential M [both sides of (2.7) are zero in the case of no
discontinuity]. Analyticity as a function of x has been as-
sumed, as (M —M _) is found to change smoothly with
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x, except at x =0 and at other isolated points.

We concentrate first on an analysis of the two small-
cluster systems in the exact grand canonical ensemble
(u=0). Figures 1 and 2 display graphical tabulations of
the eigenvalues N of the total particle number operator
that contribute to the relevant ground states at each
point in the n-x plane, for the ring and the tetrahedral
cluster, respectively, when the interaction is repulsive
(x >0). Figure 3 gives the corresponding description in
the attractive interaction (x <0) case for either system.
The solid black lines correspond to the values where
ground states belong to the subspace of a single N. The
regions in between are ‘“mixed” domains where relevant
ground states belong to subspaces of more than one N.
Several important results associated with the above struc-
ture follow.

(i) Results for x —0 and x =0 are different for finite-
cluster systems and approach each other only in the ther-
modynamic limit. This discontinuity arises from the
presence of several “accidental degeneracies” for the par-
ticular value x =0. The singular x =0 line is, therefore,
omitted in Figs. 1-3.

(ii) The local particle fluctuation is a continuous func-
tion of n with a continuous partial derivative dA /dn and
a negative second derivative 3*A/dn? for all regions of
phase space except at the solid black (single N) lines.

(iii) On the solid black lines, where a single N value
contributes, the local particle fluctuation A(x,n) exhibits
discontinuities in 0A/dn (kinks) as a function of n (for
fixed x) with the vertex pointing either upwards or down-
wards. On these lines, the chemical potential takes a
finite range of values My(min)=<M = M,(max) and,
when plotted as a function of M, kinks in A(x,M) occur
at M =M y(min) and M =M y(max).

(iv) Ground states belonging to all N from O to 2N, are
not, in general, sampled as N increases from O to 2 for a
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FIG. 1. The “solid” (black) lines where a single N contributes
to the ground state, for the four-atom ring and repulsive in-
teractions (x >0). The white areas are regions where more than
one value of N contributes. The dashed line indicates the value
x =4.6 above which the solid lines at N =3 and N =5 appear.
Note the vertical axis (x = U /t) has a logarithmic scale.
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FIG. 2. Same as Fig. 1 for the tetrahedral cluster.

fixed x. No odd N, for instance, contributes to the ground
states for an attractive interaction (x <O0) for either sys-
tem. Also for a repulsive interaction (x >0), the N =3
and N =S5 states do not contribute for x <4.6 in case of
the four-atom ring, whereas the N =3 state does not con-
tribute for any x >0 in the tetrahedral cluster.?

(v) In general, in a white region, where more than a sin-
gle N contributes, only the two N values corresponding to
the two solid black lines bordering the relevant white re-
gion contribute. For specific models and/or specific
values of the parameters, however, it is possible to have
extra accidental degeneracies, where more than two
values of N contribute to the ground state. (Such a case
can be seen, for example, in the tetrahedral cluster for
1.25<n <2 for all x >0.)

For finite clusters, only two behaviors (i.e., negative
second derivative in a white region and kinks on the solid
black lines) of A(x,n) are found, as discussed above.
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FIG. 3. Same as Fig. 1 for either cluster and attractive in-
teractions (x <0).
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As the number of sites N, increases, the structures of
Figs. 1-3 may change in a number of ways to lead to the
following possible scenarios in the limit Ny— .

(1) The number of solid black lines might increase with
the attendant rearrangement of the mixed-N contribution
and, in the thermodynamic limit, the n-x plane may con-
sist of a continuous plane of single-N contributions, i.e., a
“black” plane.

(2) The number of solid black lines might increase but
remain a discrete set; in the thermodynamic limit the n-x
plane would still look similar to Figs. 1-3, but possibly
with many more solid black lines separated by ‘“white”
(mixed N) areas.

