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Doped antiferromagnet: The instability of homogeneous magnetic phases
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The Schwinger-boson —slave-fermion mean-field theory is applied to the complete (to order t /U)
two-dimensional t-J model at low doping and at zero temperature. A multiple Hubbard-
Stratonovich transformation defines the order parameters and keeps track of their random-phase-
approximation (RPA) fluctuations. The lowest mean-field state is a long-range-ordered spiral state.
We find that for any t/J at infinitesimal doping, this state and other homogeneous magnetic states
are unstable against local enhancement of the spiral's pitch. The instability manifests itself at the
mean-field level by a negative compressibility, and at the RPA level by negative eigenvalues of the
Gaussian determinant. We discuss the implications of this instability on theory and experiments.

I. INTRODUCTION

Recent years have seen extensive studies of the doped
quantum antiferromagnet on the square lattice, and its
progenitor the large-U Hubbard model. These models
are believed to contain some of the essential physics of
the copper oxide high-T, superconductors.

The half-filled (undoped) case, which is described by
the quantum Heisenberg model (QHM), is by now reason-
ably well understood. Theory and experiments on the
high-T, related insulators (e.g. , La2CuO&) are in good
agreement. ' The foundations of semiclassical (large-S)
approaches were greatly strengthened by results of series
expansions ' and numerical simulations. ' In addition,
spin wave theory at T=0 and (2+1)-dimensional non-
linear o. model have been shown to provide quantitative-
ly reliable approximations, even for the S=—,

' system.
The large-X Schwinger-boson mean-field theory '

(SBMFT) was used to extend spin-wave theory to the
disordered phase at finite temperatures. It has been
found to agree with the semiclassical approaches, and to
reproduce finite lattice static ' and dynamic" correla-
tions of the physical (X =2) Heisenberg model. The spin
correlation length of the SBMFT agrees with the one-
loop order renormalization-group result of the nonlinear
o. model. '

It is important to note that the projected SBMFT
ground states' are total singlets which obey Marshall's
sign criterion' as required for Heisenberg antiferromag-
nets on bipartite lattices.

By contrast, large-X mean-field theories' ' based on
fermion representations for spins provide qualitatively
di6'erent results. Their most apparent shortcoming is
that their ground states cannot satisfy Marshall's cri-
terion. ' In addition, their solutions include paramagnet-
ic "Aux phases"' and "spin-Peierls"' states, at T =0, in
violation of numerical bounds for the N =2, S =

—,
' mod-

1 4, 18

The evolution of the Heisenberg antiferromagnet under
slight doping 6 is microscopically described by the Hub-
bard model, and its projected descendant the t-J model.

Three terms appear at the first two orders in t IU: the in-
tersublattice hole hopping (&'), the Heisenberg exchange
(&~; 1 =4t /U), and The intrasublattice hopping term
(& ), also of magnitude t IU. The projected electrons
can be represented by Schwinger bosons and spinless fer-
mions. This sets the problem up for a mean-field theory
which extends the SBMFT to 6 & 0.

In this paper we apply this mean-field theory to the
three terms of the t-J model, and calculate the ground-
state energy for several homogeneous spin configurations.
These include the (1,1) and (1,0) spirals, and the double
spiral state.

Our main conclusion is that the homogeneous mean-
field states for 6)0 are inherently unstable, due to the
large compressibility of the holes. The system wishes to
enhance the spin deviations by locally increasing the hole
density. This effect is indicated by the sign reversal of the
Gaussian determinant, and is signaled by a negative
mean-field compressibility. Several theories' have
predicted instability (toward phase separtion) for the tJ-
model. Here we find that the instability is robust: it ap-
pears at infinitesimal doping for all values of t/J. Since
the offending fluctuations are large for all momenta below
the Fermi momentum, it is unlikely that longer range
Coulomb interactions could stabilize these mean-field
states, although they may prevent phase separation.

Semiclassical methods and Schwinger-boson —slave-
fermion mean-field theories have been previously ap-
plied to study the doped antiferromagnet. This work
contains the following features.

(i) Here, the t Jmodel includes the in-trasublattice hop-
ping term (& ) as mandated by the large Ult transfor-
mation of the Hubbard model. This term has been either
ignored, ' or replaced by an effective hopping term
(called t' term) of lower symmetry. ' The unperturbed
hole band structure has a singular density of states. Our
results reveal the importance of & in ruling out the
canted state, and in allowing the instability of the mag-
netic states at infinitesimal doping.

(ii) We apply the Hubbard-Stratonovich transforma-
tion to keep track of the coupled order parameters and
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their fluctuations. The ambiguity of different decomposi-
tions of the Heisenberg interaction at low doping is
resolved in Appendix A.

