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Two-dimensional vortices in a stack of thin superconducting films:
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The structure of vortices within an infinite stack of thin superconducting layers is considered and
examined in detail in the limit of zero interlayer Josephson coupling. The basic building block for
the description of three-dimensional (3D) vortex lines is shown to be the 2D pancake vortex, which
is a vortex located in only one of the layers; the other layers contain no vortices, but have an impor-
tant effect in screening the magnetic field generated by currents in the first layer. It is shown that
3D vortex lines can be built up by superposing the contributions of stacks of 2D pancake vortices.
Thermal excitation is shown to break up a single 3D vortex line at a temperature corresponding to
the Kosterlitz-Thouless temperature of a single superconducting layer. The effect of thermally in-

duced decoupling of the 2D vortex solids in different layers, corresponding to melting only in the
direction perpendicular to the layers, is also considered. It is shown that Josephson coupling can be
neglected in the high-temperature superconductors only under very stringent conditions. Although
these conditions evidently are not met in Bi2Sr2CaCu208 and T12Ba~Ca&Cu~O„ they should be
satisfied in superconducting-insulating multilayer systems, such as YBa2Cu307 z/PrBa2Cu307 —Q.

I. INTRODUCTION

Since the discovery of the high-temperature copper-
oxide superconductors, ' much attention has been given to
the anisotropy that arises because of the easier conduc-
tion parallel to the Cu02 layers. To describe the anisot-
ropy quantitatively, it has proved useful to make use of
the London ' and Ginzburg-Landau theories, extended
with a phenomenological anisotropic efFective mass ten-
sor. ' In the reference frame aligned with the principal
axes, this mass tensor is diagonal, and the diagonal ele-
ments m; (i=1,2, 3=a, b, c) are normalized such that
pl f rrl p rn3 1 . The penetration depths k, =A,+m; de-
scribe the exponential decay of components of the super-
current pointing along the principal directions, and the
corresponding coherence lengths g; =g/Qm, character-
ize the spatial variation of the order parameter along
these directions.

A common feature of the high-temperature supercon-
ductors is that g3 ( =g, ), the coherence length for spatial
variation along the c direction (perpendicular to the
CuOz layers), is much smaller than in conventional super-
conductors. When a magnetic field parallel to the layers
produces the mixed state, the vortices (according to an-
isotropic mass-tensor theory) have cores of elliptical cross
sections with caliper dimensions roughly 2(, along the c
direction. Although g', is much larger than the spacing
between CuOz layers near T„ the value of g, extrapolat-
ed to T=O K is usually less than the unit-cell lattice pa-
rameter c and is often less than the spacing between adja-
cent Cu02 layers. This suggests that, at low tempera-
tures, the vortex structure is not well described by the an-
isotropic mass-tensor theory and that a model incor-
porating the discreteness of the CuO2 layers is re-

quired. ' ' The purpose of this paper is to explore some
of the consequences of such a model in the limit of ex-
treme anisotropy.

A good theoretical starting point is the Lawrence-
Doniach model, ' which describes Josephson-coupled
superconducting layers of thickness d and stacking
periodicity length s. It is assumed for simplicity that
each superconducting layer is isotropic with intrinsic
bulk penetration depth k, . Close to the transition tem-
perature, where all the coherence lengths are much larger
than s, such a model leads to a continuum theory
equivalent to the anisotropic Ginzburg-Landau theory
for a uniaxial superconductor with diagonal mass-tensor
elements m, =mb =m~~ and m, =m~. The corresponding
penetration depths and coherence lengths parallel ( ~~) and
p«pendtcular (l) to the lay«s «e k- kb kii ~V
~ =~i.=~+ J. I =kb =k~~=k/+

)~

a d I =kl. =k/
Qm~. The decay length for currents allowing parallel to
the layers is' A,

~~

=X, (s /d )' . The Lawrence-Doniach
model yields the following expression for the decay
length of the Josephson supercurrents Aowing perpendic-
ular to the layers in the limit of weak Josephson cou-
pling:"

Aj =(cPp/Ssr sJp)'~ ))X~~,

where Jo is the maximum Josephson supercurrent density
and Pp= hc /2e is the superconducting Aux quantum.
The corresponding dimensionless efT'ective masses can be
expressed as

mll ~II/k~ ((1
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The ratio of g~, the coherence length perpendicular to
the layers, to g~~, parallel to the layers, is therefore

(2)

This equation tells us that the condition of very weak in-
terlayer Josephson coupling Jo leads simultaneously to
very large A, z and very small gz.