(3) In general it is expected in the thermodynamic limit
Ny— oo, that, the n-x plane will exhibit regions of (a)
continuous N values (“black” areas), (b) continuous ad-
mixture of two N values (‘“white” areas), (c) isolated lines
of single-N values (solid black lines), and (d) perhaps re-
gions of dense but discrete black lines (e.g., all rational
values of n allowed, all irrational ones not present®?).

In the thermodynamic limit (Ny—> o), in a “white” re-
gion, where more than one N contributes, A is always a
continuous function, with a continuous dA /dn, and with
a negative second derivative 3*A/dn?. This property is
proven in Appendix B. In a “black” area or line, where a
single N contributes, there is a possibility of A behaving
differently: Either it may develop positive second dera-
tives with respect to n, discontinuities in dA/dn —i.e.,
kinks—at discrete values of n, or possibly other types of
pathological behavior. Not all structures are physically
possible, and each requires individual analysis. A kink,
however, by necessity arises from the discontinuity in the
slope, which along with (2.7) implies a Mott insulator.
Other singular structures may be characteristic of other
phases for the values (n*,x *) where they appear.

In the finite clusters under consideration here, the
discontinuities in dA /dn occur only on the solid black
lines. This behavior is shown in Figs. 4 and 5. The
discontinuities correspond to a single N at a particular
value of n, labeled n*. It is along these lines that the “lo-
cal” chemical potential u can be effectively used to test
the stability of the single-N structures and to distinguish
between kinks that are “genuine” and those that are
“spurious,” i.e., induced by the finiteness of the cluster.
The “local” chemical potential u allows a local variation
of n at the site in question, whereas the value of N in the
cluster as a whole remains constant. This procedure
“opens up” the «a site to be less dependent on its environ-
ment, which in this case is the small cluster. This partial
decoupling emphasizes the local aspects of the many-
body problem and may shed light on the behavior of the
system in the thermodynamic limit, when the environ-
ment becomes macroscopically large.

The resulting analysis is valid only in “single-N>’ re-
gions, i.e., along the isolated black lines, or in a black
region—a finite interval of n around n =n* —if that is
the case in the thermodynamic limit. The analysis there-
fore, in the finite clusters, is carried out not only for the
discrete values of n where a single N contributes, but also
in their immediate neighborhoods.

The working assumption is that, by looking at the be-
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FIG. 4. Quantum-mechanical particle fluctuation A in the
four-atom ring at the « site in the exact ground canonical en-
semble (u=0). “Solid” black lines where discontinuities in
0A /dn occur are drawn. Both attractive and repulsive interac-
tions are considered and values of x are indicated.

havior of A as a function of n, as u is varied from a small
negative to a small positive value, one can decide whether
the structure of dA /dn at that occupation # is genuine or
just an effect of the finiteness of the cluster. The result of
this analysis may produce the following situations in the
thermodynamic limit.

(a) The curve A(n) takes at n =n* one of the limiting
forms described in (2.1)-(2.3); in particular, the form
(2.2) is taken for the ferromagnetic case. In such a situa-
tion, the exact grand canonical ensemble (p=0) itself
yields the appropriate limiting form at the occupations in
question.

(b) There is a positive second derivative of A with
respect to n at n =n*; this is a strong indication of insta-
bility, with the formation, in the thermodynamic limit, of
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FIG. 5. Same as Fig. 4 for the tetrahedral cluster.
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an energy gap in the spectrum, i.e., a real kink, as shown
in (2.7).

(c) If A exhibits a negative second derivative with
respect to n several possibilities other than case (a) arise;
(c1) even though the second derivative with respect to n
is negative at n =n*, it becomes positive for values of n
reasonably close to n*; (c2) The second derivative with
respect to n is negative everywhere in the immediate vi-
cinity of n =n*.

Case (a) should be interpreted as a possible magnetic
phase at n =n*; case (cl) as a tendency to the formation
of a Mott-insulator state—in the thermodynamic
limit—at a value of n close or even equal to n*; case (c2)
as a ‘“‘spurious” singularity, i.e., a consequence of the
finiteness of the cluster.

