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Electromagnetic response of a thin type-II superconducting cylindrical shell

Antonio Perez-Gonzalez'
Departamento de Fssica del Instituto de Ciencias, Uniuersidad Autonoma de Puebla,

Apartado Postal J-48, Puebla, Puebla 72570, Mexico

John R. Clem
Ames Laboratory and Department ofPhysics, Iowa State University, Ames, Iowa 50011

(Received 20 July 1990)

The general critical-state model, which includes the eft'ects of both Aux-line cutting and Aux pin-

ning, is used for calculating the response of a type-II superconducting cylindrical shell subjected to
applied magnetic fields that change in both magnitude and orientation. Analytic expressions for the

ac losses are obtained for the case that the applied field has a small-amplitude oscillating com-

ponent. For the regime of partial penetration of the changing B field, the ac-loss expression

reduces, for large cylinder radius, to that in slab geometry. When full penetration occurs, the ac-

loss expressions depend upon the cylinder outer radius.

I. INTRODUCTION

In a recent series of papers, ' we have stated that, in
order to understand the surprising experimental results
observed in type-II superconductors subjected to
parallel magnetic fields that change in both magnitude
and direction, Aux-line-cutting effects must be included in
the theory of static and dynamic magnetic behavior of
these materials. The resulting macroscopic theory takes
the form of a general critical-state model, ' which in-
cludes not only the effects of Aux pinning, ' but also
the effects of Aux-line cutting. ' In this paper, we cal-
culate, using the general critical-state theory, the
response of a thin type-II superconducting cylindrical
shell when it is subjected to external time-varying mag-
netic fields.

In Sec. II we develop the general critical-state theory
in cylindrical geometry. In Sec. III we specialize the
model for the case of a very thin cylindrical shell and
show how the basic equations of Sec. II reduce, under
proper conditions, to those of slab geometry. We solve
these equations and calculate the behavior of the magnet-
ic and electric fields inside the superconducting shell.
Section IV focuses on ac losses in the case of an oscillat-
ing externally applied magnetic field. Two cases are con-
sidered depending upon the degree of penetration in the
shell of the changing 8 field. We find for the case of par-
tial penetration i.e., that for which the 8 field in the hole
remains unchanged, that the ac losses are the same as
those in slab geometry. When complete penetration is
achieved, however, the 8 field in the hole changes when
the external field changes. This is reflected in an ac-loss
expression that depends, to leading order, on the shell's
outer radius; this expression does not reduce to that in
slab geometry.

II. THE GENERAL CRITICAL-STATE MODEL
IN CYLINDRICAL GEOMETRY

Consider a high-K irreversible type-II superconducting
infinite cylinder of radius R. Applied to it is a longitudi-

where

B(r, t)= ~B(r, t)~;

a(r, t) is a unit vector locally parallel to B (see Fig. l),

a(r, t) =P(r)sina(r, t)+z cosa(r, t), (l)

and a(r, t) is the angle between the z axis and the B field.
Writing the current density J and the electric field E in

terms of their components parallel and perpendicular to
the local B, i.e., J=J~~a+ Jig and E=Eia+ Eip, where

p(r, t) =a(r, t) X r

=P(r)cosa(r, t) —z sina(r, t),
we obtain, from Ampere's and Faraday's laws,

T

Ba sina cosa
J(i

—po B + (3)

BB sin o;
Po (4)

and

B Bcx +E Bcx E sinQ

ar at ' Or & r
BE BB Ba cosa
ar at ~~ ar & r

where E& —EI~sina+E~coso. .
The combination of Eqs. (3) and (6) yields

nal magnetic field H, (t) and an azimuthal magnetic field

H4, =I, /2m. R, where I, is a current in the z direction
along the cylinder axis. We assume that, to good approx-
imation, B=poH inside the sample, and we neglect any
surface barriers against vortex entry or exit. We further
assume that the magnetic induction 8 inside the cylinder
depends only upon the coordinate r and time t, i.e.,

B(r, t)=B(r, t )a(r, t),
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critical-current density at the threshold for the onset of
flux-line cutting in the vortex array

(12)

FIG. 1. Sketch of the cylindrical geometry used throughout
the paper. a is the direction of the B field and P=a Xr is per-
pendicular to B, both a and P lie on the P-z plane.