In an anisotropic continuum theory based upon either
the London or the Ginzburg-Landau theory, three-
dimensional (3D) vortex lines passing through a stack of
superconducting layers at a nonvanishing angle relative
to the principal axes have a surprisingly complex struc-
ture, ' '" owing to the tendency of the currents to be
confined to the easy current directions, parallel to the lay-
ers. This result suggests that, in a theory accounting for
atomic-level discreteness, one can picture a vortex line
passing through a stack of weakly Josephson-coupled lay-
ers as a set of 2D pancake vortices connected by Joseph-
son vortices, rather like beads on a necklace. The indivi-
dual 2D pancake vortices have nearly circular current
patterns essentially confined to individual superconduct-
ing layers. On the other hand, the Josephson vortices,
whose axes thread through the Josephson junctions be-
tween superconducting layers, stretch from the center of
a 2D pancake vortex in one superconducting layer to the
center of the 2D pancake vortex in the next layer. High-
ly elliptical current patterns circulate about the axis of
each Josephson vortex, with a large decay length A, ~ for
the weak Josephson current density Bowing perpendicu-
lar to the layers and a much smaller penetration depth A,

~t

for the stronger current density returning parallel to the
layers.

To give some substance to this way of picturing vor-
tices in highly anisotropic superconductors, I consider in
this paper the nature of 2D pancake vortices in a stack of
superconducting layers in the extreme limit of zero
Josephson-coupling strength; this therefore corresponds
to the Lawrence-Doniach model in the limit for which
Jo~O, A, ~

—+ oo, and g~ —+0.
In Sec. II, to provide a reference point, I brieQy review

Pearl's ' solution for the magnetic field generated by a
2D pancake vortex in an isolated thin superconducting
layer. In Sec. III, I extend an approach used earlier for
studying magnetically coupled vortices in the dc super-
conducting transformer (two superconducting layers
separated by an insulating layer) to examine the magnetic
field generated by a 2D pancake vortex in the central su-
perconducting layer of an infinite stack. The other super-
conducting layers, which do not contain vortices, serve
only to screen the magnetic field generated by the vortex
in the central layer. The resulting solution gives us the
building block (or Green's function) needed to build up,
by superposition, the magnetic field distribution pro-
duced by an arbitrary (perhaps wavy) vortex line
represented by a string of 2D pancake vortices at various
positions in different layers. In other words, we now have
a method for finding the net field at some point by doing
a vector addition of the contributions from all nearby 2D
pancake vortices.

In Sec. IV, I first show that the magnetic field and

current distribution produced by a straight stack of 2D
pancake vortices aligned along the normal to the layers
reduces (after conversion of the sum over contributions to
an integral) to that of the usual London model. I also
calculate the energy per unit length of the stack when the
line of centers is tilted relative to the normal. In Sec. V, I
first discuss how a single stack of 2D pancake vortices
can be broken up by thermal agitation, and then I consid-
er thermally induced decoupling of the 2D vortex solids
in different layers. Finally, I present a brief summary in
Sec. VI.

II. 2D PANCAKE VORTEX IN AN
ISOLATED SUPKRCONDUCTING THIN FILM

Because we shall be using a very similar method of
solution for a more complicated situation, let us first re-
view the solution for a vortex in a single, isolated, thin su-
perconducting layer. ' . The basic equations describ-
ing the currents in the superconductor and the magnetic
fields throughout all space are Maxwell's equations plus
the equation for the sheet current density K,

K — n p~e v (3)

such that n zo =n 3od and A=2K, , /d. (Readers are
warned that some papers in the literature define a A
without the factor of 2.)

%hen the superconducting layer contains a pancake
vortex with one Quxoid Po=zgo (go=bc /2e ) at the ori-
gin, the Pearl solution ' is obtained in cylindrical coor-
dinates, p=(x +y )'r, /=tan '(y/x), and z (unit vec-
tors p=xcosP+ysinP, P=ycosP —xsinP, and z) from
the general solution (with mirror symmetry about the
plane z =0 and cylindrical symmetry about the z axis) of
the equation V Xb =0, where b = V Xa and a =Pa&(p, z ):

a&(p, z)= f dq Ao(q)J, (qp)e " . (7)

From the Auxoid quantization condition [Eq. (4)] with

y = —P and the discontinuity in the magnetic field's radi-
al component across the film

IC&(p) =(c/4')[b (p, O+) b(p, O )], —

where neo is the sheet density of Cooper pairs (number
per unit area), —e *= —2e is the pair charge,

v, =(e*/m *c)[a+($0/2~)Vy]

is the pair supervelocity, m*=2m is the pair mass, a is
the vector potential (b= V Xa), and y is the phase of the
order parameter. This equation also can be written as

K= —(c /2vrA )[a+(Po/2'�) Vy ],
where A is the 2D thin-film screening length, defined by

A '=2vrn2oe* /m*c

Alternatively, we can regard the superconducting layer as
a thin film of thickness d ((A,, of material with bulk
penetration depth k, defined via

=4wn * e* /m *c
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we have

f dq A 0(q)(1+qA)J&(qp)=go/2np .
0

Taking the Hankel transform using

f dppJ, (qp)J, (q'p)=q '5(q —q'), (10)

tegrating from p to oo, is '
Uo(p) = (Po/8rrA) [Ho(p/A) —Y'o(p/A) ], (13)