Figures 6 and 7 display the variation of A with » on
and around each of the solid black lines for the four-atom
ring and the tetrahedral cluster, respectively, for various
fixed values of x and at zero temperature. Both attractive
(x <0) and repulsive (x >0) values of the interaction are
considered. The case x > 0 is more interesting and is con-
sidered first. For the four-atom ring the following
features are worth noticing.

(i) The curve A versus n has positive second derivative at
and around »n =1 (i.e., half-filled band) for all values of
x >0 [case (b)]. This indicates a Mott insulator at that
concentration, setting in at arbitrarily small repulsive in-
teractions, in agreement with the results of Lieb and
Wu.” Because of its isomorphism?%?° to lattices in 2D
and 3D, this result seems to indicate a Mott transition for
all x >0 at n =1 for all bipartite lattices?’ in one, two, or
three dimensions.

It is interesting to note that if the second-nearest-
neighbor hopping is included, the positive second deriva-

0.75 A

0.50 -

0.25

fractional occupation n

FIG. 6. Quantum-mechanical particle fluctuation A caused
by the variation of the local chemical potential u at the « site in
the four-atom ring on and around the “solid” black lines of Fig.
4. Grey areas are regions away from the solid black lines where
the analysis with nonzero u is not appropriate.

1.00
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FIG. 7. Same as Fig. 6 for the tetrahedral cluster (Fig. 5).

tive does not appear at n =1 for small positive values of
X, but only in a small neighborhood of n =1, i.e., case
(c1). Whether that happens for » > 1 or n <1 depends on
the relative sign of the second-nearest-neighbor to the
first-nearest-neighbor hopping parameters. As x in-
creases, the interval of positive second derivative grows,
and covers the n =1 point, i.e., case (b). In any case, the
formation of a Mott insulator at the » =1 concentration
for all x >0 is clearly indicated by the test.

(i) The N =3 (n =0.75) and N =5 (n =1.25) cases ex-
hibit a transition to a ferromagnetic state as a function of
x for x =x*=18.5. For u=0, i.e., in the exact grand
canonical ensemble, as x increases the local particle fluc-
tuation A discontinuously drops from a value ~0.1946
for x <x* to the value 0.1875 given by Eq. (2.2) for
x >x* and remains constant for any greater value of x.

(iii) The curve has negative second derivative at and
around all other solid black lines. They all belong to the
case (c2) discussed above except for N =1 and N =7.

(iv) For N=1 and N =7, A takes the limiting form
given by (2.2) [case (a)]. The reason is a trivial transition
to a spin-polarized behavior when a single carrier (elec-
tron or hole) exists in the finite lattice. For larger clusters
this property appears at n =1/N, and n=2—1/N,
which, in the thermodynamic limit, are the empty » =0
and fully occupied n =2 lattices.

From the analysis of the four-atom ring, it is possible
to state that in the seven partial occupations where
Mott-insulator singularities may occur for the infinite
one-dimensional chain or the perfect square lattice, only
n =1 should exhibit insulating behavior for all x >0.
This behavior agrees with the Monte Carlo calculations
for the infinite chain and the 2D square lattice.’®>!

The tetrahedral cluster has a more complicated and in-
teresting structure. The main features are as follows.

(i) The structure at N =1 falls in the category (c1) dis-
cussed above. For infinitesimal x ( > 0) a small portion of
the curve has positive second derivative at n ~1.05. As x
increases, the interval of positive second derivative gradu-
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ally grows, and includes the n =1 point for x >1.2. This
result should be considered as a signature of a Mott insu-
lator occurring at n =1 for arbitrarily small positive
values of x. Interestingly, this behavior at n =1 is similar
to the four-atom ring with positive second-nearest-
neighbor hopping; when the second-nearest-neighbor
hopping parameter in the ring is equal to the nearest-
neighbor hopping parameter, one obtains a system topo-
logically identical to the tetrahedral cluster.

