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A detailed theory of a hexatic vortex glass, recently observed in high-7, superconductors, is
developed. The vortex lattice in this phase is characterized by short-range positional order, which
decays as exp( —ar) in three dimensions (3D) and as exp(—fr?) in 2D, and by extended orientation-
al correlations, which may be long range in a 3D sample and decay algebraically in a 2D film. For
2D and 3D the angular and field dependence of positional and orientational correlation functions is

obtained; these may be easily tested experimentally.

I. INTRODUCTION

There is now a considerable effort to understand the
equilibrium phases and the dynamics of vortex lattices in
high-T, superconductors. Depending on temperature
and the magnetic field, these systems exhibit a variety of
properties, including glassy"? and liquid®** behavior of
the magnetic flux. Nelson has pointed out’ that high-
temperature behavior must be determined by a significant
thermal fluctuation effect,® which has not been taken into
account in the standard theory of the Abrikosov flux-line
lattice. The low-temperature, low-field phase of the mag-
netic flux, on the contrary, must be dominated by static
disorder in the material, rather than by thermal effects.
In this paper we will concentrate on the low-temperature
phase of the vortex lattice. Larkin and co-workers’ ar-
gued that pinning in high-T, oxides should be due to the
collective effect of a large number of randomly arranged
centers, presumably oxygen vacancies. This collective
pinning destroys translational order in the flux-line lat-
tice,® giving rise to a vortex-glass state.” But even for
strong disorder, triangular correlations can still persist in
the local arrangement of vortices. This allows one to in-
troduce local crystallographic axes. It has been shown,'”
that while correlations in the position of vortices decay
on a short scale, correlations in the orientation of locally
defined axes may persist on a much greater scale. This
phase of the vortex lattice has been called a hexatic vor-
tex glass!® (HVG). A high-temperature liquid counter-
part of that phase has been studied by Marchetti and Nel-
son.!! In their model, disorder in the flux-line lattice is
generated by thermally activated dislocation loops. The
corresponding phase of mobile flux lines is analogous to a
Halperin-Nelson hexatic phase in a theory of two-
dimensional 2D melting.'> It has been called a hexatic
flux liquid!! (HFL).

Recently, Murray et al.!’> demonstrated that the low-
temperature, low-field static phase of magnetic flux lat-
tices in high quality Bi-Sr-Ca-Cu-O single crystals is the
HVG phase. In accordance with theoretical predictions,
they found that the positional order decays exponentially
with a correlation length of a few lattice constants, while
the orientational order persists for hundreds of lattice
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constants. The authors of Ref. 13 have suggested two
ways in which one can understand their observations. In
the first scenario, the observed HVG state is a vestige of
the high-temperature HFL state!! “which then gets
quenched-in as the temperature is lowered” due to the
low mobility of flux lines. In the second scenario,!° the
HVG is the true low-temperature ground state, produced
by the competition between the interaction of flux lines
with pinning centers, and elastic interactions between the
lines.

This paper is intended to develop the second scenario
in greater detail and to elucidate other features of the
HVG state. To simplify the problem, a few potentially
important effects have been left out of the picture. First,
dislocations in the flux-line lattice has been neglected.
Second, isotropic elastic moduli, for which one has well
established expressions, are considered. Third, only dis-
tances large compared to the lattice spacing and large
enough to ignore the effect of nonlocal elasticity on posi-
tional correlations are studied. Fourth, our study will be
restricted to low temperatures, when any dynamics of
flux lines is irrelevant. This work must, therefore, be
considered as a first approximation for the problem.
With the above restrictions, properly defined,'? positional
and orientational correlation functions are calculated in
two and three dimensions, and their magnetic field and
angular dependences are obtained. The model is dis-
cussed in Sec. II. Positional and orientational order are
studied in Sec. IIT and Sec. IV, respectively. The effect of
the random orientational field on hexatic correlations is
considered in Sec. V. The HVG phase in a thin super-
conducting film is studied in Sec. VI. The relevance of
theoretical results to experiments is discussed in Sec. VIIL.