(iii) The unstable modes of the Gaussian matrix (i.e.,
the inverse RPA propagator) are identified. We
reconfirm the instability of the mean-field theory for Auc-
tuations in a range of momenta. Thus, the instability is
shown to be robust.

The ordered moment in the ground state is reduced by
the zero point spin wave Auctuations. A byproduct of
our mean-field solution is the correlation between the or-
dered moment and the pitch of the spiral twist. Interest-
ingly, we find that for the (1,1) and the (1,0) twist the or-
dered moment increases with the distortion.

Our mean-field results can be used to interpret the ex-
perimentally observed phase separation of La2Cu04+&
into "oxygen-rich" and "oxygen-poor" domains. The
analysis of the RPA fluctuations indicates that the doped
antiferromagnet is highly susceptible to local deformations
in the presence of slight inhomogeneities. This may help
to explain the intermediate disordered magnetic phase
in La2CuO~ which forms at low ( —3%—5%) doping.

This work is limited to small densities of holes and
small deviations from short-range antiferromagnetic or-
der. Thus we cannot predict toward what ground state
the instability leads. Two obvious possibilities are phase
separation between spins and holes, ' or the formation
of local spin-hole polarons. In a planned publication ' we
shall use a coherent-state formulation to address this
question.

The paper is organized as follows. Sections II and III
are didactical; they review the derivation of the t-J model
from the Hubbard model, the Schwinger-bosons and
slave fermions representation, and the Hubbard-

I

II. THE t-J MODEL

Although there are many studies of different variants
of the t-J model in the literature, its full form, as derived
from the large-U Hubbard model is not often exposed.
Here we briefly review the steps leading to the explicit
form of the t-J model in terms of Schwinger bosons and
slave fermions.

We start with the Hubbard model, given in terms of or-
dinary electron operators c;„s= T, J, ,

& ""=—t g c;,c, + U g p, &p,
.&,(,, ),. "" (2.1)

where (i;j ) denotes a summation over i, and over
z(=4) nearest neighbors j (i) Thus. , there are zJV terms
in the sum. (JV is the number of sites. ) We define

pis is is pl Xspls
Expanding the Green's function in the nondoubly oc-

cupied subspace to second order in t IU yields the follow-
ing effective Hamiltonian:

Stratonovich transformations wihch decouple the t-J
model. Although these derivations are well known to
some readers, they do not often appear in the literature
and are worth explaining in some detail. In particular,
we expose some subtleties associated with the analytic
continuation of the integration contours. Sections IV and
V derive and solve the mean-field theory, Sec. VI de-
scribes the instability of the Gaussian determinant, and
we end with a summary and some comments about the
relevance of our results to the experimental phase dia-
gram and to theories of high temperature superconducti-
city.

P, —t g CisCjs
—

U g CisCjsPj TPj Lcj ck s's
t'

P
(t'; j),S (i;jk ),s, s'

=P, t g ctc,, ———
(i;J ),s (l;Jk ),s, S

(CisCjs Cks Cjs +~ss CisCks )Pj Ps (2.2)

where P, —:ii,.(1—
p;&p;&) is the projector onto the non-

doubly occupied Hilbert space. We perform the follow-
ing substitutions in the second row of Eq. (2.2):

c;)~a,f, , c;g~b;f;, p ~f, f& (2.3)

a; and b; are two commuting Schwinger bosons, and f,
are spinless slave fermions. The Fock space is subject to
local holonomic constraints P[ } (a projector into the
null space of ( }), which replaces P,

P, ~P2s =+P [a;ta, + b; b; +f;~f; —2S } . (2.4)

I

(2.2). Thus we arrive at the form

(2.5)

= + —g fktfA t)A k ( I f"f,), —
(.;jk)

&"=P (m'+&'+&')P
&'=t g f, f, V;, —pg ftf, ,

g A;A; (I ftf ), —J
4 v tj

Introducing the value 2S (rather than the value 1) in the
constraint (2.4) generalizes the t Jmodel of S =

—,
' to -arbi-

trary spin size. The substitutions of (2.3) in (2.2) for S=
—,
'

are easily verified to yield a faithful representation of Eq.

where J=4t /U is the Heisenberg superexchange con-
stant, and we have added a chemical potential p for the
holes. The number of terms in the summation over
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(i;jk ) is z JV. The notations A;, V;~ for the bilinear
Bose operators are borrowed from Ref. 8.

