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The usual symmetry-breaking procedures for Bose condensed systems, namely, the Bogoliubov
prescription, the symmetry-breaking term added to the Hamiltonian, and the canonical shift trans-
formation are uni6ed into a single formalism. By taking into account the condensate reservoir as a
source and sink of excited particles, exact Ward identities are solved in the shielded-potential ap-
proximation. A relationship between the condensate density no and the superAuid density n& is ob-
tained in closed form. It is shown that the Bogoliubov prescription yields no- nr an—d n Uo « ~p, ~,

where n is the total density, Uo the interaction constant, and p the chemical potential. On the other
hand, for the canonical shift transformation one has no « nz and n Uo &&

~ p ~. The latter, applied to
superAuid He at saturated vapor pressure, gives excellent agreement between theory and experi-
ment, without any adjustable parameter. The condensate density turns out to be strongly dependent
on pressure as observed experimentally. The formalism provides in a natural way a consistent
description of Bose systems in arbitrary D-dimensional space.

I. INTRODUCTION

Three decades have passed since London's proposal'
and the experimental determination Bose-Einstein
condensation in superAuid He. From the theoretical
side, the first estimate of the condensate fraction was due
to Penrose and Onsager who found n0-0. 08n at T=0.
More recently, Monte Carlo computer simulations at ab-
solute zero and finite temperatures have yielded

no -0.10n (T =0), a value consistent with high-
momentum inelastic-neutron-scattering rneasure-
ments. Hence, it is now generally accepted that a
gauge symmetry breaking of the first kind is basic to the
field-theoretical analysis of superAuid He. In this re-
gard, Griffin has shown that even the phenomenological
theories of Landau' and Feynman" are based on such a
broken invariance.

Although the extensive theoretical work on Bose con-
densed systems has shed light on many fundamental as-
pects of superAuidity, it has failed to give a quantitative
account of the condensate in bulk superfiuid He. At
T =0, the weakly interacting dilute Bose system
(WIDBS) has long been well understood. ' ' Substan-
tial progress occurred with studies of the response func-
tions of Bose condensed systems. ' This approach,
which has its origin in the work of Gavoret and
Nozieres, ' has been used in the investigation of
charged' and neutral' Bose gases at zero temperature.
Besides the weak interaction and/or diluteness of the sys-
tem, these T =0 theories' ' exhibit a small depletion of
the condensate, no-n. Hence, they bear no resemblance
with actual superAuid He. A more realistic approach is
found in the finite-temperature formalism of Griffin and
Cheung' and Szepfalusy and Kondor, ' where the
shielded-potential approximation (SPA) in the strong-
coupling case allows a large depletion of the condensate.
But this also implies a large depletion of the superAuid

density as well for nz =no in their treatment.
A source term appears in the continuity equation as a

consequence inherent to the nonconservation of the total
particle number. In this paper we show that the conden-
sate reservoir, as a source and sink of excited particles,
can be responsible for a large depletion of the condensate
alone.

In Sec. II we discuss the sources that result from the
usual symmetry-breaking procedures, namely, the Bogo-
liubov prescription, ' the symmetry-breaking field added
to the Hamiltonian, and the shift transformation first
introduced by Gross and studied diagrammatically by
Popov and Faddeev. We proceed to develop a model
that encompasses these three schemes into a single for-
malism. This unified approach allows us to compare the
source effect in each case.

The continuity equation underlies exact relationships
among correlation functions involving different combina-
tions of its constituents. In the present case, besides par-
ticle density and current, the source enters as a third con-
stituent. These relationships, known as Ward identities,
are reviewed in Sec. III. In the hydrodynamic hmit they
provide a rigorous expression for nz as an implicit func-
tion of no.

In Sec. IV the Ward identities are solved in the SPA
for the case of a symmetry-breaking term added to the
Hamiltonian. This allows one to compare the effect of
the condensate reservoir with known source-free result.