II. THE MODEL

Suppose the undisturbed flux lines are parallel to the
direction of the field, Z, and form a perfect triangular lat-
tice in any cross-section parallel to the XY plane. In the
presence of pinning centers, the lattice is deformed. A
zero-temperature local equilibrium configuration of flux
lines is determined by the competition between the elastic
interactions between the lines and their interactions with
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pinning centers. There are two types of local deforma-
tions of the lattice: the local displacement u(x,y,z),
which has two components, #, and u,, and the local rota-
tion, 8,(x,y,z), about the Z axis, which is given by

O(r)="1(3,u, —3,u,) . (1

The free energy of the system is'*

F=1[d*r[(C;—Ces)Bau)*+ Cys(dup)
+CouBu 1= [druaf. @

where «,f8 can be x and y; f(r) is the random pinning
force; C,;,Cy4, and Cg are the elastic moduli of the tri-
angular vortex lattice. We shall assume a Gaussian dis-
tribution for the probability of a given configuration f(r),

P[f(r)] = exp —2LWfd3r[f(r)]2 . 3)

At low temperature the statistical mechanics associated
with the energy (2) is dominated by - extremal
configurations of the displacement field wu(r). The
Fourier transform of u satisfies

ul(q)=G5(q)fp(q), 4)
where
1929
G op(@)=(Cy1g} +Cyyq?) 1 =55
’m
_ 9.9
+(C66‘ﬁ+c44‘b2) ! 8(11/3_ aqu (5)

is the Green’s function of the vortex lattice, g =q3+qy2.
Correspondingly, the bond-angle field satisfies

Gb(q)zé(cﬁqf+C44q22)'16a3qaf,3(q) ’ 6)

where €5 is the unit antisymmetric tensor, €,, =1.

The dependence of the elastic moduli on q and the
magnetic field has been obtained by Brandt!® and Larkin
and Ovchinnikov.!® I will consider the limit of large
Ginzburg-Landau parameter x. Magnetic field is con-
sidered to be small in comparison with B,, but strong
enough to provide a significant interaction between the
vortices. This gives

1 <<«k, -25<b<<1, (7)
K

where b =B /B,,. The general expressions for the elastic
moduli'® then reduce to

—1

B2 q2
Cll__ 1+“‘_‘ +C66 >
47T q,%
5 5 11 2
Cu=2-| 1+ + 2 ®)
4ar q; 93z
B* _
C,r="— 2 1
66 477_(8bK ) N

where

g, =(2bk*) "' ?qp; <qpy ,
gpz =(8m)'2/34a 9)
a=(22/3%)(d,/B)"? .

Here a is the flux lattice spacing, gg; is the radius of the
Brillouin zone, ®y=ch /2e is the flux quantum associated
with each vortex. Note that the elastic moduli tend to
finite values c¢; =C;{(0), ¢4y =C44(0), c46=Cg¢s as g —0.
In this limit, according to Eq. (7), the compression defor-
mation of the lattice is small in comparison with the
shear deformation, that is cgq <<c ;.

The value of the parameter W in Eq. (3) and the expli-
cit dependence of W on the magnetic field are defined by
the nature of pinning centers, which is not well under-
stood at the moment. There are strong statistical argu-
ments,!®” however, which imply that W «< B for the col-
lective pinning at b <<1.

III. POSITIONAL ORDER

The periodic structure of the vortex lattice may be de-
scribed by a set of positional order parameters,'?

pg(r)=exp[iG-u(r)], (10)

where G is any reciprocal lattice vector. The decay of
the positional order due to a G component of the dis-
placement field u is measured via the positional correla-
tion function

gG(r)= (pG(r)p&(O))

=(exp{iG-[u(r)—u(0)]}) . (11)

Writing u as

ua(r)= [ d*r'G p(r'—1)f p(r'), (12)
we have

gG(r):<exp ifd3r’KB(G,r,r’)f,3(r’) > , (13)
where

Kg(G,1,1')=G,[G pr—1') =G 5(r")] . (14)
The angular brackets { - - - ) in Eq. (13) mean an average

with respect to possible configurations of f(r) which
occur with the probabilities given by Eq. (3). Thus, the
correlation function (13) is defined by the path integral
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’ . '’ ’ ’ 1 3.0 12
fD[f(r )Jexp zfd3r Kp(G,r,1')fp(r )—Wfd r'lfg(r')] J
gg(r)= (15)
. 1 3.0 12
J DUt lexp | =7 [P f4(e0] ]
Integration over f(r) gives
_w 32 N - w d’q 2
gg(rlexp de r'’K3(G,r,1r') | =exp —TI 2y |Kp(G,r,q)|* |, (16)
where
KB(G,r,q)=GaGaB(q)(eiq"—1) (17)
is the Fourier transform of Eq. (14); G ,5(q) being given by Eq. (5). Using Eq. (5) we obtain
(G-q,) (G-q,)?
|K5(G,1,q)2=2[1~cos(q-1)] T el A ot — } . (18)
(C1191+Cug;) q (Cesq1tCuagq;) 91