At this point we have substituted one difhculty by
another. By eliminating the large-U term in the Hubbard
model we have generated even more complicated interac-
tions with local constraints. The advantage of this pro-
cedure, however, is that at half filling (f f ) =5=0 all
the fermion terms in (2.5) drop out, and the model
reduces to the Heisenberg model of spin S:

lim&' ~——g AtA, .
s=o 4 (~;j)

J
(S S —S)I J

(I;j)S:—a b, S =S(X+I) .

(2.6)

In the following we study the partition function as given
by the coherent state functional integral, with Pzs(2. 4)
imposed by Lagrange multipliers A, ,

Z= f dA fX)[a ab bf f]exp f dr+(a;a, +b, b, +f; f;)—&'+i QA, .(a; a;+b; b;+ftf, —25)
I

(2.7)

III. THE HUBBARD-STRATONOVICH TRANSFORMATIONS

In this section we introduce Hubbard-Stratonivch (HS) transformations which decouple the four- and six-operator
terms in &, Eq. (2.5). The basic identity is just that of a Gaussian integral. For any Hermitian interaction between
operators % and C (which could be labeled by time and spatial indices) one has the identity

exp[g(X C+C %)]= f dA, dAzdA;dA~exp —X C+BC+C B+CB+
(2'�)

(3.1)

where the integration is over four real fields A' ",
a=1,2. Without loss of generality we can choose g &0.
(A negative sign could be absorbed in, say, X.) The com-
plex fields 8, C and their bars are defined by

f; f F) +(ata, +

blab,

) T,

TfJ TJg ~

(3.4)

B (C)—=W"'+is,""
8:—Ai —iA~,

c gb1 g +b2

(3.2)

The intrasublattice hopping terms of & are
enumerated by triads of lattice indices (i;jk). Since
they are of sixth order, we apply the transformation (3.1)
twice successively to yield

The definition of the "barred" fields might seem puzzling:
they are not related in any way to their unbarred counter-
parts. The definitions (3.2), however, are natural for the
mean-field theory. We shall see that in order to allow 8
and C to be independent complex parameters we must de-
form the contours of integration in (3.1) into the complex
plane. We shall return to this important point later. The
real fields A„, p=1,2, cx=b, c, must be used for the
Gaussian integration in the RPA theory.

In Eq. (2.5) there are terms up to eighth order in the
Bose and Fermi operators. As a first simplification, we
replace the hole density f f ~o in & and &, and
define Js=J(1—5). This substitution neglects hole
correlation corrections which are higher order in 6. By
applying the HS identity (3.1) to (2.7) once, we can re-
place the Heisenberg terms in (2.5) at each time by

4IQ„I'&J—+ g A,, ,Q* +A~(;Q~+ (3.3)

Q is precisely the field which serves as the "order parame-
ter" in the Schwinger-boson mean-field theory of the pure
Heisenberg model. In Appendix A we show why, at low
doping, the other "ferromagnetic" decomposition need
not be considered. The &' terms are decoupled by

fk f;K;,k +A,"~ N;J +A,„N,'„

i 44~
M;.~ J~-

(3.5)

IV. THE MEAN-FIELD THEORY

The mean-field theory is given by replacing all the HS
fields and the constraints field A. by static variational pa-
rameters. In order for the bilinear Hamiltonian to be
Hermitian [see (3.1)] we require that all saddle-point
fields obey

BMF =(BMF )*; B =F, T, N, M, K, Q (4.1)

At first sight, the definitions (3.2) and the requirement
(4.1) seem to imply that BM„ is equal to CM„. This re-

where the fields are taken to obey 0 jI, Okj At this
point we have decoupled all the interactions and separat-
ed the bosons from the fermions, leaving us only with bi-
linear terms [Eqs. (3.3)—(3.5)]. In the following we shall
apply the steepest descents method (i.e., the mean-field
approximation) to evaluate the ground-state energy of
~tJ
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4
' (A„), F,, =t(v, , ),

T,, =t(ft.f ),
Jg

(A, A„, ), etc,

Qi)
=

(4.2)

Equations (4.2) can hold only if the symmetries of the
correlations are identical to the symmetries of the driving
fields. Consequently, T; and F,- have the same symme-
try.

striction is circumvented by analytical continuation of
both A', "and A~"" into the complex plane where the
true saddle point is situated. This scenario is analogous
to allowing the constraint Geld A, to be purely imaginary
at the saddle point. The integration contour enters the
calculation of the Gaussian fluctuations ' (see Sec. VI).