Uo(p)=(po/4m A)ln(Alp), p«A, (14a)

which reduces to the following results in the limits
shown:

we obtain =go/4' p, p&)A . (14b)

Ao(q ) =(Po/2m )(1+qA)

When this is substituted back into Eqs. (4) and (7), the re-
sulting integral yields

K&(p) =(ego/8~A')[H, (plA) Y, (pl—A) 2/~—], (12)

where H& is the Struve function and Y& the Bessel func-
tion of the second kind. Limiting expressions (for
p«A and p))A) for the sheet current density K&(p)
and the magnetic flux C&, (p, O) up through a circle of ra-
dius p are given in the Appendix. The Geld

b=pb~(p, z)+zb, (p, z )

is sketched in Fig. 1.
The repulsive Lorentz force exerted by this vortex on a

second vortex of the same sign is I' (p) =K&(p)go/c, and
the corresponding interaction potential, obtained by in-

At temperatures so close to T, that A becomes larger
than the linear dimensions of the specimen, the dominant
logarithmic form enables a Kosterlitz-Thouless transition
to occur.

III. 2D PANCAKE VORTEX
IN A STACK OF THIN FILMS

We next apply an extension of the above approach
to study a vortex in an infinite stack of parallel, thin
(Josephson-decoupled) superconducting layers in the
planes z =z„, where z„=ns (n =0, +1,+2, . . . ). Al-
though we consider here, for simplicity, only the case of
very thin, equally spaced, super conducting layers, it
would be straightforward (using the method of Refs. 23
and 25) to generalize to the case of layers of arbitrary
thickness d (s, or for unit cells containing unequally
spaced layers of different thicknesses.

Let us consider the magnetic field and currents gen-
erated throughout all space by a 2D pancake vortex in
the layer n =0 only; the other layers (nAO) contain no
vortices but do carry screening currents. We choose a
gauge such that y= —P in the central (n =0) layer and
y=O in all the other (n&0) layers; a=Pa&(p, z). The
general solution of desired symmetry has the form

a~(p, z)= f dq A(q)J, (qp)Z(q, z), (15)

where Z(q, z ) between each pair of layers obeys

Z(q, z) =ae ~'+Peq'

and, in addition, has the symmetries Z(q, —z)=Z(q, z)
and

Z(q, z„)=exp( —Q ~z„~ )

(n =0, +1,+2, . . . ). The value of Q is determined from
Eqs. (4) and (8) and the condition that y =0 in the layers
with n&0. We obtain, for example,

Z(q, z )= [sinhq(s —z )+e ~'sinhqz ]/sinhqs,

O~z~s, (17a)

Z(q, z)=e ~'[sinhq(2s —z)+e ~'sinhq(z —s)]/sinhqs,

s &z &2s, (17b)

FIG. 1. Sketch of the magnetic field b generated by a 2D
pancake vortex in an isolated and superconducting layer with
thin-film screening length A (Refs. 21 and 22). Note different
behavior for r (A and r & A. The field for z & 0 and r & A
resembles that of a magnetic monopole (flux Po into solid angle
2~) such that b =go/2vrr .

where

coshgs =coshqs+(qA) 'sinhqs . (18)

The scallops in Z(q, z) as a function of z are necessary to
describe the discontinuities in b (p, z) arising from the
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layer sheet currents K&(p, z„). However, for values of s
and A expected for the high-temperature superconduc-
tors, the discontinuities in b (p, z„) for n&0 are very tiny
and it is, for most purposes, an excellent approximation
to simply replace Z(q, z) by e

From Eqs. (4) and (8) we then obtain

I dq 2 (q )(qA sinhQs/sinhqs) J, (qp) =go/2~p, (19)

from which the Hankel transform yields, with the help of
Eq. (18),

A(q)=(go/2~)[1+2qAcothqs+(qA) ]
'/~ . (20)

As expected, in the limit s ~~, 3 (q ) reduces to the re-
sult appropriate for an isolated film [Eq. (11)],but in the
opposite limit, s ~0, we obtain

b, (p, z ) = (Pc/2rrAr )e (25a)

b (p, z)=((5 o/2~Ap)[(z/Izl)e '~ —(z/r)e "],
(25b)

sketched in Fig. 2. [As mentioned above, the approxima-
tion of replacing Z(q, z) by exp( —

Q lz I ) results in the
loss of the small (down by a factor -A.l/A) discontinui-
ties in b (p, z) across the layers with n&0. If desired,
these can be recovered with the help of Ampere's law and
Eq. (28).] The magnetic (lux

N, (p, z ) =2vrpa&(p, z )

up through a layer at height z within a circle of radius p
is

2( )=(P /2 A)( +A,
,

) (21) C, (p, z) =(P,A, „/A)(e l —e ~') (26)

where the effective penetration depth for decay of fields
associated with currents Aowing parallel to the layers is
given by

In terms of the quantities in Eq. (6), we note that

The total Aux up through a layer at height z is

( ') =(Po~ii/A)' p(

The Aux up through the central layer

e,(,O) = (yP, „/A)

=4'�(n 3D & e * /I *c (23)
is much less than Po. From Eq. (4), the sheet current den-
sity in the central (n =0) layer

where (n3D & =(n3 Dds/) is the average pair density in
the stack of superconducting layers.

