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A detailed dc theory of superconducting multijunction interferometers has previously been
developed by several authors for the case of parallel junction arrays. The theory is now extended to
cover the case of a loop containing several junctions connected in series. The problem is closely as-
sociated with high-T, superconductors and their clusters of intrinsic Josephson junctions. These
materials exhibit spontaneous interferometric effects, and there is no reason to assume that the in-

trinsic junctions form only parallel arrays. A simple formalism of phase states is developed in order
to express the superconducting phase differences across the junctions forming a series array as func-
tions of the phase difference across the weakest junction of the system, and to relate the differences
in critical currents of the junctions to gaps in the allowed ranges of their phase functions. This for-
malism is used to investigate the energy states of the array, which in the case of different junctions
are split and separated by energy barriers of height depending on the phase gaps. Modifications of
the washboard model of a single junction are shown. Next a superconducting inductive loop con-
taining a series array of two junctions is considered, and this model is used to demonstrate the tran-
sitions between phase states and the associated instabilities. Finally, the critical current of a parallel
connection of two series arrays is analyzed and shown to be a multivalued function of the externally
applied magnetic flux. The instabilities caused by the presence of intrinsic serial junctions in granu-
lar high-T, materials are pointed out as a potential source of additional noise.

I. INTRODUCTION

The existence of intrinsic Josephson junctions in granu-
lar high-T, superconductors is a well-established fact.
The evidence includes a variety of interferometric effects
in externally applied magnetic field, e.g. , operation of rf
SQUID's made from single-connected bulk samples' or
magnetically tuned microwave noise emission from thin
films. These effects clearly indicate that at least some of
the intrinsic junctions are connected into closed loops
and, in the case of dc current bias applied to the sample,
such loops may be distributed along the percolation path.

If one tries to imagine the arrangement of junctions in
a loop, it appears to be rather obvious that some of them
may be series connected and others parallel connected.
In fact, in some of the experiments, multiple periods in
the applied field were detected, indicating multiple paral-
lel loops of differing areas. Other studies, including the
majority of high-T, SQUID measurements, indicated a
single-fIux-quantum period, but were troubled by extrane-
ous modulations, and that picture is consistent with a
series configuration.

The dc behavior of parallel arrays of junctions is well
understood. A detailed theory for this case was
developed in the past and confirmed by ample experirnen-
tal evidence. Single-connected series arrays have also re-
ceived some attention but only from the point of view of
their ac properties and in applications like parametric
amplifiers or voltage standards. It was in this context,
however, that the possible appearance of series arrays in
high- T, superconductors was discussed. Surprisingly
enough, no work was done on the dc properties of super-

conducting loops containing what might be called series-
parallel junction arrays, created by the replacement of
single junctions in a parallel array by series arrays of such
junctions.

In Sec. II the elementary but instructive case of a
single-connected series array composed of only two junc-
tions is considered. Stationary properties of this array
are examined in terms of phase relations between com-
ponent junctions, with particular attention paid to the
energy-phase relations. The formalism developed for this
case is, in Sec. III, applied to a loop containing two series
inductances and two series arrays of junctions and is used
to examine the critical current of the loop. The analyti-
cal results are discussed next in conjunction with some
numerical examples. Conclusions are presented in Sec.
IV.

II. SERIES ARRAYS OF JUNCTIONS

A. Phase relations

We consider first a series array of (ideal) Josephson
junctions in its elementary form of two junctions supplied
in series from a common dc current source J. Generali-
zation to the case of an array of X series junctions is
straightforward, as will be seen in Sec. III.

Let I&,yj be the critical current and superconducting
phase difference, respectively, of the first junction and let
I2, @2 be the same quantities for the second junction.
Then the stationary properties of the system under con-
sideration are described adequately by the set of Joseph-
son equations:
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J =I
&
since&,

J=Izsin+2 (2')

where J, y&, yz are considered to be independent vari-
ables and I], Iz, are parameters.

Equations (1) and (2') are subject to the obvious res-
traint that the absolute value of J must not exceed any of
the critical currents I„lz. Assuming I, ~ Iz, we choose
to express this restraint by replacing Eq. (2') with

sincpz=a sing„a =I, /Iz 1, (2")

which means that yz is no longer an independent variable
but a function of y, . For this reason we will sometimes
refer to y& as the driving phase, and to yz as the driven
phase.

The functional dependence of the driven phase on y,
can be explicitly written as

yz(y, ) =arcsin(a sing) ) . (2tit)

A() = [ ir/2, vr/—2],
we arrive at the final version of Eq. (2');

V i(V ))=mz '=( —1) V 2"+m~ (2)

where m is an integer.
Some reAection will show that the range %0 of qr2'

' can
be narrowed down to

% =[ (~/2 %),—~/2 )—P], —

where

'P =arccosa, 4 H [0,m /2 ] .

More generally, the range A of q&z
' is

=[(2m —1)ir/2+%, (2m +1)rr/2 —)P] .