The mean-Geld ground state depends on the magnitude
and symmetry of the mean-field parameters which act as
driving fields. As in standard Hartree-Fock decomposi-
tions the mean-field equations, through minimizing the
energy, relate the fields to the correlations,

—,'A,',A,, =(S, —S, )', :—,'V,', V,, :=(S,+S, )', (4.3)

where:: indicates normal ordering. Equation (4.3) al-
lows us to interpret the magnitude of the fields Q;, (F~)
as the difFerence (sum) of neighboring spins. There is ad-
ditional information in the phases of the Q and F fields,
which has been exposed by Kane et al. They have
found that for ~F~ && ~Q~ (neighboring spins nearly anti-
parallel), the gauge-invariant content of the phases corre-
sponds to the relative directions of the spins on the two
sublattices. Specifically, they have classified four
different symmetries of the homogeneous spin states us-
ing the symmetry of the vector F, , + where i is on one

7

sublattice, and g=+x, +y. Defining F, , +
——FF and

T. .+
——TF, the cases are

l, l +'g 'g

The unfortunate property of SU(N) mean-field theories
is that the bilinear operators such as A and V do not
directly represent spin operators since they violate the
constraint. They should rather be thought of as "square
roots" of legitimate spin operators as seen in the follow-
ing identities:

(a) (1,0) spiral: F = —(1,—1,0,0), Fi,=i[ir2sin(k, )],

F =ji[si (nk„)+i sin(k )],(c) (l, i) spiral: F =
—,'(1, —l, i, i), —

7l

(d) canted state: F =
—,'(1, 1, 1, 1), Fk =2yi, ,8

(b) (1,1) spiral: F =
—,'(1, —1, 1 —1), Fi,=i[sin(k )+sin(k~)],

(4.4)

X FT—z — —A(2S+I —5) .
M

(4.&)

Here the fermion filling is gk'+d f(ek ) =5, and
denotes a sum over the reduced Brillouin zone. The fer-
mion bands are given by

where Fk=g e'" "F and yi, ='(1/4)g e'" ". Cases (a)e. 7l

and (b) represent spiraling coplanar spins, case (c)
represents spiraling in two perpendicular planes in the x
and y directions ("double spiral" ). This state cannot be
realized classically on an infinite planar lattice. The or-
dered moment that will emerge, at T=0, is taken to be
an artifact of softening the constraint in the mean-field
theory. Case (d) represents a nonzero uniform magneti-
zation due to the canting of one sublattice's magnetiza-
tion relative to the other.

Prom (4.3) we learn that (A ) depends only quadrati
cally on small distortions (V); a fact which can be
verified from the mean-field solutions. Thus the symme-
try of the related fields Q, K,N, M remains unchanged by
the doping. We take them all to be real and uniform con-
stants.

Substituting the dynamical fields in (3.3)—(3.5) by (4.4),
and diagonalizing the mean-field Hamiltonian leads to
the energy function

red red 2

F[A ]=gcok+g ek~f(ei—, )+ —4z
k+ i+

ek =z2Ky'„+F IFi, I
. (4.6)

It is important to note that the fermion band structure, in
the absence of doping, is a special one. For F =0 the
minima lie on the line yi, =0, and the density of states p
has a singularity of

p'(e)=e '"l»(e)l . (4.7)

This is the result of a degeneracy between different next-
neighbor hopping matrix elements in & . This singulari-
ty distinguishes this band structure from that obtained by
fermion self-energy corrections. In Fig. 1 we plot the
lowest band ek, and the occupied Fermi volume for the
(1,0) and (1,1) spirals. The (l, i) and the (1,0) cases have
similar band structures. As the reader can see, the Fermi
surfaces are highly elliptical, and are located in a region
of highly density of states.

The band structure (4.6) rules out the canted state [case
d, Eq. (4.4)], since the distortion F couples to the fermion
band with a vanishing weight yk-—0 near the minima of
the unperturbed bands. This results in a quadratic
dependence of the fermion energy on F and does not al-
low a nonzero solution for T and F at small values of 6.
The canted state at low doping can only emerge if &J is
ignored, as in Ref. 24.

The Bose dispersions, for the spiral cases, are
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k

0
I&„ FIG. 2. The Schwinger boson dispersions co&

—[Eq. 14.8)j, in
the spiral states along the direction of the ordering wave vector
k, . k, measures the pitch of the spiral (see text).

(b)
mean-field equations.

The remaining equations are
1. The constraint equation

y 0 red Q~ — red+
k

k+ k+

~+TIKI
v (~+T IFk I

)' —g'(zy. )'

=2S+ 1 —6, (4. 1 1)

0
"x

which determines the ordered moment mo, given a twist-
ing force T.