To help us visualize which are the important lengths
for the high-temperature superconductors, we assume the
following orders of magnitude for the above lengths:
d =6 A, s = 12 A, k, = 1000 A, A,

II

= 1400 A, and A= 10
pIIl. Thus,

s/2A,
i,
=A,„/A=10 ' .

K&(p, O) =(c /2~A)[$0/2rrp a&(p, O) ]—

is found to be

K&(p, O) =(cP,/4''Ap)[1 —
(A~, /A)(1 —e ")] (27)

Note that the (negative) (lux term is relatively small, since

Other values of d and s should be chosen to model
specific compounds with various numbers of CuOz layers
per unit cell, but in each instance we expect the following
inequalities to hold: d & s « A,, & A,

II
« A.

Substitution of the exact result for A (q) [Eq. (20)] into
Eq. (15) yields a complicated integral which cannot be
evaluated analytically. The complexity arises chieAy be-
cause of the fine features on the scale of s. If we give up
information on this length scale, however, and examine
only the spatial variation on the scale of kll and larger, we
can obtain analytic results. For values of p or Iz I

much
larger than s, the important q's in the integrand of Eq.
(15) are of order p

' or ~zl '((s ', and it is an excel-
lent approximation to replace Eq. (20) by Eq. (21) and to
replace Z(q, z ) by exp( —Q Iz I ), where, as can be shown
from Eq. (18, Q = q'+A,

,

' . Th«esult is

—lz( j&ll ——
r/&II

aO(p, z) =(P,A, „/2rrAp)(e "—e (24)

where r=(p2+z2)'/2. From this result we obtain the
magnetic field components

FIG. 2. Sketch of the magnetic field b generated by a 2D
pancake vortex in only the central (z=O) layer of an infinite
stack of parallel superconducting layers (not shown) of spacing
s « A. II. Because of the screening currents in the other
lz„=ns&0) layers, the vortex's magnetic llux $0(k~~/A) is guid-
ed radially out to infinity essentially within a disk of thickness

For p &&A, II, the field just abo~e the central layer is

bq =go/2m Ap [(lux po(A, ~~/A) through area 2vrpk, l].
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A, II~/A=10 . In all the other (nWO) layers,

K~(pz) = —(cPA'll 4' A p)(e " 'I —e II) (28)

where z„=ns and r„=(p +z„)'
Given the above solution for the field and current dis-

tribution generated by a single 2D pancake vortex at the
origin of the central layer, it is now a relatively simple
matter to add other 2D pancake vortices at various posi-
tions in other layers and to calculate their interactions.
In the present model, these vortices do not interact via
Josephson coupling, since here Jo is set equal to zero, but
they do interact electromagnetically. For example, it is
easy to see from F =K&go/c and Eq. (27) that the repul-
sive interaction energy between two 2D pancake vortices
of the same sense in the central (n =0) layer is logarith-
mic to all distances, not just within A. Similarly, a conse-
quence of Eq. (28) is that the interaction between 2D pan-
cake vortices in different layers is weak, but attractive,
favoring coaxial alignment.

IU. STACK OF ALIGNED 2D PANCAKE VORTICES

We consider next the magnetic field and current distri-
bution produced by a stack of 2D pancake vortices whose
centers lie along a common axis tilted at an arbitrary an-
gle 0 relative to the z axis.

FIG. 3. Stack of 2D pancake vortices aligned along the z
axis.

A. Axis perpendicular to layers: 0=0

For simplicity, we first examine the case for which the
2D vortices are aligned along the z axis, as shown in Fig.
3. The vector potential can be written as an infinite sum
of contributions like that of Eq. (24), but centered on
different layers,

a~(p, z) = g (QOAII/2irAp)(e " "—e " ") (29)

where 5z„=z—z„and 5r„=(p +5z„)'~ . Converting the
sum over n to an integral over z' yields

a&(p) =($0/2~p)[1 —(p/XII)K, (p/XII)], (30)

where K, is the modified Bessel function of order n. The
corresponding magnetic field has only a z component,

b, (p) =($0/2vrAII )Ko(p/XII), (31)

which is the well-known solution for the field of a
London-model vortex in a medium with penetration
depth A,