Equation (18) shows that the integral in Eq. (16) is dominated by small g. At small g, C;; >>C¢q, which allows one

to replace Eq. (18) with
(G-q,)?
qi

2[1—cos(q-r)]
(Caeqi +C44‘1z2)2

|K5(G,1,q)|*= 2

’

(19)

where ¢4 and cgg are the values of the elastic moduli at g =0. Then a somewhat tedious but straightforward integra-

tion can be performed explicitly yielding

g =exp | ——F |1 45in20)(r2 +2 )2 +(1—2s5in?0)—— L 20)
T R
f
where r >>a. Here 1,=(x,y), Z=(cqc/c44)"/’z, O is the 16744
angle between G and r|. &= T ow (24)

There are two characteristic lengths associated with
the exponential decay of positional order, given by Eq.
(20). In decoration experiments'3 one can study correla-
tions in the position of vortices on the surface of a super-
conductor. If the surface is normal to the magnetic field,
then z in Eq. (20) is zero, which gives

ry
= _—— 21
§o(r)=exp §l<G,e>] @b
where
247TC1/2C3/2
§l=——2———ﬁ% . (22)
G°W(1+sin“0)

The minimal correlation length corresponds to the first
reciprocal lattice vector G=G,=4w/aV'3. £, depends
on the angle that r;, makes with the direction of G. Ac-
cording to Eq. (22), the two extreme correlation lengths,
at =0 and =1 /2, differ by a factor of 2.

Correlations in the direction of the field are a charac-
teristic of the bending of flux lines. Putting r, =0 in Eq.
(20) we have

ggl(r)=exp ) (23)

oz
£,(G)

where

The measure of the positional order is &, /a in the XY
plane, and §,/a in the Z direction. Substituting the field
dependence of all parameters into Egs. (22) and (24) one
obtains

—g-iocb, St prn, (25)
a

a

According to Eqgs. (7), (8), (22), and (24) the ratio of §,/§,
is greater than 4V'5/3 =3 and increases with the magnet-
ic field.

IV. ORIENTATIONAL ORDER

For hexatic symmetry, the order parameter is defined

as12

Y(r)=exp[6i0,(r)] . (26)

The corresponding orientational correlation function is

86(r)={(P(r)y*(0)) =(exp{6i[0,(r)—6,(0)]}) . (27
With the help of Egs. (1) and (12) we obtain

g(,(r)=<exp [z‘fd3r’QY(r,r')f,,(r' > , (28)
where

Q,(1,1')= —3€,50,[Gp, (r—1') = Gp, (r')] . (29)
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The averaging in Eq. (28) with respect to f(r)
configurations is analogous to that made in Sec. III. The
result of the averaging is

_ W _dq
ge(r)=exp —TI(ZWPIQY(r,q)[Z , (30)
where
Q,(r,qQ)=3i€,pq,Gp,(q)(e4"—1) 31)

is the Fourier transform of Eq. (29). Substituting here
G ,5(q) from Eq. (5), we have

10, (r,q)[>= 18¢7[1—cos(q-r)]
v (Cssqi+c44%2)2

(32)

In contrast to the integral in Eq. (16), the integral in Eq.
(30) is well behaved at small q. For large ¢, it must
be cut off at gg;. Performing the integration with
Ces>Cas(q) given by Eqgs. (8), one obtains

IWqgzk(8)
327TC%6

86— €Xp ) (33)

where =g, /qg; <1, and k(d) is a dimensionless func-
tion whose numerical value is close to one:

16 o 1 x3dx
k(§)=— d .
T fO yfo {x2+4y2[1+(x2+y2+62)~1]}2

(34)

Equation (33) shows that a sufficiently large pinning is re-
quired to destroy the orientational hexatic order in a 3D
flux line lattice. At 2/k?<<b <<1 the exponent in Eq.
(33) is proportional to 1/V'B, so that a stronger field
favors a greater orientational order.