In Sec. V the generalized symmetry-breaking model is
worked out in the SPA. The Bogoliubov prescription is
shown to correspond to a weak-coupling constant,
whereas the Gross-Popov-Faddeev approach corresponds
to a strong-coupling constant.

Bose-Einstein condensation in arbitrary D-dimensional
space is studied in Sec. VI. In Sec. VII the theory is used
as a model calculation applied to superAuid He. We
conclude with a discussion in Sec. VIII.
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II. SYMMETRY-BREAKING MODELS
AND THE CONDENSATE RESERVOIR

8=8,+0,
+o = fd x g (x)K (x)g(x), E (x)—:—V2/2m,

(2.1)

(2.2)

6'=
—,
' f d x d x'U(x —x')tj'j (x)g (x')1t(x')1t(x), (2.3)

1V'= f d x g (x)g(x) . (2 4)

We consider a uniform system of bosons of mass m, en-
closed in a volume V=I. , and interacting via a two-
body potential U(x) whose Hamiltonian and total parti-
cle number are (iri= 1 is set throughout)

where the density, longitudinal current, and source
operators are given, respectively, by

P»= Xbp'bI+» (2.15)
P

J»= Q (p+ —,'k)b b +», (2.16)
f71

~» =[~ P»] I [—»p» l (2.17)

In (2.16), k denotes the unit vector in the direction of k.
An alternative approach that takes into account the

dynamics of the condensate consists in removing the
gauge group by adding a small symmetry-breaking per-
turbation to the Hamiltonian (2.1),

The Fourier expansion of the field operator is 8+8„. (2.18)
4= ito+ Pi

—V
—i /2b

(2.5)

(2.6)
Since, in this case, all canonical commutation relations
are now preserved, the source operators are defined by

I/
—1/2 y b i»x

k&0
(2.7) s=[N„,e], s„=[A„,p„] . (2.19)

The momentum-space condensation into the zero mode is
characterized by an order parameter defined as the en-
semble average of the field operator,

(2.8)

The source formal expression depends on how the sym-
metry is broken. We consider first the well-known Bogo-
liubov prescription. ' It amounts to the replacement of
the zero-mode amplitudes by c numbers, i.e.,
ho=ho =(No)', No being the number of particles in the
condensate. Consequently, it follows the commutation
relation S» =qNoi/2(b' „b„). — (2.21)

Introduced by Bogoliubov, this technique describes the
spontaneous symmetry breaking of thermal states. For
definiteness, we consider Bsii as given in momentum-
space by

~sB= rlNo/ (b—o+bo 2No/ ) (2.20)

where g is a small positive energy. Anomalous averages
such as the order parameter may, in principle, be defined
by letting q~O after the thermodynamic limit. The
source operator associated with (2.20) is easily deter-
mined from (2.19),

[bo, bo]=0,
and, for the fields,

(2.9)
A more satisfactory procedure is found in the works of

Gross and Popov and Faddeev in terms of the shift
transformation

[g(x),g (x')]=5 (x —x') —V (2.10)

In the finite-temperature formalism, the equation of
motion for the particle density & =

~g~ reads

bo =ao+No, b» =a» (k%0)

with the additional requirement

(2.22)

=[8,& ]—@[8,8'], (2.1 1)
(ao) =0. (2.23)

n—i V.J=S
a7.

with the source operator defined by

(2.12)

s=[0,&]—@[A',8'] . (2.13)

In momentum space, the continuity equation becomes

~Pk
+kJg, =Sk,

a~
(2.14)

where v.=it denotes the imaginary time and p the chemi-
cal potential. Due to the extra term in (2.10), the com-
mutators [O,h] and [8', h'] no longer vanish. Recalling
that [Bo,h ]=i V J, where J is the usual current operator,
Eq. (2.11) yields the continuity equation

At first, Popov and Faddeev chose Eqs. (2.1)—(2.7) as the
original Hamiltonian. Hence, there is no source. The
latter can only be defined when the Hamiltonian is writ-
ten as a function of the operators ak and ak. It is then of
type (2.18). Popov and Faddeev proceed to develop a di-
agrammatic calculation where the nonquadratic terms in
ak, ak are taken as perturbations.