(ii) There is a transition to a ferromagnetic state for all
x >0 as a function of n at n =1.25 (N =5). The curve
around the solid black line at this occupation assumes the
limiting form of (2.2). This behavior is not observed for
the ring with second-nearest-neighbor hopping (1) and
seems to be intrinsic to the tetrahedral cluster and possi-
bly to the fcc lattice in the thermodynamic limit, of
which the tetrahedral cluster is the basic building block.

(iii) The curve A(n) has the form (2.2) in the full inter-
val 1.25<n <2. This behavior is related to the acciden-
tal degeneracies shown in Fig. 2.

(iv) There is the small-cluster-induced spin-polarization
behavior at N=1 (n=0.25) and N=7, (n=1.75),
characteristic of all four-atom clusters.

In order to ascertain whether a spin-polarized (fer-
romagnetic) state exists at a given occupation in the ther-
modynamic limit, one could use an extension of the
analysis with the local chemical potential . Thus, for in-
stance, one could increase n from n =1 by increasing u to
the proper value corresponding to n =1.25 while staying
within the N =4 subspace. One then looks for a “flow”” of
the ground state from a spin-‘‘unpolarized” state at n =1
to a fully spin-polarized (ferromagnetic) state at n =1.25,
and as a result whether A at n =1.25 assumes a value
given by (2.2). The result holds for the tetrahedral clus-
ter, indicating that the ferromagnetic transition in the
tetrahedral cluster might survive in the thermodynamic
limit, possibly at an occupation close to n =1.25. On the
other hand, similar analysis at n» =0.25 (N =1), by
changing the occupation from n =0.5 down to n =0.25
by decreasing u while remaining within the N =2 sub-
space,’>3 shows that the ground state does not “flow”
into a spin-polarized state at n =0.25, indicating that the
transition to a magnetic state is “‘spurious,” i.e., a conse-
quence of the finite number of sites in the cluster. Similar
analysis by decreasing n from n =1 to n =0.75 while
remaining within the N =4 subspace for x > 18.5 for the
four-atom ring does not also result in a “flow” into spin-
polarized state. This implies that in the thermodynamic
limit, this transition to a fully spin-polarized (ferromag-
netic) state does not occur at n =0.75 (or 1.25) but at
N =N,*1 in accordance with the results of Nagaoka.**

For an attractive interaction x <0, on the other hand,
the A—n curve always has a negative second derivative
everywhere in the vicinity of each solid black line [case
(c2)], implying that there are no Mott insulators or mag-
netized states. The only interesting feature is the absence
of the N=odd values for either system at all values of
x <0. This result indicates a tendency of the electrons to
pair, which might imply superconductivity (Cooper pair-
ing) or physically bound bielectrons, which might lead to
Bose condensation.

III. DISCUSSION

By introducing a local chemical potential at a single
site of a small cluster, the local occupation of that site
can be allowed to vary with respect to the average site oc-
cupation of the cluster as a whole. This partial decou-
pling of one site from the rest should be more sensitive to
the local environment of the particular site than to the
overall size and shape of the cluster.

This technique has been applied to clusters with vary-
ing occupation of particles, after the analysis of particu-
lar global states has been completed. Since the smallness
of the cluster allows only a finite number of average occu-
pations, the method proposed here introduces additional
continuity into an essentially discrete system. It is thus
possible to analyze differential properties of occupations,
and analyze the local stability of particular solutions, dis-
tinguishing behaviors which are ‘“genuine” properties of
the system as a whole (those that might survive in the
thermodynamic limit) from those ‘“‘spurious” properties
which are caused exclusively by the finiteness of the clus-
ter.

Two examples were analyzed. Both are Hubbard mod-
els in four-atom clusters with different connectivities; a
four-atom ring (representative of the infinite chain, 2D
square lattice and the bcc lattice) and a tetrahedral clus-
ter (representative of the fcc structure). The following re-
sults were obtained.