(2a)

(2b)

It is seen that each range % is centered around mm. , has
a length of m. —2%, and is separated from its neighbors by
gaps (range of forbidden yz values) of length 2%, centered
around odd multiples of ~/2. For a =0, i.e., infinite crit-
ical current I2, the range % shrinks to a single point
mm. Conversely, for a =1, i.e., I2=I, , the range %
shares its limits with its neighbors and the gaps become
void.

Observe that, from Eq. (2), we have

(m)+2 (m +2)
0'2

and

(m)+ (m+1)

The above two relations provide convenient means for
changing the representation of yz. Only one even repre-

However, arcsin is not a unique function of its argument
and that might be shown explicitly as well. Designating
qr'z

' by the principal branch of arcsin in Eq. (2"'),

p2' '=arcsin(a sing, ),

where

sentation, say yz ', and one odd, say yz" = —
yz '+ m, can

be used in order to obtain any other by 2m translations.
Obviously, the phase cannot be determined other than
mod2~.

To recapitulate brieAy the foregoing considerations, we
conclude that the state of the system is determined not
only by the variables J,y, but also by the phase "quan-
tum" number m which specifies how y, is being mapped
into yz. Further on, we will use the term "state m" as an
abbreviation for "the phase yz is given by cpz

"or "the
phase y2 is in the range A ." Observe that Eq. (1), with
its implied constraint J I„can also be transcribed in a
similar manner as Eq. (2') and a "quantum" number n for
the driving phase y, can also be introduced. Shortly, we
will apply such a transformation in another context, but
there is no need to use it consistently because y, has no
gaps in its range of allowed values.

We must ask now for the physical significance of the m
states. The terminology, adopted here for lack of a better
one, can lead to misunderstandings, which should be
cleared up. Equation (2) specifies under what conditions
the system can support the current J and be
superconducting —and has no other meaning. The two
junctions of the system are completely independent and
only happen to be supplied by the same current. There-
fore, the existence of the "forbidden" gap separating the
m states does not mean that there is some restoring force
keeping cpz out of this region or that the second junction
is physically compelled to occupy only one of the m
states.

However, it is not difficult to point out situations in
which some coupling between real, two-dimensional junc-
tions would be established. It suffices to place the system
composed of such junctions in nonuniform magnetic field
to establish a constraint on the phase difference cp,

—yz.
Integrain junctions in high-T, materials can interact via
the self-field of the feed current J, which can point in op-
posite directions on opposite grain sides. Another in-
stance occurs when the system is included in a supercon-
ducting loop and the energy stored in the loop can pro-
vide the restoring torque. These remarks justify, to a cer-
tain extent, our usage of terms to which a purist may ob-
ject.

Assuming, therefore, that in some circumstances
different m states are accessible to the system it is legiti-
mate to ask if transitions between these states can occur.

A proper answer to this question is beyond the scope of
the present paper. It would require an investigation of
the stability of solutions obtained after inclusion of the
second Josephson equation (describing the time evolution
of the phase) and inclusion of a specific coupling mecha-
nism between junctions. Such an analysis is possible on
the grounds of the resistivity shunted junction (RSJ)
theory. Nevertheless, a heuristic approach based on the
examination of the system's energy in the limiting case of
vanishingly small coupling energy can provide some use-
ful hints.

B. Energy-phase relations

Let us recall that the potential energy of a system con-
taining only the first junction and the current source J,
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normalized to the Josephson coupling energy

CPO

Eo= I),2~

where @0 is the fiux quantum (No —=2.07 X 10 ' Wb), is

elusion would be premature because we must consider
the total energy of the system.

In the absence of interactions, the energy ET of the
whole system is just the sum of energies E& and E2 of the
individual junctions

E, (y, )=1—cosy', —jy„j =J/I, . (4) ET=E, +E2 .

A plot of this expression [see Fig. 1(a)] for a fixed value
of J forms the popular washboard model of a Josephson
junction. In this model, the junction behaves like a ma-
terial point moving along the washboard. Such an object
can occupy a stationary position either at the bottom of a
valley or on the top of the ridge; the first state is stable,
the second is metastable, no stable state is possible for
J =I]. The positions y&„of energy extrema are given by
the roots of Eq. (1),

j sin+1 n

i.e., are expressed by Eq. (2) after suitable substitutions.
The energy barrier (normalized to Eo) separating the suc-
cessive extrema at y, „and q&, „+,is (cf. Ref. 8)

&E&(q &)=2( —1)"+'[(1—j')' '+jy»] —j~,
where y&o is the principal value of arcsinj.

These observations allow us to use the energy-phase re-
lations as an artiface to check on the stability of solutions
and to visualize the evolution of the system disturbed out
of equilibrium.