We assume, in analogy to the usual critical-state mod-
el, ' that the electric field behaves as

pi[Ji J,i—(B)), Ji & J,i,

and

BB +V j~=-
Bt

poJ((El Eislll a
B r

(7)
(14)

where jz =rj~, =rBv„=rE~is the B-current density and
v„is the radial component of the velocity of the vortices.
Equation (7) can be thought of as an equation of continui-

ty for B. In slab geometry, where r —+ ~, this equation
reduces to

where p~ and pll are the effective flux-flow and flux-cutting
resistivities of the material. Because we assume here that

pi i '"d
I ll«piJ ii

the distributions of 8
computed throughout this paper are independent of p~
and pll'

which states that a region of space in which flux-line cut-
ting occurs (JlEl )0) serves as a sink for B; in other
words, flux-line cutting consumes B.

In cylindrical geometry there is an additional term
present. Here B is not conserved even when Ell=0, as
can be seen in ordinary flux flow in a wire. In steady
state, when VXE=O, E&=0 and E, =Eo=const in-

dependent of time. In this case we know that
B=B&(r)$(r), such that a=/, P= —z, a=rr/2, and the
E field is perpendicular to the local B field, i.e., Ell =0,
Ei = Eo. From E—q. (7) we obtain

V j~=

III. A VERY THIN CYLINDRICAL SHELL

In this section we consider the case of a very thin non-
current-carrying type-II superconducting cylindrical
shell (see Fig. 2) subjected to a constant azimuthal mag-
netic field at its inner and outer surfaces and a linearly in-
creasing or decreasing applied longitudinal field at its
outer surface. The azimuthal fields are H&(R; )
=I /2rrR, and H&(R, .) =I /2irR„and the outer longi-
tudinal field is H, (R, )=H„where R,. and R, are the
inner and outer radii, respectively, and I is the current
in the z direction along a wire on the cylindrical axis.

We define W=R, —R, and R =(R, +R, )/2, and as-

(3B Ej.

Bt r
+V j~= (10)

which states again that B is not conserved.
The general critical-state model states that, for slow

variations of the magnetic field such that eddy currents
are negligible, metastable distributions of B are such that
the magnitude of J~ is always smaller than the transverse
critical-current density at the threshold for depinning in
the vortex array

which states that B is being destroyed as a consequence of
flux flow. This occurs as vortices shrink in length as they
come closer to the axis of the wire.

In nonsteady flux flow, in the absence of a longitudinal
field, we still have B=B&(r)p(r) and E&=0 with El =0
and Ei =E,(r, t), and from Eq. (7) we get

W

I 1 I

lT~ -,I

+R~(
)

~j

I

I l I

I

I l~

Hz (R;)

H~ (R~)

Hz (Ro)

H~ (Ro)

Similarly, metastable distributions of o. are such that the
magnitude of Jll is always smaller than the longitudinal

FICx. 2. Sketch of the cylindrical shell considered in Sec. III.
The shell thickness 8'is greatly exaggerated.
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and (15)

poJ, i/8 (r) ))I/R .

sume 8'«R. This case corresponds to that of slab
geometry if, in addition to the above assumption, we can
neglect the line-tension terms, those proportional to
1/r —=1/R, in the basic equations. The second terms on
the right-hand sides of Eqs. (3) and (4) become negligibly
small by comparison with the first terms when

k,
~~

=poJ,
~~

/8 ( r ) ))1/R

and

[82(t) +8 2 (R ) ]'~z
8;(t)=B,(t) — poJ, i W8, t

VÃiW
a(R, , t)=a(R, , t)+ tan[a(R„t)] .8 R,

From Faraday's law,
R

2rrR, E&(R„t)=— mR —8, 2vrR—f dr B,(r, t)
t

(22)

(23)

For simplicity we take k,
~~

and J,~ to be constants in-
dependent of r.