(1)The n =1 half-filled band exhibits for all cases
“genuine” Mott-insulating states for all repulsive interac-
tions.

(2) In bipartite lattices, the inclusion of an arbitrarily
small second-nearest-neighbor hopping seems to decrease
the stability of the Mott-insulating state, although no
suppression has been observed.

(3) The intervals 0=n <0.25 (0=n <1/N, for an arbi-
trary cluster of size Ngy) and 1.75=n =2 (2—1/N,
<n <2) yield trivial uninteresting results corresponding
to a single electron or a single hole. The states are always
fully spin polarized and may or may not represent the be-
havior in the thermodynamic limit.

(4) The tetrahedral cluster exhibits a ferromagnetic
state in the interval 1.25=<n <2, which remains stable
under the test of the flow of states with changing local
chemical potential p.

(5) The four-atom ring exhibits a ferromagnetic state at
n=0.75 and n =1.25 in the exact grand canonical en-
semble (u=0) for x >18.5. Such a state at the above
fractional occupations is the well-known Nagaoka fer-
romagnetic state at N =N,*1, and is not stable under
the applied variable pu test; in the thermodynamic limit,
in accordance with Nagaoka’s theorem>* this feeble fer-
romagnet could only occur at n =1, i.e., only (exactly) at
N =Ny*xl.

(6) Attractive interactions lead to “‘genuine” instabili-
ties of odd N number states and ‘“‘genuine” stable condi-
tions for even N. No magnetic solutions or Mott insula-
tors appear in this case. Indication of electron pairing
(i.e., either Cooper pairs or bielectrons) is clearly evident.

L3
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APPENDIX A
Proof of Eq. (2.6):
RE=(Ay +hg )
=R+2R41 g,

because #,; and 7, are projection operators, e.g.,
(g, )*=h,,. Thus (1.2) yields

A=(A2N —n?=n(1—n)+2L Ay g ) . (A1)
At =0,
NoEGz(H>=<HT>+x 2<ﬁlTﬁll)
=(Hp)+xNo{A, 1A, ) , (A2)

where use has been made of the assumption that all the
N, sites have identical occupations and the ground state
does not have any spontaneously broken symmetry, i.e.,
there are no spin-density waves or spiral spin arrange-
ments. In the equation above, ( -:-) denotes the
quantum-mechanical expectation in the ground state, and
H is the (nearest-neighbor) hopping part of the Hamil-
tonian H and is independent of interaction parameter x.

Use of the Feynman-Hellman theorem on (A2) together
with (A1) at zero temperature proves result (2.6)

APPENDIX B

This appendix proves that in a “white” region (ignor-
ing the special case of accidental degeneracies) A has a
negative second derivative with respect to n. For a given
value of x, let n_ and n, (n_ <n,) be the occupations
containing the solid black lines that border the “white”
region in question to the left and right, respectively. An
arbitrary occupation #n, and the local particle fluctuation
A at n inside the white region (i.e., n_ <n<n,) are
given by the following interpolation formulas:

n=An_+(1—A)n, ; (B1)
A=ALR2N _+(1 =LA  —n?,
=MA_+n2)+(1—A)A,+n%)—n?, (B2)

where subscripts — and + refer to averages on the solid
black lines at n_ and n , respectively. Inversion of (B1)
and use of that result is (B2) yields

A=—1—(A_+n? )+

n—n_ n,—n
(A, +n%)—n?.
n,—n_ _

n,—n
(B3)

The first two terms on the right-hand side of (B3) are
linear in n and, therefore,

2
aA2=—2<O,
on

which is the result quoted.
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FIG. 6. Quantum-mechanical particle fluctuation A caused
by the variation of the local chemical potential p at the a site in
the four-atom ring on and around the “solid” black lines of Fig.
4. Grey areas are regions away from the solid black lines where
the analysis with nonzero  is not appropriate.
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FIG. 7. Same as Fig. 6 for the tetrahedral cluster (Fig. 5).