From Eq. (4) it is immediately seen that m states with
even m correspond to valleys and those with odd m cor-
respond to ridges in the potential energy of the second
(driven) junction. One might suppose, therefore, that the
odd states are always unstable. However, such a con-

ET(, )
=AE

&
+AE (7a)

where b,E, is given by Eq. (5), and bE2 by its equivalent
for the second junction:

By normalizing all energies to the Josephson coupling en-
ergy of the first junction, we obtain, after simple manipu-
lations,

E„(y,)=1—cosy, +—(1—cosy&2) —j(&p, +&pz) . (6)
1

Suppose now that even out of equilibrium the junctions
remain phase-locked and y2 is given by Eq. (2). Suppose
further that the driving phase varies linearly over some
interval encompassing several multiples of m.. We can im-
agine that each time this phase crosses a n. /2 limit, the
system has a choice between staying in the already occu-
pied m state and making a transition into an adjacent
state. In order not to complicate the issues, let us consid-
er only two types of behavior. In type I the system will
always make a transition from m to m+1, the sign de-
pending on whether the phase y& increases or decreases
its value at the transition point. In other words, in type-I
behavior, y2 tries to linearly follow the driving phase. In
type-II behavior, the system will always stay in one state
and cpz will change periodically with q, .

From Eq. (6) we obtain, for the energy barrier EET
separating the successive extrema of total energy in type-
I behavior,

ee~

---- ygj2m
Qq CV

bE2(y2)=2( —1) +'[a '(1 ja )' +j @20]+—j rr,

where y20 is the principal value of arcsin(aj), i.e., in con-
sistent notation yzo=y2 (p&0). In type-II behavior we(0)

have

AET»=DE] —AE2+2j~ . (7b)

O
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FIG. l. Energy-phase diagrams for a series array of two iden-
tical junctions. Type-I behavior: (a) and (b), type-II behavior:
(c) and (d). Energies are normalized to the Josephson coupling
energy Eo /2m.

In the special case a = I, as already discussed, there are
no gaps between the A ranges and all values of y2 are
allowed. Type-I behavior simply means y2=g, and, con-
sequently, E, =E2, ET=2E„and AET=26E, . This
case is shown in Figs. 1(a) and 1(b) for j =0.6. In Fig.
l(a) we show E2 (normalized additionally to 2vr, solid
line) and y2 (dashed line) versus y&, and in Fig. 1(b) the
corresponding plot of ET(p, ), normalized in the same
manner. For convenience we have kept j =0.6
throughout all examples shown in Figs. 1 and 2, and thus
Fig. 1(a) can always be referred to as the plot of E& (y&).

While in the type-I regime, the system behaves like a
single junction, type-II behavior produces more interest-
ing effects. Let us assume that the system stays put in the
m =0 state and let y& be in the [ n/2, vr/2] interval- .
(n =0. Then, @2=go=y& and we have, in this interval,
E& =E2, as in the previous case. However, if y, moves to
the next interval, for instance, [vr/2, rr+m/2] or n =1, .
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then y2=yz"'=~ —y, . Upon substitution of this value
into Eq. (6), we get constant energy

ET= —mj .

Type-II behavior for a =1, m =0 is illustrated in Figs.
1(c) and 1(d). As seen, the ridges in the total-energy dia-
gram of Fig. 1(d) are obliterated and the height of the en-
ergy barrier separating the equilibrium position at a val-
ley bottom from the next energy extremum is halved.
The system, excited from equilibrium to the metastable
state represented by the plateau, could be trapped there
for an infinite time.

An interesting variation of the plateau effect occurs in
type-II behavior if we assume that the permanently occu-
pied m state is even. In this case, not the ridges but the
valleys are obliterated, as shown by the dashed curve in
Fig. 1(d), and the system, escaping from one metastable
position at the top of a ridge, finds itself in another of the
same kind on a plateau; one might say it is a reminder of
the inherent metastablility of even-m states.

However, it can be easily shown for a = 1 that the be-
ginning of each plateau in the energy level of state m is
the branching point of the energy level corresponding to
state m +1 and that the latter crosses the plateau at its
middle point. Reciprocally, the plateau due to state
m +1 is crossed by the "riser" of state m [see Fig. 1(d)].
The system which was driven by an excitation to a pla-
teau has, therefore, the means of relaxation to a stable
equilibrium position. It can relax either by reverting to
type-I behavior at the branching point or making a tran-
sition to the m +1 state at the crossing point. Moreover,
it is seen that ET(y, ) becomes multivalued and hysteretic
response to excitations is possible.

Another distinguishing feature of type-II behavior is
the discontinuity in the derivative of yz with respect to y&
[see Fig. 1(c)] occurring at the limits of each range %
and reflected in the energy -phase relations.

We conclude that, with no other constraints imposed, a
single-connected system in the degenerate case I, =I2
can exhibit either type-I or type-II behavior, with possi-
ble departures from type II at the crossing points of ener-
gy levels. Type II is more probable because it encounters
lower-energy barriers at the branching points. The
choice between type I and II will be made at the branch-
ing point and, in a real system, will be determined by the
parameters which do not appear in our model: the
junction(s) self-inductance, capacitance and normal-state
resistance, as well as by the coupling energy.

The condition I, =I2 cannot really be fulfilled by any
physical system. Let us consider now the more realistic
case a &1. Type-I behavior in this case is hindered by
the existence of gaps in the allowed ranges of cpz values
which translate into energy barriers separating individual
m states. The height of the barrier between states m and
m + 1 is given by the expression

bE, =2[(—1) +'a '(1 —a )' +2j +],
where 4 is given by Eq. (2a).