Great care must be taken in considering the boundary
conditions in order to avoid inconsistencies like those in
Ref. 25. As mentioned in Ref. 26, the results obtained
from solving the general critical-state model in slab
geometry also apply to a thin-walled cylindrical shell,
provided it has a slit along its length, such that the longi-
tudinal fields at both surfaces are the same. We are not
considering this case.

For the closed infinite cylindrical shell, the boundary
conditions are

because the integral term is of order 2~R 8 B, , and
mR ))2vrRW, E&(r, t) is dominated by the fiux-in-the-
hole term and we obtain, for R, ~r (R„

E~(r, t)= 'RB; . ——

Assuming that, in the outer region of the superconduct-
ing shell, E~~ =0, the azimuthal component of the E field
is given by

E&(r, t)=Ei(v, t)cosa(r, t) .

Since a(r, t) —=a(R, t), the radial component of the veloci-
ty of the vortices is

and

B~(R;)=poI /2~R;, B~(R, )=pg /2irR, , (16)

8,(R„t)=B,(t)=B,t .

Ei 1 RB;
8 2 8(r, t)cosa(R„t)

but 8 (r, t) =B(R„t ), —

(25)

8~(R)=poI /2~R (18)

is applied in the azimuthal direction on both surfaces.
The magnetic-field magnitude and angle on the outer

and inner surfaces are given by

8 (R„t) = [B.'(t)+8~&(R)]'~',

a(R„t ) =arctan[B&(R )/B, (t) ],
(19a)

(19b)

8(R, , t ) = [8,'(t)+8', (R)]'",
a(R;, t ) =arctan[B&(R ) /8, (t)], (20b)

respectively, where 8;(t)=8,(R, , t) is the longitudinal
component of 8 (R;, t ).

Consider E~ & 0 over the wall thickness, i.e., the case in
which the entire shell is above threshold for depinning,
Ji = —J,i and dB /dr =poJ, i, such that

8 (R; ) =8 (R, )
—poJ, i W,

this determines 8, (t) and a(R, , t). Kee. ping terms to first
order in poJ, i W/8, we obtain

The condition on 8,(R, ) must be calculated from
Faraday's law using the general critical-state model tak-
ing into consideration that changes in the longitudinal
magnetic field on the inner surface occur through leaking
from the outer surface.

We will assume that 8'«R such that we do not need
to make a distinction between B&(R, ) and B&(R, ), we
thus assume that a field

8 (R„t)cosa(R„t) =8,
and to lowest order, B;=B„then v, = —RB, /2B„and
the time required for a given vortex to move from the
outer surface to the inner one is

ht = 8 /v, =2B, 8'/RB, .

By the time the vortex has migrated from R, to R, , the
angle at the outer surface a(R„t)has changed by an
amount

ba, =a(R„t)At = —
( W/R )sin2a(R„t),

such that the gradient of o. is of order

b,a, sin2a(R„t )

dr 8 R
(27)

W, J,i B~(R)
J,

ii
B,

tana(R„t )

tany,
(28)

This is a negligibly small term by comparison with
k,

~~

=poJ, (/8, i.e., on the scale of k,
~~

the gradient of a is
zero. Thus, the a(r, t) versus r profiles are essentially flat,
except for the complication that we cannot have
a(R;, t)=a(R„t)because of Eq. (23). That is, vortices
arriving to the inner surface would have the wrong angle
to match with a(R;, t). Thus, close to the inner surface
there must be a cutting and transport (CT) region over
which a(r, t) changes from the value given by Eq. (23) to
a(R„t) [see Fig. 3(a) [. In the CT region we have
da/dr = k

i~ ii
J

~i

and Ell &0. The boundary R,
between the CT zone and the transport (T) zone is defined
by
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(a)

e(R,t)-
Et(r, t)

~ope= &0 "cl
W

-e(R„t)
tan . They, . case discussed above corresponds t h
gime

n s ot ere-

tana(R„t ) & tany, ,

tire shell is
which is Aux-pinning dominated in the sense that th

e is above threshold for depinning. When
e a e en-

(b)

Ri

Ri
o'

slope = —k c II

u(r, t)
I

I

Rc

Rc

CT
I

Ro

Ro

(R,,t)
tana(R„t ) = tany, ,

tana(R„t ) ) tany, .