2. The spin-wave velocity equation

FIG. 1. The lower hole band ek, [Eq. {4.6)], for (a) the (1,0)
spiral state and (b) the (1,1) spiral state. The ( l, i) double spiral
state has a similar band structure to (a). The dark regions are
occupied states within the reduced Brillouin zone.

red Q~k red —Qz yg
X =X
k+ Bg &+ v (x+TIF I}'—(zgy )'

= —2zQ /Js, (4.12)

cok =V (A+TIF„I) —(Q+2zN) (zyk) &0 . (4.8)

determines the value of the spin wave velocity
c =zg/&2 as a function of the driving field T.

3. The pitch equation

and

2Q/Js= N/M= 2V K—/Js— (4.9)

In Fig. 2 we plot the spin wave dispersions cok along a
line which contains the zeros of cuk which are at +k, .
When Bose condensation occurs (at zero temperature

ik, x
for all S)S,=0.2), (S+(x))=moe ', which identifies

k, as the pitch of the spiral.
The mean-field equations are generated by setting

BE "/BA =0 (a runs over all the HS fields). First we
eliminate the parameters of H by differentiating E with
respect to A =Q, N, M, K, yielding

=F t, (4.13)

k, +;E'k p
+

+PI, =T/t . (4.14)

Using Eqs. (4.9), (4.11)—(4.14), we find (see Appendix B)
the mean-field energy to be simply given by

relates the twisting force T to the induced spin correla-
tion F.

4. The fermion twisting force equation

red

M/Js= —,
' gykf(Fi —,)= —a5, a=O(1) .

k+
(4.10) &MF TF zg

t Jg
(4.15)

Equations (4.9) and (4.10) allow us to substitute the fer-
mion intrasublattice hopping K by the value g /Js. We
wish to retain energies up to quadratic order in 6. Using
(4 9) and (4 10) to substitute N in (4 8), one gets
Q+2zN =Q(1 —2za5 )=Q, which allows us to discard
this weak "feedback" effects of H on the spin wave ve-
locity. Thus, E, M, and N have been eliminated from the

Here T,F, Q are completely determined by the microscop-
ic parameters t, J, S, and 6.

A. Slave fermions and magnetic band-structure electrons

The spin density wave (SDW) Hartree-Fock approxi-
mation of the Hubbard model, Eq. (2.1) involves substi-
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tuting

Up, tp, )~U(p; t+p;g)m Oe' ' —Umo, (4.16)

«31 ~

cu -4"
CO

where mo is the staggered magnetization per site. Equa-
tion (4.16) yields the "magnetic band structure" for the
electrons

e„=+1)/ (m U)'+(zty„)'

-6"
QJ 7. ~

-8"

=+ moU+ +O(t4/U2)
2Umo

(4.17) 0.1 0.2 0.3 0.4 0.5 0.6

V. RESULTS OF THE MEAN-FIELD THEORY

In Appendix B we solve Eqs. (4.11)—(4.14) in detail and
derive the mean-field ground-state energy, compressibili-
ty, and the ordered moment to second order in the dop-
ing concentration 5. We find that the (1,1) spiral is
lowest in energy for S (0.81, while the (1,0) spiral wins
for larger spin sizes. The mean-field energy is given by

E "=—4JZ S +4Z JS 5+—'~5
(5.1)

0.078 974
c S & i c

dZ1+—
S dS

E " is plotted in Fig. 3 for S =
—,
' and t/J=2. It is im-

portant to note that the linear (chemical potential) term
4Z, JS in Eq. (5.1) does not depend on t at all. x(S, t,J)
is the compressibility, given by

v(S) = —2JS — A (S)+—Z, +2 4 1

J s' (5.2)

The values of A (S) for the (1,1) and (1.0) spirals are
given in Eq. (B8). For S=

—,', we find that 4Z, =5.36, and
4Zi =14.36, while

—25.76 (1,0) spiral

~,zz= ' —44. 16 (1,1) spiral .
—0.99 ( 1,i) spiral

(5.3)

At half filling, the lower band is filled, and the upper
band is empty. If we take the large-U limit of (4.17) and
substitute mo —+ —,', the lower (hole) band can be mapped
onto the undistorted (I' =0) slave fermion bands:

ek =K(S =
—,')(zyk) ~Jz yk=ek +moU . (4.18)

The substitution of K in (4.18) by JS is justified in the
semiclassical limit (large S) since by (4.9) K =Q /J, and
from Ref. 9 Q =(1+0.078 974/S)JS.

Thus, the fermion quasiparticles in the Neel state are
similar in the two approaches. They have similar disper-
sions and are restricted to hopping only on the same sub-
lattice. This relates the weak coupling approximation to
the Hubbard model, to the large-U t-J model limit. The
major distinction between the two theories is that the
slave fermions are described in a rotationally invariant
formulation which does not require long-range order.
The slave fermion dispersions also incorporate the quan-
tum effects of the spin waves.