The energy-phase diagrams that would result if some
mechanism inducing transitions across energy barriers

were available and thus type-I behavior enabled, are
shown in Figs. 2(a) and 2(b) for the case of j =0.6 and
a =0.8.

The energy barriers will tend to establish type-II be-
havior as the only permissible behavior. Figures 1(c) and
1(d) illustrate such behavior for m =0 and previous
values of the other parameters. In comparison with the
previously considered case of equal critical currents, we
note in Fig. 2(c) that E2 and yz are now smooth functions
of y„and in Fig. 2(d) that the plateaus in the plot of total
energy now have nonzero curvature. The latter fact indi-
cates that the lifetime of the system in the metastable
state will be longer than for a single junction, but finite.

For m odd the system will now find a shallow depres-
sion in the plateau for its equilibrium position. This is
shown in Fig. 2(d) by the dashed curve (m = 1). We note
that, for the particular values of a and j chosen for the
plots in Fig. 2, the crossing energy levels allow the system
to pursue a continuous evolution path which avoids the
phase gaps. It can be shown that the overlap in energy
levels occurs only for

or

a=1 .
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FIG. 2. Energy-phase diagrams for a series array of two
diff'erent junctions (critical current ratio a =0.8). Type-I behav-
ior: (a) and (b), type-II behavior: (c) and (d). Energies are nor-
malized to the Josephson coupling energy of the first junction
Eo /2m. .

If a exceeds the critical value a0=2/m, then (assuming
that j does not instantaneously change its sign) the transi-
tions between m states can occur only across the gap, to
which, in this case, from Eq. (8), corresponds an energy
barrier EE,„~3.5EO. In such a situation, the system



7780 S. J. LEWANDOWSKI 43

once excited to an odd-m state will be permanently
trapped there (in the absence of a restoring mechanism).

stable manner between the junction array and the induc-
tive shunt. The junctions' phases and the Aux will then
fulfill the Auxoid equation

C. Phase-reversal transitions 2~&=y)+ y2+ 2~k, (9)

We return now to the problem of transitions between
adjacent m states. In the foregoing discussion we have,
more or less, tacitly assumed the occurrence of such tran-
sitions and have shown that, in certain cases, the occupa-
tion of odd-m states lowers the potential energy of the
system.

In the system we have been considering so far, the sta-
tionary m states cannot be associated with any directly
observable quantity. In the absence of any particular
coupling mechanism, the transitions are purely formal
concepts involving phase reversal and a slip of
y2 ——@2+m. This transformation, which conserves the
current Rowing in the system, at the gap edge advances

yz for the gap width 24, and at the crossing point of en-

ergy levels is reduced to a m. shift. It is tempting to con-
sider a "phase-Hip" process in which both phases simul-
taneously undergo such transformations with opposite
signs of ~ shifts but, so far, there is no need for it.

Transitions occurring at the gap edge directly change
the system s energy while crossing-point transitions ap-
parently conserve it, but, in fact, both require an initial
energy to drive the system out of equilibrium, so that the
total-energy change will be given always by Eq. (7). If the
equilibrium position is already at the gap edge (j= I),
then the stability of the system is greatly reduced
(b ET=0) and a small fluctuation of j can drive the weak-
est function of the system normal.

From the physical point of view, the occurrence of a
transition whose path leads directly across the gap means
that the driving junction stays normal only momentarily
and returns to the superconducting state after rearrange-
ment of the driven phase. It is the recovery process that
requires the presence of some restoring torque. Under no
circumstances can the driven junction, of higher critical
current, cross the phase gap without first pulling the
weaker driving junction into the resistive state. As a
consequence, when the system is dissipative for time-
dependent processes, the transition might be detected by
the accompanying voltage pulse across the junction ar-
ray.

For very narrow gaps (a =I), macroscopic quantum
tunneling cannot be excluded as a probable nondissipa-
tive mechanism enabling transitions. As to the dissipa-
tive transitions, we can evoke the analogy to the phase-
slip process occurring in long Josephson weak links.
Both on the grounds of time-dependent superconductivi-
ty and in the RSJ model, ' this dissipative process is ex-
plained as a transient destruction of the superconducting
order followed by its restoration.

After these generalities, let us consider a specific case
in which the restoration mechanism is well established.
The system will be no more single connected. Assume
that our array of two diA'erent junctions is shunted by
some finite superconducting inductance L and that the
resulting loop is linked by magnetic Aux 4. The source
current J for each value of @ will be then divided in some

where N is expressed in units of 4o and k is an integer.
Equation (9) imposes a new constraint on y& and gz,
which still have to satisfy the current continuity relation
(2).

Let us assume now that, for some value N=Ng p
the

current through the junctions is very close to the critical
current of the first junction. We know that in this situa-
tion

y& =m/2, cpz =~/2 —4'=yz ',
and, from Eq. (9),

2~4...=m —0+2~k .