In summary, Bose condensed systems are usually dealt
with by either a noncanonical commutation relation or a
symmetry-breaking perturbation added to the original
Hamiltonian. In the latter approach, PsB is defined in
terms of a fictitious field coupled to bo and b~~ or is a
consequence of a transformation on these amplitudes.
The Bogoliubov prescription and its Gross-Popov-
Faddeev generalization are conceptually more well-
defined than the fictitious field scheme. In contrast to the
shift transformation, the Bogoliubov prescription
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neglects the microscopic Auctuation of the condensate oc-
cupation number altogether. On physical grounds, one
may then expect the Bogoliubov prescription to be a good
approximation to WIDBS, whereas the shift transforrna-
tion is more realistic for dense, strongly interacting sys-
tems such as superAuid He.

We have seen that the source (2.21) does not depend on
the interparticle interaction. In contrast, the sources ori-
ginated from both the Bogoliubov and shift transforma-
tions are interaction dependent. It is then interesting to
investigate whether the validity of each symmetry-
breaking procedure is related to the interaction strength,
specifically, whether the Bogoliubov and the shift trans-
forrnations imply weak and strong interactions, respec-
tively.

In this view, we now introduce a symmetry-breaking
procedure that has the Bogoliubov prescription and the
shift transformation as limiting cases. This can be simply
attained by the following conditions:

—
( 1 g)1/2a +N 1/2 (2.24)

b„= ak(kwo),

(,)=( ', )=0,
(2.25)

(2.26)

[bo bo]=1—0

&b, &=&b.') =V'N, .

(2.29)

(2.30)

The grand canonical Hamiltonian H pP is that given-
by Eqs. (2.1)—(2.7) whose amplitudes satisfy

[bk& bp ] ( 1 4bk, o)flak, p (2.31)

[bk b, ]=[bk b, ]=o (2.32)

and, in terms of the fields,

[g(x),g (x')]=5 (x —x') —gv

[Q(x), f(x')]=[(t/ (x), Q (x')]=0,
(q(x) & =(y'(x)) =~,'" .

(2.33)

(2.34)

(2.35)

where al, and ak, for all k, obey Bose commutation rela-
tions and g' is a real parameter. Clearly, for g~l and
g—+0, Eq. (2.24) reduces to the Bogoliubov and shift
transformations, respectively. Bose-Einstein condensa-
tion is expressed by (bo) =No . From Eqs. (2.24) and
(2.26), one has

( b()b() ) =(1—g)(a(~)ao ) +N() . (2.27)

Due to the condition (2.26), (aotao) cannot be a finite
fraction of the total particle number, hence, the conden-
sate density in the thermodynamic limit equals

&blab, &/V=N, /V (V ) . (2.28)
The transformation (2.24) represents a slight yet essential
modification of an earlier definition. In that work the
c-number part of b() was linearly dependent on g. In the
present formulation, however, as (~0, Eqs. (2.24) —(2.26)
are asymptotic to the shift transformation.

Having Eqs. (2.24) —(2.26} as the underlying assump-
tion, we now introduce a new symmetry-breaking pro-
cedure based on the fundamental hypothesis

where U~ is the Fourier transform of U(x). From time-
reversal invariance, (Sk ) =0 and, consequently, the total
particle number is conserved on the average as expected.