FIG. 3. The mean-field energy vs density 6 for three spiral
states labeled by the direction of the twist. The plot is for S= —'

and t/J=2.

The terms which depend on the symmetry of the spiral
are of order 5 and higher. Therefore K determines the
lowest state, which for S=

—,
' is the (1,1) spiral.

The negativity of a. for all values of t/J and S is the
most important fact about the mean-field energy. The
origin of this effect could be traced back to two effects.
(1) The (1—6) renormalization of the Heisenberg energy
due to reduction of the spins and (2) the coupling to the
Fermion energy which is linear in the hole density. The
negative ~ suggests the possibility of phase separa-
tion' between a hole-rich phase and the Neel phase, it
provided the energy function is minimized by homogene-
ous states at large doping. Alternatively, the system can
form local defects or spin polarons, which will describe
the quasiparticles of a new phase.

The positivity of the linear term in (5.1) implies that
the untwisted Neel state is metastable, and would suffer a
first order tran-sition toward the true ground state.

A byproduct of this calculation is the correlation be-
tween the Bose-condensed fraction, or ordered moment
mo and the pitch of the spiral k, which define the spin
directions in the ground state by

(S'(x)+iS~(x) ) =moe (5.4)

In Fig. 4, this correlation is depicted for the three spiral
states. It is interesting to note that the moment increases
as the spins are twisted (without doping) in the (1,0) and
(1,1) direction. The double spiral, however, rapidly
looses its Bose condensation.

VI. INSTABILITY OF THE RPA THEORY

Here we strengthen the case for the instability of the
mean-field states by calculating the Auctuations of the HS
fields at low doping. The partition function (2.7) is ex-
panded about its saddle point to Gaussian order:

Z' '=exp( /3E ")J2)[A]e p(——xA"IIA) . (6.1)

Here we use the notation of Eq. (3.1):
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and

A=A„(i, g, cu),

u=Q, F, T, N, M, K, p. =1,2, (6.2) where A are integrated over the real axis as in Eq. (3.1).
Let us concentrate on the submatrix H' in the T,F sub-
space, which determines the quadratic form

A'II'iA= g (A' A-r)
p= 1,2 —y~(ig, i '

ri)

—g (ir), i'g ) A„'

p
(6.3)

where y and g are the dynamical susceptibilities of the
bosons and fermions with respect to the twist fields T and
F, respectively. The determinant is thus

det
~
II "~ = ( I /t) —y g (6.4)

At momenta smaller than the Fermi momentum, the Fer-
mi and Bose susceptibilities can be estimated as being
close to their long wavelength limit

X~=p(p ) l Fk l'[ I +O(e lk ) ]=0

b
(S —S, )

JS

(6.5)

VII. SUMMARY AND FUTURE DIRECTIONS

Since the fermion density of states increases significantly
for small 5, the determinant of (6.4) becomes negatiue for
any value of t/J. This clearly identifies the unstable
modes as the correlated hole density-spin twist Auctua-
tions.

The matrix elements which connect the I' and T fields
to the other HS fields, such as Q, A, , K, M, and N, are all
of order I' -T-5, because, by symmetry, the cross sus-
ceptibilities vanish in the undistorted I' =0 limit. Thus
they will only effect Eq. (6.4) by corrections of order 6 .

This result is robust against the following changes in
our microscopic model.

(i) Additional hopping terms will not enable (6.4) to be
positive unless they drastically reduce the fermion density
of states, and if t/J is not large. The t (J regime, howev-
er, is not derivable from the large-U Hubbard model.

(ii) Long-range Coulomb forces will stabilize against
macroscopic phase separation by screening the q =0 in-
stability. In the slightly doped antiferromagnet, however,
it is hard to see how this screening could be effective at
wavelengths of the order of the interparticle separation.

effects of the t and J hopping terms change, and more
possible mean-field decompositions need to be considered
for each interaction (see Appendix A).

There are experimental and theoretical implications of
this instability. Recent experiments in high pressure
oxygenated La2CuO~ have observed phase separation into
oxygen-rich and oxygen-poor domains. It is known that
the hole concentration in the copper-oxide planes is pro-
portional to the oxygen concentration. The fact that the
transition occurs at around the Neel temperature sug-
gests that the oxygen phase separation may be driven by
the negative in-plane hole compressibility.