In this regime, the behavior must be dominated b Aux-
line cuttin a

~ ~

a e y ux-

B(R
g, nd the critical-angle gradient d te ermines

ic ness, i.e., theonsider E~~ &0 over the wall thickn
case in which the entire shell is above threshold for ux-
line cuttin J =—g,

~~

=—,
~~,

and de/dr = k
res o or Aux-

a(R;)=a(R, )+k, ~~W . (34)

W =8' andd the critical-angle gradient fills up the shell

wall.
thickness, producing a single CT zone over the entire

We next consider the case for which B &B (R)Ja y circ~(
or

FIG. 3. (a) B and (b) E) behavior inside the cylindrical shell
for the Aux-pinning dominated regime. There must exist a CT
zone close to the inn
condition

e o e inner surface in order to satisf th b dy e oun ary
tions on that surface as discussed in Sec. III.

Keeping terms to first order in k 8' b, weo tain

B (R; ) =B(R,)[1—k,
~~

W cota(R, )] .

Note that since tany, /tana(R, ) & l,

(35)

where 8' =R, —R, ,

Note that 8' & 8' when

(29)

and

t aan(R„t ) =B~(R)/B, ,

and tany, =J,
~~

/J, z.
B.~ B~(R )J„/J

Neglectmg the line tension terms in Eqs. (5) and (6),
and because ~Bda/dt

~
&&RB ka c~~~

and I dB/dtl
«RB,k, ~~,

we obtain, for R, ~ r ~ R,C7

dEi( = —k E
dr

B(R.„t)—

a.(R, , t)—

R;

(b) R,.
Jl

C III
slope= -k

R„

-e(R„t)

-a.(R„t)
R,

R,

dE~

yr ~II II

from which we get Isee Fig. 3(b)]

sink (r —R )cosa(R„t)

(30)

(3l)

E~(r, t) = cosk r —R
costE(R, t)

(32)

where E& is given by Eq. (24). E,(t) is independent of r in
oth the CT and T regions and is given by

E,(t) = —E&tana(R„t) . (33)

Depending upon the relation between J and J
tana(R t ) can bbe larger than, equal to, or smaller than

FIG. 4. (a) B and b E behavior inside the cylindrical shell
for the Aux-line-cutting dominated Flregime. ux-line cutting is
occurring throughout the entire sh 11 h

'
e s e; owever, there are tvvo T

zones for satisf in they' g boundary conditions as discussed in Sec.
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8' tany,1—
W 2 tana(R, )

(36)

where W', =R„—R;. Note that when a(R, ) =y„W„=0,
and that when a(R, ) =sr/2, W„=W/2.

In this regime we still have

Et,(R;,t)= —
—,'RB, = —,'RB, . —

In the wall dafdr= k
ll JII J,ll, thus, Ell

However, for r )R„wehave dB/dr )0 and Jz = J
such that E~ &0. For r &R„wehave dB/dr &0 and
Jz =+J,~, such that E~ )0. This implies that E~ =0 at
r =R„.Solving Eqs. (29) and (30) with the above-stated
boundary conditions, we obtain [see Fig. 4(b)]

B (R, ) —B (R; ) =B(R.)k, l
W co«(R, ) &pp, t W .

This suggests that the CT zone spanning the wall is divid-
ed into a CT+ (cutting and transport to the right) zone
and a CT (cutting and transport to the left) zone [see
Fig. 4(a)]. The boundary R, between zones is defined by

E&(R;, t ) = —( I E~~ l
sina —Etcosa )

= ——'RB; =———'RB, , (41)

IV. ac LOSSES

Consider the case in which the applied magnetic field is
made up of two bias components B,z and B&P, and an ac
component b, (t)z of amplitude b, ((B„suchthat the
axial field is

B,(t) =ztB, +b, (t)],

as required. Thus, although E~ tends to transport the z-
directed Aux out of the hole, E~~ opposes and overcomes
this eFect. Flux-line-cutting processes tend to transport
the z-directed Aux into the hole. So long as
~El ~sina) Etcosa, we have B; )0.