~~.
The sheet-current density in each supercon-

ducting layer, found from Eqs. (4) and (30), is

K~(p)=( (5 l4 AA, „)K,(p/i, „) . (32)

E„=PP„ /2c, (33)

where I„ is the total supercurrent Aowing in the counter-

To compute the lower critical field, we note that, in gen-
eral, the Helmholtz free energy associated with layer n,
(obtained by integrating the magnetic-field energy density
and the supercurrent kinetic-energy density and perform-
ing a partial integration) can be expressed as

clockwise direction around the vortex axis in the nth lay-
er. For a stack of pancake vortices aligned along the z
axis, each of the E„'s obtained by combining Eqs. (32)
and (33) is equal to

E(0)= (po/8ir A)KO(/II/A, II), (34)

we may make use of Eqs. (22) and (34) to recover the fa-
miliar London-model result for the lower critical field

H„(9=0)=(Po/4irA,
I

)Ko((II/A, II) . (35)

B. Tilted stack: 0 & 0 & m /2

We consider next the magnetic field and current distri-
bution of a leaning tower of 2D pancake vortices whose
line of centers is tilted at an angle 0 relative to the z axis,
as shown in Fig. 4. In principle, this can be obtained
from the vector potential a expressed as a linear superpo-
sition of pancake-vortex contributions [Eq. (24)] centered
on different layers. The resulting magnetic Aux density b
has a longitudinal component parallel to the line of
centers. In addition, the vortex currents K, which Aow
in roughly circular patterns but are confined to the lay-

where the radial integral's lower limit is taken to be /II,
the Ginzburg-Landau coherence distance for spatial vari-
ation parallel to the Cu02 planes. Since the energy per
unit length of an aligned stack perpendicular to the layers
Is

Ei(8=0)=E(0)ls =(Po/4')H, i(0),
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bE(p„,z„)=(go/2~rA) J dq q '3(q)
0

X [1—Jo(qp„)]e ", (36)

where p„=~z„ tanO. The interaction energy per layer re-
quired to tilt the entire stack of 2D pancake vortices
through an angle 0 is therefore

bE(0) =
—,
' g' bE(p„,z„), (37)

~V

) bE(0) =(Po 8ir A)ln[(1+cosO)/2 cosO] . (38)

The total electromagnetic energy per layer stored in
the tilted stack of vortices is, from Eqs. (34) and (38),

where the factor of —,
' is to correct for double counting;

the prime indicates that the term n =0 is excluded. Us-
ing Eq. (21) and Q=(q +A,

~~

)', and converting the
sum over n to an integral over z', we obtain

E(0)=E(0)+bE(0) .

FIG. 4. Aligned stack of 2D pancake vortices tilted at angle
0 relative to the z axis.

ers, generate components of b perpendicular to the line of
centers, as in the anisotropic eA'ective-mass descrip-
tio 13, 14

An artifact of the present model, which totally neglects
Josephson coupling between layers (A,i= oo ), is that, al-
though the integral of b-dS over the plane z=const
(parallel to the layers) gives total magnetic flux $0, as ex-
pected, the integrals of the magnetic Aux through the
planes x =const or y =const (perpendicular to the layers)
are zero. For any finite value of A, ~, however, the corre-
sponding interlayer Josephson currents must produce a
net Aux component parallel to the layers, generally fol-
lowing the line of centers, such that the magnetic Aux
through any plane intersecting the tilted stack (even the
planes x =const or y =const perpendicular to the layers)
is Po.

We can determine the lower critical field H„(0) for the
case 0 & 0 & ~/2 without calculating a, b, and K using an
energy approach. To do this, we need to calculate the ad-
ditional energy per layer [above and beyond that of Eq.
(34)] required to tilt the line of centers to an angle 0 rela-
tive to the z axis. We first compute the work required to
misalign just a pair of 2D pancake vortices in two
different layers. With the help of Eqs. (4) and (15), we
can find the screening supercurrent K&(p, z„) generated in
layer n (z =z„=ns ) in response to the vortex in the cen-
tral (n =0) layer. This current, which is clockwise when
viewed from above, gives rise to an inward restoring force
F~(p, z„)=K&(p,z„)$0/c on the vortex in the nth layer.
The energy required to misalign the axis of the 2D vor-
tices in layers 0 and n [obtained from the integral of

F(p, z„)] is thus—

Since the energy per unit length of vortex is

E,(0)=E(0)cosO/s,

we obtain to logarithmic accuracy when A,
~~

)&g~~..

e, 0 =
[ Po/ irk~~~) 1n[(A~~ g~~)(1+cosO)/2cosO]]cosO .