Let us now increase, in a time short with respect to the
time constant, ~=L/R„, where R„ is the normal-state
resistance of the driving junction, the Aux N to a new
value N+,„such that

It is seen immediately that the only acceptable solution of
Eq. (9) in this new situation, preserving the previous
current distribution (hence, the magnetic energy stored in
the system), is

y&+ =~/2, y&+ =~/2+%=y'z" .

The other solution

qr, =3m/2, @2= ~/2+%=y~ ',
must be rejected because it means reversal of the current
through the junction array.

As seen, the acceptable solution involves an m ~m + 1

transition. Can the system execute it? The answer is pos-
itive. The only alternative to the transition is that the
driving junction, in an attempt of the system to adjust the
phases continuously, will go normal. As a consequence,
the current will be expelled from the junction array.
However, that means reestablishment of the supercon-
ducting order in the array, hence, in the whole system.
Equation (9) can now take hold again and enforce the re-
quired phase distribution.

Now, let us see what happens if we do not jump the
gap but proceed slowly. Let the new Aux value be N,
such that

2m&, =~ .

Since y2=~/2 is excluded, there are now two equivalent
(also in energy) solutions of Eq. (9):

and

0'2 ~ 9'2

Both solutions correspond to current expulsion from the
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N, =0&+ (/3/2~)
( 1+2a cos2m.&+a )

' ~

which, for a =0, is reduced to the usual transcendental
equation appearing in rf SQUID theory.

Equation (10) has several interesting features, its
geometrical interpretation included. It is invariant under
the transformation y2 = —f2+m, i.e., it does not depend
on whether the junction array assumes type-I behavior or
not. In general, it predicts an enhanced nonlinear
response of the SQUID to the applied flux and an ap-
parent increase of the effective inductance. The critical
value of the /3 parameter, /3„which sets the limit for mul-
tivalued @(&0,) dependence (i.e. , dissipative SQUID re-
gime), depends strongly on a and, for 0 & a & 1, /3, & 1.
As an example, for the array shown in Fig. 2 (a =0.8),
/3, =0.217.

The analysis becomes slightly complicated as a ap-
proaches unity, Equation (10) takes then the form

N, =N+/3(2m&a ) 'sinvrN, (10')

where the sign is that of cos2m.+. If we had substituted,
for a = 1, the solution y2=y, directly into Eq. (10), omit-
ting @2=m —

y&, we would have obtained the erroneous
result

@,=N+(/3/2m)sin~@ .

Now /3, is determined from the condition that, for /3 ~/3„
the slope d4/d@, can go to infinity. Equation (10') in-
volves a discontinuity in d4&, /d4 at 4=(2k +1)/2 (in
units of @0) and this condition can be met for any value
of /3. In other words, /3, ~0 for a ~1. In rf SQUID ap-
plications it means that the device containing a degen-
erate junction array will always be dissipative.

From our point of view, /3)/3, means that the gap-
edge transitions will be enforced independently of the Aux
slew rate. For SQUID's intended to operate in the dissi-
pative mode, this effect will not be particularly detrimen-
tal and an observer unaware of the presence of a "hid-
den" series junction will notice only an increased effective
inductance.

However, Eq. (10') has consequences not limited to the

array. The bifurcation starts as soon as the Aux 4 in-
creases infinitesimally from @, (or decreases from 4g+,~)
and can be accompanied by additional instabilities, de-
pending on the gap width.

Now, current expulsion at Aux values equal to odd
multiples of a half-Aux quantum would also happen if the
system contained only a single junction, and one may
suspect that we are discussing a not particularly interest-
ing effect. To show the contrary, let us consider the case
j=0, i.e. , limit our interest to a rf SQUID configuration.
Applying the external Aux N, to the system, we induce a
persistent current —I&sing„and the total Aux @ appear-
ing in Eq. (9) is

4=4, —(/3/2~)sing„ /3=2~LI, .

Using Eq. (9) in the standard manner to evaluate y& and
Eq. (2) to eliminate @2, we arrive at the equation

As is seen, /3' plays the role of the surrogate phase gap
and is associated with an energy barrier which, in this
linear approximation, will be proportional to /3' if we as-
sume that the approximation is valid up to some
~emax

It follows from the above considerations that even a
very weakly inductively coupled series array of degen-
erate junctions, dc biased or not, will respond to the pas-
sage of Aux quantum by transitions in and out of the
m =1 state. This is a potential source of noise in systems
not intended for use as rf SQUID's. For sufficiently slow
Aux changes, these transitions would be separated in time
by intervals of the order of L/R, . This picture is not in-
consistent with the telegraphlike noise observed in granu-
lar high-T, thin films. "'

III. CRITICAL CURRENT
QF SERIES-PARALLEL ARRAYS

A. Analytical results

As a generalization of the multiple connected system
introduced in Sec. II C, let us consider the circuit, shown
schematically in Fig. 3. Each of the two parallel
branches of the circuit is formed by a series inductance
L„, n =1,2 and a series array of X„junctions. The junc-
tions are characterized by their critical currents

I„,, i =1,2, . . . , %, , n =1,2
and superconducting phase differences, denoted y„. The
object of interest is now the maximal value J „ofthe dc
current J which can be passed through the circuit in the
presence of the magnetic Aux N. J „will be called the
critical current of the circuit.