Certainly, without Aux-line cutting there would be no
way for B(R;,t) at the inner surface to increase when the
B profile is like that of Fig. 4(a), because that form of the
B profile implies a current density producing an outward
Lorentz force on any vortices in the region R,. & r &R„.

E„(r,t) = . cosk,
ii

r R—, )
sina R„,t

Et(r, t)= . sink, ~~(r
—R, ) .

sina R„,t

(37)

(3&)

and the net externally applied magnetic field is
8, =B,(t)+B&P as sketched in Fig. 5. Assume that this
field has been cycling for a long time and then the e
profiles have the shape shown in Fig. 6.

E,(t) is again independent of r in both the CT+ and CT
zones and is given by

E,(t)=E&cota(R„t).

Since we have assumed k,
~~

8'&& 1,

a(R, ) =a(R, )+k, l( W —W, ) =a(R, ),
we have, to good approximation,

(39)

bo

B,
E,(t) = —

—,'RB,cota(R, ) = —,'RB, — (40)
I

I

l

bo

In both cases, tana(R, ) (tany, and tana(R, ) ) tany„

E = —
—,'RB; = —

—,'RB,
2

remains the same; however, E, changes sign at y, . Thus,
at y, the direction of E changes sharply by approximate-
ly 90' in a fashion similar to that discussed in Ref. 26.

Note that, for the tana(R, ) ) tany, regime, B,)0 and
B, )0, i.e., the magnitude of the magnetic field inside the
hole is increasing even when there is a transport-outward
zone (i.e., fiux transport in the positive-r direction) near
the inner surface of the cylindrical shell.

The electric-field components at the inner surface obey
Et(R, , t) )0 and E~~(R, , t ) &0. The condition Et )0 indi-
cates that magnetic fiux directed along a(R, , t) is being
transported from the inner surface in an outward
(positive-r) direction. Similarly, El (0 indicates that
magnetic fiux directed along —P(R, , t ) is being transport-
ed inward to the inner surface. The P component of E is

FIG. 5. Sketch of the fields applied parallel to the outer sur-
face. Two dc-bias fields 8& and Bo are applied in the P and z
directions, respectively. In addition, an ac field b, of amplitude
bp &&Bp is applied parallel to the z direction. To lowest order
in bp, the magnitude B,=B,p+b, cosy of the net applied field
oscillates between B,=B,p+bpcosy, and the angle a,
=y —(b, /B, p)siny between the net applied field and the z direc-
tion oscillates between a, =y+(bp/B p)siny. B,p and y are the
magnitude and direction, respectively, of the external B field
when no external ac component is applied.
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(, ), ( )

Bso

R( lp

min

Bso + bo cos )

Bso+ ba cos Y

Bso+ bo cosy

Bso —bo cos Y

Ro r

We can write

r E(R„t)XB,(t)=rXE(R„t)B,(t)

E—,(R„t)B&(R„t)

+E&(R„t}B,(R„t),
and from Faraday's law we obtain

R

E,(R„t) =E,o+ I B&dr
Bt 0

(45)

(46)

a. ( r )
)'+ibo/ Bso}sin V

—1 y—(bo/Bso }siny

l' (bo/Bso)siny

Y (bo/B so)sin V

Ro r

FIG. 6. Sketch of (a) extremal field magnitude profiles B,
„

and B;„andthe B,-increasing and B,-decreasing profiles B~
and Bt vs r, as calculated from ~rlB/dr~ =pg„for partial
penetration of the changing B profile; (b) extremal field-angle
profiles a,„and u;„and the a, -increasing and a, -decreasing
profiles at and at, vs r, calculated from

~
Ba/Br

~

=k,
ii

for partial
penetration of the changing a profile.