(39a)

For an array of line vortices at the common angle (0,$)
in spherical coordinates, producing a macroscopic Aux
density 8=BB,where

B=x sinOcosg+y sinOsing+z cosO,

the thermodynamic magnetic field must be calcu-
lated from the Helmholtz free-energy density as
H=4rrV'&F(B). At very low flux density, close to the
lower critical field, we have F(B)=BE,(0)/Po. Since

H„(0)=H„ii(0)B+H„s(0)8,
where

H„,(0)=4~a[a. , (0)/y, ]/aa,
H„e(0)=4irB[s, (0)/Po]/BO,

0=x cos0 cosP+ y cosO sing —z sinO,

we have

H„(0)=(P /4 A, „)

X [ln[(A~~/g~~)(1+cosO)/2 cosO]]cosO, (39b)

H„(0)= —(P /4~A
ii

) I ln[(A ii/g'ii)(1+ cosO) /2 cos0]
—(1+cosO) 'IsinO . (39c)

For large A, ~~/g~~, Eq. (39) tells us that H„(0) points very
nearly along the z axis for all 0 in the range 0 & 0 & ~/2.
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With our approximation that A,~= ~, the energy cost
for magnetic flux to penetrate parallel to the layers van-
ishes. Thus, H„(vr/2)=0 when 8 is exactly parallel to
the layers.

V. MISALIGNMENT OF 2D PANCAKE VORTICES
IN DIFFERENT LAYERS

A. Thermal disruption
of a stack initially perpendicular to the layers

In this section we show that the energies required to
misalign the 2D pancake vortices are so small that, as T
approaches T„ thermal energies k&T can strongly dis-
rupt the alignment and break up a straight stack. To cal-
culate the energies involved, we suppose that an infinite
stack of 2D vortex pancakes, initially aligned along the z
axis, is perturbed by displacing the central-layer (n =0)
vortex to a distance p from the z axis, as shown in Fig. 5.
The resulting vector potential can be obtained by super-
posing contributions of the form of Eq. (24). We are
more interested, however, in the restoring force on the
displaced vortex. This is easily calculated from

Fp(p) =Ko~(p)POIc

where Ko&(p) is the sheet-current density in the central
layer induced by the vortices in all the other (nAO) lay-
ers. Although the current generated in the central layer
by the central-layer vortex alone Aows counterclockwise
when viewed from above, Ko&(p) fiows clockwise. To
compute Ko&(p), we note that this is just the current den-
sity of Eq. (32) (which includes the contribution of the
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FIG. 5. Stack of 2D pancake vortices aligned along the z
axis, but with central-layer vortex displaced by p in the x direc-
tion.

U (p)=(P /4 A)[y+1 (p/2A~~)+K (p/A(()], (41)

where y =0.5772. . . is Euler's constant. This potential is
approximately quadratic for small p but is logarithmic
beyond p-A, .

fl

2 2At very low temperatures, where k~ T (($0/4m A, the
root-mean-square displacement p, , of a 2D pancake vor-
tex obeys p, , «X~~, and a stack of 2D pancake vortices
thus withstands thermal agitation, holds itself together,
and produces a field distribution very similar to that of a
straight 30 vortex threading through an isotropic type-II
superconductor. As the temperature increases, we can
expect from the form of Eq. (41) that p, , will initially be
approximately proportional to k&T. A change in behav-
ior occurs, however, when k~ T approaches po/4m A and
p, , exceeds A,

~~,
such that the behavior of p, , is deter-

mined primarily by the logarithmic form of U(p). We
find that a divergence of p, , occurs at a temperature
which can be estimated from the expression

(P)lk~T d2
—U(P) jk~T

(42)prms pp e pe

Since, at high temperatures, the behavior of the integrals
in this expression is dominated by large values of p,
where U(p) is logarithmic, we can replace U(p)/k~T in
both the numerator and denominator by

(Qo/4' Ak~ T)lnp=lnp

where a=go/4m Ak&T, and take the lower limit of the
integral to be A,

~~.
The resulting expression for p, , is

p, ,=[(a—2)/(a —4)]'~
A~~ . (43)

According to this expression, since a is large at low tem-
peratures and decreases with increasing temperature, we
see that p, , increases with temperature and diverges
when 0. decreases to the value 4 or T increases to the
value Tb, where

Tb =$0/16m k~A . (44)

It is remarkable that this condition for the thermally in-
duced breakup of an isolated stack of 2D pancake vor-
tices is exactly the same as that for the Kosterlitz-
Thouless transition of an isolated superconducting thin
film of screening length A. We stress that the results in
Eqs. (43) and (44) depend critically upon the logarithmic
p dependence of Uo(p) for large p, which occurs only
when there is no interlayer Josephson coupling. The
smallest Josephson coupling, however, will produce a
linear p dependence of Uo(p) for large p.

vortex in the central layer) less the central-layer vortex
contribution of Eq. (27). We therefore find, ignoring
terms of order X~~/A,

F (p)= —((50/4m Ap)[1 —(p/A~~)K)(p/A~~)] . (40)

Expansion of E
&

reveals that I' is nearly linear in p for
p«k~~. The magnitude of the restoring force reaches a
maximum at p = 1.1A,