Without any loss of generality it can be assumed that
the junctions in each branch are numbered in ascending
order of the values of the relevant critical currents, i.e.,

I„.~I„;+)
and also that

Ii ~ I2, (12)

where I, —=I, i. In what follows, the index n will refer to
the branch number and the index i to the junction num-
ber under the convention given by Eqs. (11) and (12).

SQUID operation. Let us observe first that, in the vicini-
ty of singular points 4& =(2k +1)/2, 0& is a multivalued
function of +, . This is shown by substituting N=Nk+6
and 4, =+k+6, into Eq. (10'). We then obtain

5, =5+/3'cos5, /3' =/3(2rr&a )

and for 5«1 the solution is 5=5, +/3'. The energy of
the junction array is clearly on a plateau as in Fig. 1(a)
(for J =0), and for the energy of the whole system this
plateau is modified only by the magnetic interaction ener-
gy (expressed in units of Eo)
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%„;=(vr/2++„;, ~/2 4—„; ) .

The considered system is subject to the constraint im-
posed by the Auxoid conservation relationship which can
be written as

g sgn(n)y„;+2~4&=2k~, (18)

4N,

4.

4)

where k is an integer, N is expressed again in units of No,
and sgn(n) =+1, the + sign occurring when the direc-
tions of the Auxoid integration and current paths coincide
over branch n —this notation is convenient when more
than two parallel branches are considered. In the con-
ventions shown in Fig. 3,

sgn(1) = —1

aIld

sgn(2) = 1 .

It is now necessary to explicitly take into account the
contribution N; made to the total Aux N by the induc-
tances

(I); =gsgn(n)L, J„, (19)

FIG. 3. Schematic representation of the circuit considered in
the text. Crosses indicate Josephson junctions, labeled by their
critical currents. The arrow in the center indicates the direction
of Auxoid integration path.

where L„has the dimension of inductance Wo, and to ex-
press the total Aux N as the sum of N, and the externally
applied Aux N,

N=N, +N, . (20)

The total current J is the sum of currents J„ in the in-
dividual branches

Upon substitution of (19), (20), and (14), Eq. (18) takes its
final form

F(q&(, g2) =g sgn(n)y„;+2vrgsgn(n)L, J„
J =J)+J2

and the latter must obey the Josephson relations

(13) n, i

+2m@, —2nk =0, (21)

J„=I„-sing„; . (14)

aI1d

P„, =arccosa;k, 0~$„,~~/2 . (15b)

In an obvious generalization of the procedure used in
the preceding section, we define the quantities

(15a)

where 4, is considered to be a parameter.
The problem of maximizing the current J through a

two-junction interferometer was routinely handled using
the technique of Lagrange multipliers. ' However, the
problems with constraints given in the form of Eq. (21)
do not really need this method. Observe that Eq. (21), to-
gether with current continuity relations (13) and (14), in-
stitutes a functional dependence @2(&p)), and, in order to
maximize J, it suSces to solve the equation

The general solutions of Eq. (14) for i & 1 can now be ex-
pressed as functions of the driving phases

dJ d v'zI ] coscp
&
+I2 cos+2 =0 (22)

(m)
( 1)m (0)+ (16)

where

V'ni: V'n

(note that yz now has a different meaning from g~ of the
preceding section),

rejecting the trivial solution d@2/dy, =0. No special no-
tation is introduced, but it is to be understood that Eq.
(22) occurs at some specific values of cp) and y2.

From Eq. (21) we immediately obtain

dVz gF gF

aI1d

qr'„, '=arcsin(a„, .sing„), &p(„)EA„; Partial derivatives in the above expression involve terms
of the form dy„, /d&p„. Substitution of p„, from Eq. (16)
evaluates these terms to
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a„;cosy„/cosy'„; '=( —1) a„,cosy„/( I —a„,sin 2 )'/~ .

With the help of this observation, and taking into ac-
count that each junction "ni," i ~ 2 can be in a different
state m„;, we can write

1.0—

0.548
i mt'

0.5—

d(P2 1 +icos'F 1

dcpi 1+Ppcos+p
(23)

o.i&I

where

P„=P'„)(p„)=a'„'(y„)+2rrL„ I„ 1—1 -0.5 — isa

n a„;
( )( ) ~ tlE

i =2 (1 —( —1) "'a„,.sing„)'
(25) -1.0 -2 0

APPLIED FLUX (4,)
The singularity in a'„', occurring at y„=+km, corre-
sponds to the earlier rejected trivial solutions
dy~/dy& =0.

Equation (22) is now reduced to

I i coscP)

1+/3, coscp,

Ipcos+2

1+P2cosy2)

Note that, for N„= 1, the expression for 13„ is reduced
to P„=2vrL„I„=Pc„and, if both branches hold only one
junction, Eq. (26) becomes the well-known result of the
two-junction interferometer theory. ' The technique of
using such an equation to construct the J,„(C&,) or
N(N, ) plots is well explained in Ref. 14.