E&(R„t)=— f r dr .
0 at

(47)

B,„(r)=B,o+ bocosy poJ, t(R, —r), —

8;„(r)=B,o —bocosy+ poJ, t(R, r), —

a (")=y (bo/8 o)siny —k, ii(R, r), —

(48a)

(48b)

(49a)

Since B& is independent of time, E, is independent of r,
consequently, the time integral of F,B& over one entire
cycle is zero.

Two regimes must be considered: (a) the changing 8
and e profiles do not penetrate though the entire shell
thickness, in such a case the 8 field in the hole does not
change, and (b) the changing 8 and a profiles do
penetrate all the way through the shell and the 8 field in
the hole changes producing a large P component of the
electric field.

Figure 6 shows the B and a profiles for the first regime,
they are linear to lowest order in b„their extrema are

8, =B,O+b, cosy (42)

The magnitude and direction of the net external 8 field
are

a;„(r)=y+ (bo /B, o)siny+ k, ii(R, r), — (49b)

r =R, (bo/poJ, t—)cosy

and the depths within which B and n change during one
cycle are

a, = y —(b, /B, o)siny, (43) and

W,'= —p, 'ddt r E(R„t)XB,(t) . (44)

respectively, where B,o =(8o +8
&

)
' and

y=arctan(8~/Bo) are the magnitude and direction of
the external 8 field when no ac component is applied.

The ac loss per unit area of the shell per cycle 8' can
be calculated integrating the Poynting vector over one
cycle

r, =R, —(bo/poJ
II

respectively. Depending upon the values of J,~, J,~~,
and

y, r can be larger than, equal to, or smaller than r„'Fig.
6 shows the case in which r ) r, .

During the b, -decreasing half-cycle, which corre-
sponds to increasing a, the P component of the electric
field at the outer surface is given by

E~t(R, )=—
R,

pl R
r dr [ 8,„(r)csoa(rt, t)] + r dr [B&(r,t)cosat(r, t)]

dt r

2rc)

R.
sin y+

2r
&R

R,
cos2y b,

b ~ 3 3
a

(b b )
sill y cos y

0 a
280 Jc~~ Jci

(bo b,)—
4ittoR,

sin y cos y
2

+
2
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where we have used

b0 —b,
r, t =R, — siny

cll

(53)

b0 —b,
1"p1 =R cosy

2P c1

Similarly,

E~t(R, )=—b ~ 3 3a
(b +b )

s111 y + cos y
0 a

cII cJ

(b o+b, )

4poR,

2pp

sin y cos y
2

+
2J,

II
J~

(55)

In this expression, which is valid to order b0, we have
neglected higher-order terms which are smaller than the
terms retained by factors of b0/p0R, JcII or b0/p0R, J,J.

Equation (56) was derived in Ref. 4 and gives the loss
per unit area per cycle for a semi-infinite superconductor,
or the loss per unit area per cycle at each surface of a su-
perconducting slab whose thickness is more than twice
the largest of the depths within which B and a change
during one cycle. The result is also valid for r & r, .

For calculating the loss expression corresponding to
the regime in which the changing profiles sweeps across
the entire shell thickness, we define the quantities

and

b, =poJ,
ll

W/siny (57)

b~ =poJ, 1W/cosy . (5&)

Their sizes, relative to b0, determine the degree of
penetration of the changing profiles. b, is the value of b0
when R, —r, = 8' and b is the value of b0 when

R, —r =8'.
Again, b, can be larger than, equal to, or smaller than

b, depending upon J,II, J,~, and y. The ac loss per cycle
per unit area of the outer surface when b &b, and
b0 ) bp is, to leading order,

2R, WJ,1(bo b~)—
(59)

cosy

This regime corresponds to tany & tany, and the behav-
ior is flux-transport dominated [see Fig. 3(a)] in the sense
that during the lossiest part of the cycle

B (R, )=B(R, )+POJ,1W .. (60)

The regime in which tany) tany, is fIux-line-cutting
dominated Isee Fig. 4(a)], in the sense that, during the

The resulting loss per unit area of the outer surface is,
from Eq. (44),

0 sin y cos y2b

lossiest part of the cycle,

a(R; ) =a(R, )+p()J,
ll
W . (61)