~~,
and for p )&k~~, we have

F (p)= Po/4—rr Ap. The corresponding potential well
for the misaligned vortex is
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B. Thermal decoupling of vortices
in diferent layers when B &)H, &

We next consider the vortex structure when the aver-
age magnetic flux density 8 (perpendicular to the layers)
is considerably larger than the lower critical field H
The intervortex spacing, which is roughly ($0/8)', is
then less than XII, and the total local magnetic-field distri-
bution b can be regarded as a superposition of overlap-
ping individual vortex contributions. Let us consider, for
reference, a periodic vortex array in which 2D pancake
vortices in each layer form a triangular lattice at the lat-
tice points I and the vortices in adjacent layers are per-
fectly aligned. We use the notation of Ref. 23, in
which the direct- and reciprocal-lattice vectors are
I=ma, +na2 and g=2w(mb, +nb2), where m and n are
integers and the fundamental lattice vectors are
a, =aox, a2=(ao/2)(x+y&3), b, =ao '(x —y/v'3), and
b2 = (2/ao&3)y. The area of the unit cell is thus
3 =Po!8=a 0&3/2, and the length of a reciprocal-
lattice vector is

g „=(4~/ao&3)(m mn+n —)'~

We next consider the displacements of the central-layer
vortex lattice similar to that shown in Fig. 6. The work
per vortex required to rigidly displace the lattice of 2D
pancake vortices in the central (n =0) layer to the posi-
tion p=xx+yy is

That is,

Uo(p) = (27r) Id q Uo(q ) [exp(iq p) —1] . (47)

E,(X, 1')=2u, o[3—cos2~X —cos2~ Y—cos2~(X+ Y)],

where u, p= (8/Pp)Uo(g~o) and p is expressed in terms
of new coordinates X and Y; defined via

Equation (45) has been obtained using the method intro-
duced in Refs. 23 and 25 for calculating the periodic cou-
pling energy between the primary- and secondary-film
vortex lattices in a dc superconducting transformer.
Similarly, E, (p) in Eq. (45) can be regarded as the cou-
pling energy between the 2D vortex lattice in the central
layer and the aligned 2D vortex lattices in all the other
(n&0) layers. Note that E,(p) has the periodicity of the
lattice, i.e., E,(p+1)=E,(p).

When B &&H„, it is a good approximation to replace g
by q and to convert the sum over g to an integral over q.
For p((ao, Eq. (45) then gives back E,(p)= Uo(p).
When B )H„, however, it is necessary to sum over the
reciprocal-lattice vectors. For large B, this summation
involves values of g for which Uo(g) decreases rapidly
with increasing g. It is then a good approximation to re-
tain only those terms involving the six shortest
reciprocal-lattice vectors of length g,o=4vrlao&3. This
one-reciprocal-lattice vector approximation yields

E,(p)=(B/P ) g U (g)[exp(ig. p) —1], (45)
p=xx+yy =a&X+a2r .

where

Uo(q)= —P,'/2mAA~~q' q'+ (46)

/ ~T /

is the 2D Fourier transform of the potential of Eq. (41).

Contours of constant E, within the unit cell are shown in
Fig. 1 of Ref. 23. Within the unit cell (0(X ( 1,
0( Y & 1), the minimum values of E„(E,=0) occur
when (X, 1')=(0,0), (1,0), (0, 1), and (1,1). The maximum
values of E, (E, =E, ,„=9u&0) occur when the central-
layer vortices are at (X, Y ) =( —,', —,

'
) and ( —', , —,

' ), the centers
of the equilateral triangles formed by the n&0 vortices.
Saddle points, where E, =8u, o, occur when

(X, Y)=(—,', 0), (0, —,'), ( —,', —,'), (1,—,'), and ( —,', 1), where the
central-layer vortices are at the midpoints of lines con-
necting n %0 nearest-neighbor vortices.

We now consider the effects of thermal agitation.
When k~T «8u &o we expect that thermal effects will be
too weak to cause a significant amount of deregistration
of the vortex lattices in different layers. On the other
hand, we should expect decoupling of the vortex arrays in
different layers to occur at a temperature given by
k&T& =@(8u&o), where y is a constant of order unity.
Using this criterion and Eq. (46), we obtain the following
condition for the interlayer decoupling transition temper-
ature in the one-reciprocal-lattice-vector approximation:

Tq =(8@&3/vr)(PO/16m k~A) l(1+8 /8, ), (49)

FIG-. 6. Triangular lattice of aligned stacks of 2D pancake
vortices, but with 2D central-layer vortex lattice displaced in
the x direction. (For clarity, only the aligned stacks in the xz
plane are shown. )

Tq(B ) =($0/16m k~A) l(1+8/8
~ ), (50)

which reduces to T~(0)= Tb [Eq. (44)] when 8 ~0. At

where 8& =(V3/2')(go/4~k~~) is [see Eq. (39)] a little
smaller than H, &(0). Let us set y =sr/8&3=0. 23 to ob-
tain the interpolation formula
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high fields, assuming A=10 pm and A, 1~=1400 A, Eq.
(50) yields Td =(0.5 KT)/8, suggesting that magnetic
coupling of the vortex lattices in adjacent layers can be
destroyed by thermal agitation even at quite low tempera-
tures. Such an effect would be consistent with observa-
tions that the magnetic coupling force in granular-
aluminum dc transformers is strongly suppressed by mag-
netic fields.