Brieffy, Eq. (26) allows us to calculate, for a given set of
m„, states and for a given yi from some fixed interval (of
length ~sr), the corresponding value (or values) of y2,
limited to some other (or the same) interval. In this
manner, a sufficient number of (y&, @2) pairs can be ob-
tained and these, upon substitution to Eqs. (13), (16), and
(21) yield the other relevant parameters. The task is facil-
itated by the fact that Eq. (26) is even in both yi and y~,
and thus, if it is satisfied by (yi, g2), then the same can be
said of (+y„+@2)in any combination of signs.

FIG. 4. Critical current (normalized to I,„=I,+I2) vs ap-
plied Aux (in units of No) for the circuit shown in Fig. 3 with
NI =N2=2 and II =II2=0 8, I2=Iq2=1 0 (a„;=1),
poi=p&»=1. Solid lines represent the (0;0) solution with both
circuit branches in the m =0 state (phases of junctions "12"and
"22" limited to the [ ~/2, vr—/2] interval), dashed lines
represent the (1;1) solution with both branches in m =1 state
(phases of junctions "12"and "22" taken from the [~/2, 3~/2]
interval). Both solutions are +0 periodic and their overlap pro-
duces a critical current modulation between I „and I';„.

branch containing N identical junctions. Equation (26)
then becomes

Ii cos+i
N +go, coscp,

Ip coscp2

N +13o2cosy2
(Po„=2~L„I„). (27)

Apparently, this is the formula for a two-junction inter-
ferometer with the I3's N-fold reduced, contrary to the ex-
pectation that the inductive behavior would be enhanced.
A quick reference to the ffuxoid equation (18) produces
an even more bewildering result. The phases of all junc-
tions in a given branch can be assumed to be identical
(type-I behavior) and Eq. (18) takes the form

B. Numerical results and discussion

Figures 4—8 were drawn using the above-described
method. Before discussing them in more detail, let us
draw attention to some analytical features of Eq. (26).
The conclusions drawn in earlier work for the two-
junction case mostly retain their validity, e.g., those con-
cerning the stability of solutions, as discussed by Peterson
and Hamilton, ' and we will not dwell upon them. For
instance, if the "additional" junctions are very strong
(a„, ((1, i ~ 2), the denominator in (25) can be neglected
and the only effect for all m„; =0 will be the effective in-
crease of inductances L„by the addition of the terms
g„;(I„;)

One should not, however, be left with the impression
that nothing is really changed in comparison to the two-
junction interferometer. Consider the case of each

i.e., predicts a flux period of X+o. This is the same prob-
lem we have dealt with in conjunction with Eq. (10) and
the rf SQUID configuration, but here it is resolved
differently.

It is true that the fundamental "ace of diamonds" pat-
tern of critical current versus applied ffux (see Fig. 4) has
a periodicity of N+0 and, if normalized to this single
period, it has the same shape as its two-junction analo-
gue. This is shown in Fig. 4 for the case N =2. Howev-
er, the Auxoid is always No periodic and the fundamental
pattern is reproduced every @o. It is the envelop of such
intersecting patterns which finally gives the critical
current dependence on the applied Aux. As seen in Fig.
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1.0

a aa

V a a
b

~ -p.5—

lX

-i.p
a

APPLIED FLUX (4,)

CI
Cl

FIG. 5. Normalized critical current vs applied flux for the
circuit parameters as in Fig. 4, except that the critical currents
are now slightly different: I&2=0.808 I22=1.01 (a =0.99).
The solution (0;0), with both circuit branches in the m =0 state,
is shown. Dashes join the points, computed with the same in-
crement of the driving phase as the solid lines and mark the un-
stable branches of the solution.

b
'

L
'

s 7 s
' -'i '

h

APPLIED FLUX (4, )
FIG. 7. Normalized critical current vs applied flux for the

circuit parameters as in Fig. 5 and for different m states of the
circuit branches: (a), ( —1;0); (b) (1,0); (c) (0; —1); and (d) (0,1).
Dashes indicate unstable branches and horizontal solid lines
represent the +I;„limits.

4, the current will oscillate between I „=I&+I2 and
some value I';„&I;„,where I;„=I2—I, is the "expec-
tation value" for the minimal critical current.

The nearly vertical slashes seen in Fig. 4 at integer
multiples of 4o are characteristic for the case of (nearly)
degenerate arrays and X, =N2. Suppose that y, and y2
satisfy Eq. (26) for the same parameters as those used to
plot Fig. 4, except Po, =P02=0. Hence, g, and yz are the
phases across the first junction in each branch. Suppose
further that the second junctions are both in the cp' state,
i.e., their phases are given by ~—yj and ~—

@2, respec-
tively. After substitution of these values into Eq. (21), it

is seen that y, and y2 disappear completely from the
phase balance and only the requirement N, =k@o is
left. ' The resultant vertical slash in the J(&b, ) pattern
becomes slightly inclined when 0 (p„((1,as is the case
in Fig. 4.