In Sec. VI we have identified the unstable modes as
those associated with coupled spin-hole fluctuations.
This suggests that the nearly pure antiferromagnet is
highly susceptible to local charge perturbations which
couple to the spin distortions and break the translational
invariance of the ground state.

One class of theories of high temperature superconduc-
tivity involves a model which resembles the t-J mod-
el (2.5) but where the effects of the intersublattice hop-
ping & are ignored. The pairing occurs via the intrasub-
blattice hopping which is coupled to the spin Auctuations
through a gauge field. This coupling can be microscopi-
cally derived directly from & in Eq. (2.5). However, the
pairing requires no longer-range order, and massive
Schwinger bosons at zero temperature. Here we found
that the long-range order did not vanish in the mean-field
states, and that the t term was important. However,
since the spiral states are unstable, the possibility of local
spin-polaron type quasiparticles emerges. In a forthcom-
ing publication we shall study the properties of spin pola-
rons, ' and find that they can hop only on one sublattice.
Perhaps, one might speculate, the spin polarons form a
band of weakly interacting quasiparticles for which the
gauge field pairing mechanism is applicable. A more
traditional point of view is that the spin-hole bound states
reincarnate the electronlike Fermi liquid excitations.

We have found that the homogeneous spiral states,
which solve the mean-field theory of the t-J model close
to half filling, are inherently unstable. Since our ap-
proach is limited to small distortions about the Neel
configuration, it cannot determine the thermodynamic
ground state. For larger distortions, the present approxi-
mation scheme becomes more involved; the relative
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APPENDIX A: WHY WK CONSIDER ONLY
ONE DECOUPLING POSSIBILITY

ets in the lower band ei, centered at ko =(+~/2, +~/2),
for the (1,0) and ( l, i) cases, and ko =+(n/2, rr/2) for the
(1,1) case. See Fig. 1. The Fermi energy is given by

(B1)

+ g (9t)V,, ) —J,zS
Ji

&i;j )

(A 1)

where A,. and P; are the antiferromagnetic and fer-
romagnetic bilinear forms, respectively. [See Eq. (2.5) for
their definitions. ] In principle both terms could be
decomposed separately, as was done in Ref. 25. How-
ever, to fully minimize the energy, Ji, which is a free pa-
rameter in the range [O,J], needs to be determined varia-
tionally. Here we carry out this procedure to low order
in 6. First, the two terms of (Al) are decoupled using the
fields Q and F, respectively, yielding a mean-field equa-
tion for the value of F:

(3E = —4z y~F zF/J, , — (A2)

which y is essentially the ferromagnetic susceptibility
(modulo a weak dependence on the symmetry of the F
field), and is of the order of 1/[2z(J —J, )]. It is there-
fore clear that Eq. (A2) cannot be satisfied for small
J, &(J/2 unless F =0. The ground-state energy at 5=0
is given by

2 2zQ + zF
(J —J, ) J,

From the results of the SBMFT (Ref. 9) we know that

(A3)

The decomposition of Eq. (3.3) is not unique; it is pos-
sible to write

(J —J, )

(i;j)

We assume here, and will confirm later, that Fk )0(5).
0

Thus, by (Bl), the Fermi energy is approximately —~Fk ~.
0

Hence, all the fermions spill into the pockets of the lower
bands, thereby simplifying the mean-field equation (4.14)
considerably:

T= —t6Fko (B2)

TF zQ
t Jg

(B3)

The values of A, /c are fixed by requiring cok to vanish
at some pitch wave vector k, . This is a necessary condi-
tion for satisfying the constraint equation (4.11) in the or-
dered phase at S)S, =0.2. The symmetry of the spirals
together with the form of cok shows that solutions of
cok =0 must correspond to k vectors (k„O), (k„k, ),
and +(k„ok, ) (with cr =+1) for the (1,0), (1,1), and ( l, i )

spirals, respectively. Since ~k must be positive
semidefinite co& =0 has a double root. This observation
allows k, and k/c to be found, the latter from the condi-
tion of vanishing discriminant, yielding

The importance of Eq. (B2) is that it establishes that the
driving field for the twist T is of order 6, and therefore
could be made arbitrarily small.

Since the left-hand side of the pitch equation (4.13) is
linear in T, we verify our previous assumption that F ~ 6.