VI. CONCLUSIONS

In this paper I have considered an infinite stack of in-
sulated thin superconducting layers and calculated the
magnetic field and current distribution [Eqs. (25) —(28)
generated by a 2D pancake vortex in just one of the lay-
ers. In Sec. IV, I have shown how this solution can be
used as a building block in computations of the magnetic
field and current distribution generated by 3D vortex
lines represented as stacks of 2D pancake vortices. In
Sec. V, I showed how the 2D-pancake-vortex model can
be used to calculate the extent to which thermal agitation
can shake up the stack and even cause the stack to break
up at a temperature that corresponds to the Kosterlitz-
Thouless transition temperature of an isolated film.

I also showed in Sec. V how the application of a mag-
netic field perpendicular to the layers strongly suppresses
the electromagnetic coupling of the 2D pancake vortices
in adjacent layers and reduces the temperature at which
interlayer decoupling occurs. The latter result has impli-
cations for the field-temperature phase diagram of lay-
ered superconductors. In particular, it suggests that
there will be a region of the phase diagram (at relatively
low temperatures and high applied magnetic fields) for
which the 2D pancake vortices in adjacent layers are
thermally decoupled (melted in the direction perpendicu-
lar to the layers) but for which the 2D pancake vortices
in each layer form 2D solids. For such a case the prob-
lem of determining the Aux-lattice melting temperature
reduces to the previously solved problem of 2D Aux-
lattice melting in an isolated film. Note that, as
shown in Ref. 38, the melting temperature TM is nearly
independent of magIh-;tie -cld over a broad range of fields,
while the interlayer decoupling temperature Td [Eqs. (49)
and (50)] is strongly suppressed by a magnetic field.

The extent to which the above model, in which Joseph-
son coupling is neglected, can approximate the behavior
of vortices in highly anisotropic high-temperature super-
conductors, such as those in the Bi-Sr-Ca-Cu-0 and Tl-
Ba-Ca-Cu-0 systems, deserves further study and awaits
experimental confirmation of their anisotropy. Surely a
model setting A,, = ~ would not be a good approximation
for YBa2Cu307 z, for which vortex-lattice decoration ex-
periments ' have shown that A,, :A,b.A., =1.2:1:5.5. For
the most anisotropic copper-oxide superconductors, how-
ever, certain features of the resistive transition may re-

quire an interpretation in terms of 2D pancake vortices,
rather than in terms of 3D vortex lines.

The neglect of the Josephson-coupling energy relative
to the electromagnetic coupling energy is a severe ap-
proximation, one that requires very large A, One way to
estimate the importance of the Josephson coupling ener-

gy is to consider the energy of the displaced vortex
sketched in Fig. 5. When Josephson coupling is includ-
ed, the energy given in Eq. (41) must also include the
energy of a Josephson vortex-antivortex pair extending
from the z axis to the displaced vortex. Since the energy
per unit length of a Josephson vortex is ($0/4m) /A, ~~A,i
(aside from a logarithmic factor), the cost in coupling en-

ergy of a Josephson vortex-antivortex pair stretched to a
length A,

~~

must be of order ($0/4m. ) /Ai. Since the elec-
tromagnetic energy given in Eq. (41) is of order $0/4m. A

at p =A,
~~,

this suggests that the Josephson-coupling ener-

gy will be negligible by comparison with the electromag-
netic energy only when X, »A=2K, ~~~/s.

The surest way to guarantee that Josephson coupling
will be extremely weak is to artificially introduce insulat-
ing layers between superconducting layers, such as in re-
cent work using multilayer structures of PrBa2Cu307
interposed between YBa2Cu307 & layers. I cal the
reader's attention to closely related calculations of Ar-
temenko and Kruglov, of which I learned after the
completion of this work.
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APPENDIX

K~(p) =c$0/4' Ap, p &(A,

=c$0/4' p, p))A .

(A la)

(A lb)

From the fiuxoid quantization condition [Eq. (4)], the
magnetic flux @,(p) through a circle of radius p in the
film is easily found to be

4, (p)=$0(p/A), p(&A,

=$0(1—A/p), p))A .

(A2a)

(A2b)

The properties of the currents and fields for a vortex in
a single, isolated film are such that the sheet-current den-
sity circulating around the axis obeys
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