Figures 5—8 are related to a slightly modified situation:
the "n 1" junctions are the same as before but the "n2"
have critical currents 1% higher, i.e., I,2=0.808 and

i.p

0.545
0.5—

o.»i

~ -0.5- -I~

-i.p -8

-i.o -'t '
h

' I
APPLIED FLUX (C.)

0
APPLIED FLUX (4,)

FIG. 6. Critical current pattern in Fig. 5 reproduced periodi-
cally in order to show the overlap resulting in the critical
current modulation by the applied flux. The overlap is not com-
plete if only the (0;0) solution is used.

FIG. 8. The outline of the (0;0) pattern from Fig. 5 (short
dashes) plotted together with the (0; —1) pattern from Fig. 7(c).
The next period of the (0; —1) pattern is also reproduced (thin
solid line) in order to indicate the overlap. This construction
demonstrates that the critical current is a multivalued function
of applied flux in the envelop region.
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I22 =1.01, or a„,. =0.99. The y'„'2' states are now separat-
ed by gaps from the corresponding y' ' states.

In Fig. 5 we show the fundamental "ace of diamonds"
pattern obtained by admitting only m =0 states, and, in
Fig. 6, the same pattern is reproduced periodically in or-
der to show the overlap which changes the minimal criti-
cal current. The circles on the dashed curves (which cor-
respond to @2 in the A

&
range) represent the actual com-

putation points obtained from Eq. (26) with the same in-
crement of y& as for the solid curves and their density is a
measure of the rate of change of cp2 with y„or—in a
sense —a measure of the stability of this solution. Ob-
serve that the solutions now enter the ( I;„,—I;„)
region —clearly a consequence of the gap effect —and
that the overlap in Fig. 6 is not complete, because an in-
complete set of I states was employed.

If we introduce the notation (rn&, mz) to summarily
designate the state of the driven junctions in each branch
of the system which contains only two such junctions,
then Figs. 5 and 6 relate to (0;0). In Figs. 7(a) —7(d) we
show the critical current versus applied flux for (1,0),
( —1,0), (0, —1), and (0, 1), respectively. This presenta-
tion is obviously redundant since (+m, ;mz) plots can be
obtained from each other by the No translation, but in
this manner the details of each plot and their mutual rela-
tions can be better displayed.

In Fig. 8 we have brought together the outline of the
(0;0) pattern from Fig. 5 (marked by short dashes) and the
(0; —1) pattern from Fig. 7(c). Part of the next period of
the (0; —1) pattern —or of (0;1) from Fig. 7(d), which is
the same —is also reproduced in order to indicate the
overlap. This construction was plotted to demonstrate
several points, all related to the existence of phase gaps

(1) The higher states can occupy the free space above
the envelop determined by the lower states and thus they
can further reduce the depth of modulation of the critical
current by the applied Aux.

(2) The higher states can form separate peaks in the en-

velop space (not very well resolved in Fig. 8 because of
the small gaps) and thus produce a spurious modulation.

(3) Critical current is nearly everywhere a multivalued
function of the applied Aux and even small phase gaps,
i.e., small differences in the critical currents of com-
ponent junctions, produce significant variations in this
function. This must be a source of instabilities in the
response to the applied Aux.

In general, it seems that, for a system composed of
different junctions, the ensemble of available states on the
(J,„,@,) plane forms a continuos contour having multi-

pie intersection points. Such points always exist close to
the extremes of the envelop. It appears, therefore, that in
the course of its evolution in the applied Aux, the system
is able to cross from any initial state to any other state.
Further study is needed to determine the energy levels
corresponding to the various states and to identify the re-
gions of possible across-the-gap transitions.

IV. CONCLUSIONS

The inclusion of series junctions into a superconduct-
ing inductive loop is shown to enhance it hysteretical be-
havior. In the rf SQUID configuration (without applied
current bias) and in the limiting case of identical junc-
tions, the relation between the Aux in the loop and the ap-
plied Aux is always multivalued, independently of the
loop inductance. Such loops in granular high-T, material
would constitute an additional noise source and, in the rf
SQUID, would prevent the dispersive mode of operation.
In dc SQUID applications, the depth of the modulation
of the critical current by the applied Aux diminishes with
increasing number of series junctions present in the
SQUID loop, and the period of modulation may become
erratic. Loops containing similar series junctions will al-
ways operate in the hysteretic regime.

In general, it is shown that the inclusion of series array
of Josephson junctions into a superconducting inter-
ferometer loop produces a highly unstable system with
many available states.

Published experimental data indicate that both rf and
dc SQUID's using granular high T, m-aterials are fre-
quently troubled by excessive I /f noise, including tele-
graphlike noise, ' and spurious modulations. ' Tele-
graphlike noise occurs not only in SQUID's but also in
thin-film samples of apparently single-connected
geometry. " These data, while not directly confirming the
existence of serial junctions in the investigated samples,
are not at variance with it. The development of a dynam-
ic theory based on the RSJ model and experiments on
systems with known parameters are needed for a better
understanding of the problems examined in this paper
from the limited point of view of the static theory.
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