Combining Eqs. (4.9), (4.11)—(4.14), and (B2), we arrive
at a simplified form of the mean-filed energy of the t-J
model (4.5):

Q(F =0)=Z, (J —Ji )S)(J —Ji )S, (A4)

since the quantum correction to Z, is positive. There-
fore from (A3) we find that

E(J, ))E(J,=O) . (A5)

APPENDIX B: THE SOLUTION OF THE
MEAN-FIELD EQUATIONS

The four coupled equations are solved for small value
of the driving fields T and F. First we examine the eAect
of the twist F on the fermion band structure: when Fk is
subtracted from the Neel bands, it creates elliptical pock-

The discussion given above also holds in the presence of
small amount of doping. There a driving field T= —t5
due to the fermions adds to F. Since yF changes only by
order T, Eq. (A2) would still not enable a nonzero solu-
tion for F, and the previous conclusion about J

&
holds.

These arguments, however, do not hold for 5=0(1).
then the fields Q, T, and therefore y~, significantly differ
from the pure case, and competing decompositions, as in
Eq. (Al), should be considered.

cos '[1+8(T/c) )
'~ (1,0), (1,1) spirals,i, =-

cos '[1+4(T/c) ]
' (l, i) spiral,

(1++1+8(T/c) )/V'2 (1,0) spiral,
1,/c= '(/2+16(T/c) (1,1) spiral,

+2+8(T/c) ( l, i) spiral .

(B5)

Each of the sums in Eqs. (4.11)—(4.13) is computed (in
terms of dimensionless scaled variables) as a function of
T/c. Each sum has a Bose-condensed piece correspond-
ing to the the k-vector k, . The equations are solved
sequentially. Equation (4.11) determines the Bose-
condensed fraction. The Bose-condensed parts of Eqs.
(4.12) and (4.13) are then completely determined by the
form of the numerator in the integrand. Equation (4.12)
then gives the spin wave velocity (equivalently Q) direct-
ly. Substituting this Q into Eq. (4.13) then determines F.
Finally Eq. (4.14) or (B2) gives T/c in terms of 5, so that
the solution is obtained as a function of 6. The free ener-
gies are then computed through Eq. (B3). We have car-
ried out this procedure to order (T/c) (in F. ) for the
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(1,0) and (1,1) spirals. The ( l, i) spiral has a cusp singu-
larity at T=O which we did not attempt to fit to any
specified order. Rather, we solved the mean-field equa-
tions numerically for a range of small 5: 0 05.(J/t)(5 & 0.25(Jjt).

The full expression for the mean-field energy is

E "=—4JZ, S +Z)4JS 5+ —,'~6

mo

-0.05 '

Z, = 1+0.078 974/S,
8Z

Zi =Zc 1+—

(86) 0.0 0.2 0.3 0.4

Z, is the spin wave velocity renormalization.
For the (1,0) and (1,1) spirals, our numerical procedure

provides an analytic expression for the compressibility
tr(S, J, t) as follows:

tc(S) = —2JS — A (S)+—Z'+J S (87)

Here

A (S)=.

4 0.36+1.6(2S+1—1.39)
0.39+0.71(2S + 1 —1.39)

16 0.57+0.01(2S+ 1 —1.39)
0 39+0.71(2S+1—1.39)

(88)

For S=—,', we find that 4Z, =5.36, and 4Z, =14.36,
while

+25.76 (1,0) spiral,
Ic, &2= . +44. 16 (1, 1) spiral

+0.99 ( 1, i) spiral,
(89)

Thus the (1,1) spiral wins.
The curvature of E " stays negative for all values of

t/J and S. Although the (1,1) spiral has lower energy
(due to the larger negative curvature) for small S, the

FIG. 4. The change in ground state staggered magnetization
as a function of the pitch k, for three symmetries of the spiral
states. We see that the long-range order increases for the (1,0)
and (1,1) twist, due to a reduction in the zero point quantum
Auctuations.

mo(k, )=(2S+ I —5 —0. 195)— tan k, , (810)

where a is a numerical quantity proportional to the cur-
vature of the integral (as a function of Tjc) computed for
the left-hand side of Eq. (4.11), and equal to —1.0 for the
(1,0) spiral and —2.0 for the (1,1) spiral. As Eq. (810)
makes clear, the dependence on S is trivial, for any of the
spirals. Therefore we have plotted the difference
b, mo=mo(k, ) —mo(0), which is independent of S. For
the (l, i) spiral, mo is again computed graphically for
small values of T/c.

When 6=0 then k, =0 and (810) reproduces the
known SBMFT result. Imposing a (1,0) or (1,1) spiral in-
creases mo. For the double spiral, which cannot be real-
ized classically, the opposite result obtains as mo is re-
duced by the enhanced quantum Auctuations.

(1,0) spiral is selected for S &0.81.
In Fig. 4 we show the staggered magnetization mo (one

half of the Bose-condensed fraction) as a function of k,
for the three candidate spirals. For the (1,0) and (1,1)
spirals, these are plots of the function
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