V. RANDOM ORIENTATIONAL FIELD

In a phenomenological description, Eq. (6) can be de-
rived from the effective free energy of the bond-angle
field,

Feg= %’fdsr[c66(aa0b P+ Cis(3,6,)°]

— 1 [ d®r €45/ 340, - (35)

Here the second term produces screw deformations of the
flux-line lattice, while the first elastic term resists such de-
formations. Competition between these two effects is re-
sponsible for the orientational order of the ground state.
As has been shown in Secs. III and IV, a weak random
force f(r), while destroying the long-range positional or-
der in the lattice, cannot destroy the long-range orienta-
tional order. This may be easily understood by compar-
ing Egs. (2) and (35). According to these equations, f(r),
while interacting directly with the displacement field u,
interacts only with the derivative of the bond-angle field
6. Correspondingly, the interaction between f and 6 be-
comes negligible at small g and, therefore, does not affect
long-range orientational order. The effect of a random
field which acts directly on the bond-angle field would be
different.!' Such a field can be incorporated by adding a

new term to F g,

Flg= eﬂf—%fa”rh cos’[60,(r)—¢(r)], (36)

where the random field ¢(r) singles out the preferred set
of local crystallographic axes. When studying the effect
of this field on the long-range order, the second term in
Eq. (35) may be omitted and the elastic moduli may be re-
placed by their constant values at ¢=0. Then the
effective free energy of the bond-angle field becomes

Fug=1[d*r[(V0,—h cos(60,—¢)] , 37)
where V=(c}{*V,c1{>d,). Now the problem is the same
as for a 3D XY ferromagnet with random anisotropy.
The latter problem has been intensively studied.!” It has
been shown that correlations decay exponentially with a
correlation length R, «h ~2. There is strong reason to
believe that this effect is small in oxide superconductors,
so that R, is much greater than &, and &, of Sec. IIL
Indeed, if the size of the pinning centers and the average
distance between them are small in comparison with the
flux lattice spacing, then the cumulative effect of pinning
is the generation of a random force f(r) whose direction
and strength changes smoothly along any path through
the lattice.® The rotational effect of such a force then
reduces to €,40,f 3, which is equivalent to the second
term in Eq. (35), and cannot destroy the long-range orien-
tational order. A weak random field that acts directly on
0, and is not reduced to €,50,f g is not forbidden by sym-
metry, however. In particular, it may be generated by
the intrinsic chirality of some pinning centers, e.g., screw
dislocations in the atomic lattice. For one or another
reason, such a field may emerge in a real sample and may
eventually destroy hexatic correlations at large dis-
tances.!!

VI. THIN FILMS

Let the magnetic field be normal to a thin ferromagnet-
ic film. If the thickness of the film is small in comparison
with £, of Sec. III, the problem becomes effectively two
dimensional. As usual, one should expect that the effect
of disorder in 2D is stronger than in 3D. Indeed, in the
bulk sample any deformation of the vortex lattice in a
cross section normal to the field must adjust itself to the
deformations in neighboring cross sections, to avoid large
bending of the flux lines. This constraint is absent in the
film, where the order in the vortex lattice must, therefore,
decay faster than in a bulk sample.

In two dimensions Eqgs. (16) and (30) become

_ w' o d’q
go(r)=exp | —— f(zﬁ)z (K|2J’ (38)
W' r d%q N
= e , 39
g(r)=exp [—— f(zﬂ)lei} (39)
where
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(G-q)? 1 , (G-q)*
IK|2=2[1—cos(q'T)]| X+ —— |G?— — 1
C%qu C%6q4 q’
(40)
1QI2=18 1 —cos(q-r) ) 1)

C%Gq g
W' is a constant in the expression for the probability for

the random force distribution,

P[f(r)] <exp . (42)

Ja* o)

__1
2w
The integral in Eq. (38) diverges at ¢ —0, and, thus,

must be cut off at ¢ ~27 /L, where L is the linear size of

the film. The first term in Eq. (40) may be neglected at
small q. Then integration gives

2
2 , (r/€)
gglr)=exp 2 2 , (43)
where
(8m)'2C
66 (44)

£ G(W")X(1+25sin%9,)1%
In a weak field £/a must be proportional to V' B, while £
does not depend on the field. The two extreme correla-
tion lengths in a film, at 6, =0 and 6, =m/2, differ by a
factor of V/3.
For the orientational correlation function, the integra-
tion in Eq. (39) gives

’

27Cl

gs(r)=exp In(5rgpz)

g 2
y oW 2ac

rqdpz

(45)

Equation (45) is valid for rgg; >>1. It displays the alge-
braic decay of hexatic order in two dimensions, with an
exponent that decreases as 1/V'B in a weak field.