In this regime the ac loss per cycle per unit area of the
outer surface of the cylinder when b0) b, is, to leading
order,

2R. WJ, „l(b, b,—)8"=
siny

(62)

In the ac-loss expressions (59) and (62) we have neglect-
ed terms smaller by a factor 8'/R, « 1 than those
shown. Thus, although the retained terms dominate for
sufficient1y large values of (bo bz ) o—r (bo b, )—, they be-
come comparable with the neglected terms when
(bo —bz) ~bz(W/R, ) or (bo b, ) ~—b, (W/R, ). The
complete expressions for the ac losses, which are too
complicated to present here, reduce to Eq. (56) in the lim-
it b0~bp ol b0~b, .

Equations (59) and (62) are proportional to R„'thus,
they do not reduce to those of slab geometry when
R, ))O'. The reason for this be'havior is that, while a
finite slab is subjected to the same changing B field on
both sides, the cylindrical shell is not. For the finite
slab, B is symmetric with respect to the slab midpoint
x and E(x,t)=0. For the cylindrical shell, B is not
symmetlic with respect to the shell half-thickness, nor is
E=O there; as shown in Eqs. (40) and (41), for example,
E, is a constant independent of r and E& increases in
magnitude as the radius of the shell increases.

V. SUMMARY AND DISCUSSlON

A brief discussion of the general critical-state model
was presented in Sec. II. In Sec. III we showed how a
very thin cylindrical shell must be treated when the exter-
nal B field is changing direction and magnitude. We
wrote down the assumptions one must make in order to
treat the cylindrical shell as a slab. In the case the B and
a profiles are changing over the entire shell (full penetra-
tion), two regimes arise: flux-pinning dominated and
Aux-line-cutting dominated. We calculated the elec-
tromagnetic response under both regimes. An apparent
paradox shows up in the latter regime when E~-
transported magnetic Aux travels outward from the hole,
while the magnitude of the B field inside the hole is in-
creasing. It was demonstrated that EII-transported mag-
netic Aux overcomes this and that the net trend is the
mentioned increasing in B inside the hole. Without the
flux-line-cutting contribution there is no way of solving
this paradox.

In Sec. IV we calculated the losses when the axial
external B field had an ac component. Even when the cy-
lindrical shell can be taken as a slab when its radius is
large compared to its thickness, great care must be taken
when establishing the boundary conditions. Two cases
must be considered: partial penetration of the changing
B and o, profiles, and full penetration of them. For par-
tial penetration in the cylindrical shell, the B and E fields
behave similarly to the way they do in slab geometry.
However, when full penetration occurs, the behavior of
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those fields within the shell differs dramatically from
their behavior in the slab, it is in this regime of full
penetration when E& = —

—,'RB, for the cylindrical shell.
For the slab, one considers that the magnetic field is

exactly the same on both surfaces. The electric and mag-
netic fields inside the slab are then symmetric with
respect to the midplane and, in particular, E=O at that
point. In the cylindrical shell the magnetic-field com-
ponents at the inner surface are generally different from
those on the outer surface. In this paper we considered
the case for which a thin cylindrical shell carries no net
longitudinal current, which, by Ampere's law, means that
the azimuthal components of the magnetic fields are
nearly the same at the inner and outer surfaces. On the
other hand, while the axial field component at the outer
surface is determined by the longitudinal applied field,
the axial field component at the inner surface depends
upon the magnitude and sign of the azimuthal induced
supercurrents. When an increasing longitudinal field is
applied, the axial magnetic field inside the shell may be

smaller than that outside, but can increase whenever lon-
gitudinal Aux leaks in through the wall. (Similarly, when
the applied longitudinal field decreases, the axial magnet-
ic field inside the shell may be larger than that outside,
but can decrease whenever longitudinal Aux leaks out. )

The line integral of the electric field around the cir-
cumference is proportional to the time rate of change of
the longitudinal Aux through the hole, and as a conse-
quence the losses contain a term proportional to the ra-
dius R, . These loss expressions cannot, in any way,
reduce to the loss expressions in slab geometry.
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