In two dimensions, the exponent governing the alge-
braic decay of hexatic order, n=9W'/2mC% can be ex-
pressed in terms of the positional correlation length,

27
4r?

a
&o
where &, is £ of Eq. (44) at 6=0. Remarkably, this sim-

ple formula does not contain any other parameters of the
theory and may be directly tested experimentally.

2
) (46)

VII. DISCUSSION

Recent experimental data on the high-T, superconduc-
tor Bi-Sr-Ca-Cu-O are in agreement with the theoretical
suggestion that, in presence of collective pinning, the
low-temperature, low-field phase of the magnetic flux lat-
tice is the HVG. It has been experimentally demonstrat-
ed"® that while the positional correlations decay on the

scale of a few lattice constants, orientational order per-
sists for hundreds of lattice constants. To explain the ob-
served slow decay of orientational correlations, it has
been assumed'? that hexatic order decays either exponen-
tially with a correlation length R, ~250a, or algebraically
with an exponent 7~0.06. If the latter is true, it would
indicate that the vortex lattice is effectively two dimen-
sional. Indeed, algebraic decay occurs at marginal dimen-
sionality, which is 2D for orientational order.'>!® Equa-
tion (46) provides a simple test of this assumption. For
£,~3.5a it gives n¢=0.06 which is consistent with exper-
iment. On the other hand, the 2D limit is true when & I is
greater than the thickness of the film, ~100 um in the
experiment. It would imply §,~ 100§, which, according
to Sec. III, is hardly possible at B <100G. Thus, a 3D
picture with a slow exponential decay of hexatic correla-
tions due to the effects discussed in Sec. V, may be more
plausible. It should be noted, however, that the experi-
mental situation was quite close to the crossover from 3D
to 2D. Experiments with samples of greater thickness
and the analysis of larger images may be necessary to
clarify this issue.

Comparison between theoretical and experimental re-
sults on the angular structure and field dependence of the
HVG phase might also be a challenging task. For a 3D
sample, the situation when the magnetic field is normal to
the plane of decoration corresponds to the positional
correlation function gg(r,)=exp(—r, /§)) given by Eq.
(21). This dependence of g on r, is in good agreement
with the experimental data, also indicating a 3D nature
of correlations rather than 2D. Varying the orientation
of the field with respect to the surface of the sample, one
can also test in decoration experiments a complex depen-
dence of g5 on r, and z, given by the general formula,
Eq. (20). This has not yet been done. A systematic study
of the field dependence of positional and orientational
functions would allow one to test theoretical predictions
for the dependence of §,, §;, and g¢ on B, which may be
important for understanding the nature of pinning forces.
The angular dependence of the correlation length,
£, «(1+sin%0,)" ' in 3D, and &« (1+2sin’0,) /% in
2D, may also be tested experimentally. According to the
existing data,'’ the smallest and the greatest positional
correlation lengths differ by a factor of 2, which is in
agreement with the above formula for £ (6, ), indicating
again a 3D nature of correlations.

Our treatment of positional and orientational order in
flux-line lattices is based upon the concept of collective
pinning,'®” which assumes a large concentration of weak
pinning centers. Observation of the HVG phase in Bi-
Sr-Ca-Cu-O (Ref. 13) has demonstrated the relevance of
this concept to high-T, superconductors. Comparison of
our results with experimental data on oxide superconduc-
tors must be taken with caution, since our study ignores
their pronounced anisotropy. It should be noted, howev-
er, that expressions for anisotropic elastic moduli are not
established well enough to give confidence to any other
approach. On the contrary, experiments on 3D and 2D
amorphous superconductors!® 2! have demonstrated a
high degree of isotropy of elastic properties and homo-
geneity of the pinning field at the scale of the supercon-
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ducting coherence length. Consequently, the concept of
collective pinning and all our results on the HVG phase
may directly apply to amorphous superconductors.

Note added. After this work was submitted, I received
unpublished results by Houghton, Pelcovits, and Subdg??
who performed the same calculations, but with nonlocal
anisotropic elastic moduli.

EUGENE M. CHUDNOVSKY 43

ACKNOWLEDGMENTS

Discussions with Pierre Hohenberg, David Huse, Cris-
tina Marchetti, and Cherry Murray are gratefully ac-
knowledged. I also thank Ron Dickman for reading and
commenting on the manuscript. This work has been sup-
ported in part by PSC-CUNY Grant No. 669350.

1A. C. Mota, D. Visani, K. Muller, and G. G. Bednorz, Phys.
Rev. B 36, 4011 (1987).

2Y. Yeshurun and A. P. Malozemoff, Phys. Rev. Lett. 60, 2202
(1988); A. P. Malozemoff, T. K. Worthington, Y. Yeshurun,
and F. Holtzberg, Phys. Rev. B 38, 7203 (1988).

3P. L. Gammel, L. F. Schneemeyer, J. V. Waszczak, and D. J.
Bishop, Phys. Rev. Lett. 61, 1666 (1988).

4R. N. Kleiman, P. L. Gammel, L. F. Schneemeyer, J. V.
Waszczak, and D. J. Bishop, Phys. Rev. Lett. 62, 2331 (1989).

SD. R. Nelson, Phys. Rev. Lett. 60, 1973 (1988); D. R. Nelson
and S. Seung, Phys. Rev. B 39, 9153 (1989).

6For a detailed nonlocal theory of thermal fluctuations and
melting of the vortex lattice in oxide superconductors, see E.
H. Brandt, Phys. Rev. Lett. 63, 1106 (1989).

M. V. Feigelman, V. B. Geshkenbein, A. I Larkin, and V. M.
Vinokur, Phys. Rev. Lett. 63, 2303 (1989).

8A. I. Larkin, Zh. Eksp. Teor. Fiz. 58, 1466 (1970) [Sov. Phys.
JETP 31, 784 (1970)].

M. P. A. Fisher, Phys. Rev. Lett. 62, 1415 (1989).

10E, M. Chudnovsky, Phys. Rev. B 40, 11 355 (1989).

M. C. Marchetti and D. R. Nelson, Phys. Rev. B 41, 1910
(1990).

12B. 1. Halperin and D. R. Nelson, Phys. Rev. Lett. 41, 121

(1978); D. R. Nelson and B. I. Halperin, Phys. Rev. B 19,
2457 (1979); A. P. Young, ibid. 19, 1855 (1979).

13C. A. Murray, P. L. Gammel, D. J. Bishop, D. B. Mitzi, and
A. Kapitulnik, Phys. Rev. Lett. 64, 2312 (1990).

141, D. Landau and E. M. Lifshitz, Theory of Elasticity (Per-
gamon, New York, 1970).

I5SE. H. Brandt, J. Low Temp. Phys. 26, 709 (1977); for a review,
see E. H. Brandt and U. Essman, Phys. Status Solidi B 144, 13
(1987).

16A. 1. Larkin and Yu. N. Ovchinnikov, J. Low Temp. Phys.
34, 409 (1979).

17y. Imry and S. Ma, Phys. Rev. Lett. 35, 1399 (1975); R. A.
Pelcovits, Phys. Rev. B 19, 465 (1979); E. M. Chudnovsky and
R. A. Serota, ibid. 26, 2697 (1982); for a review, see E. M.
Chudnovsky, J. Appl. Phys. 64, 5770 (1988).

18, M. Chudnovsky, Phys. Rev. B 33, 245 (1986).

19p. H. Kes and C. C. Tsuei, Phys. Rev. B 28, 5126 (1983); R.
Wordenweber and P. H. Kes, ibid. 34, 494 (1986); P. H. Kes
and R. Wordenweber, J. Low Temp. Phys. 67, 1 (1987).

201, Civale and F. de la Cruz, Phys. Rev. B 36, 3560 (1987).

21p. L. Gammel, A. F. Hebard, and D. J. Bishop, Phys. Rev.
Lett. 60, 144 (1988).

22A. Houghton, R. A. Pelcovits, and A. Sudbg (unpublished).