An interesting feature of Sk concerns noninteracting
systems. The equation of motion of the total particle-
number operator equals

= [H, A'] = f d x S(x)=So, (2.39)
O'T

where So:—Sk o. For the ideal Bose gas (IBG), So=0.
Therefore, Sk is consistent with the well-known conserva-
tion of total particle number in noninteracting systems.
On the other hand, for the source operator (2.21), we
have

S() =rlN' (b b)— (2.40)

Thus, So =0 implies ho=ho, which violates the canonical
nature of bo and bo assumed in the symmetry-breaking
scheme (2.18)—(2.21).

We finally notice that, in the Bogoliubov limit (/= 1,
ho=ho=No ), the IBG version of (2.38) becomes

Sk= VNo"(b k
—bk—} (IBG k=— l) . (2.41)

In Sk, Eq. (2.21), i) is an infinitesimal positive energy,
whereas in the IBG p is an infinitesimal negative energy.
In Sec. IV we shall show that, indeed, g= —p in the
SPA.

Consequently, Sk equals Eq. (2.41). In Eq. (2.38), —gp
can be interpreted as a fictitious energy analogous to i), so
that Sk is clearly a generalization of Sk that, in addition,
satisfies particle conservation in IBG.

The parameter g can be interpreted as a fictitious di-
mensionless quantity that breaks the symmetry according
to the gauge transformation

e i 8$ye i 88 —ye—i ( 1 f—) 8+q e i () (2.36)

Therefore, the gauge symmetry is broken for values of g
in the interval (0,1], where the upper bound is dictated by
(2.29). We shall refer to the cases 1 —g « 1 and g « 1 as
the Bogoliubov and quasicanonical regions, respectively.

The source operator is of the type (2.13) where the
commutators are straightforwardly evaluated by taking
into account the basic commutation relations (2.33) and
(2.34). In the Schrodinger picture we find

S(x)= —
g(MV

' f d~x'[g (x)Q(x') —
Q (x')0«}]

+gv 'fd x'd x"U(x' —x")

x [1('(x}lg(x")l'g(x')
—1('(x')lq(x") I2y(x)] (2 37)

with the notation lgl =g g. In momentum space one
has

Sk = gP(b kb—o bobk }

+gv 'g U (bt kb + b b bpbqbp—+qbk), (2.38)
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III. WARD IDENTITIES

y„~(k,r)= —V —'(T Ak(r)Bk),

C„"(k,r)—= —V '~ (T,Ak(~)bk„),

(3.1)

(3.2)

where T is the ~-ordering operator, Ak and/or Bk stand
for the operators pk, m Jk, and Sk. The amplitude obeys
the standard convention

'&k, P= +
kp

We denote by g„~(k, co) the Fourier transform of (3.1),
where co is the analytic continuation of the Bose frequen-
cy 27ril//3, with /3—= I/k&T the inverse temperature. In
analogy with the dielectric formalism, correlation func-
tions can be expressed in terms of irreducible functions to
be denoted with overbars. In turn, I'„ii(k, co) can be fur-
ther split into proper and improper parts,

Ward identities relate irreducible and proper (regular)
diagrams of correlation functions. These identities are
direct consequences of the continuity equation which is
usually imposed as a source-free conservation law. '

The source, however, is an essential constituent of the
present formulation.

The determination of Ward identities based on the con-
tinuity equation (2.14) has been discussed earlier. For
completeness and description of notation, we briefly re-
view the main results.

We define correlation functions of the form

equation

G„(k,co) '=G„,(k, co) ' —X„(k,co) . (3.8)

X„ is the irreducible self-energy and the noninteracting
Green's function equals

G„„(k,co) = "' (k&0),
sgn v co —

Ek
—p

(3.9)

where ck =—k /2m and the chemical potential must not
be confused with the indices.

We proceed now to the low frequency and long-
wavelength analysis of Eqs. (3.6) and (3.7). Combining
Eqs. (3.6), (3.8), and (3.9), the first Ward identity gives,
for k =0 and co=0,

@=X++(0,0)—X +(0,0)+ —,'no ' /3„A„(0,0) . (3.10)

This result can be interpreted as a generalized version of
the Hugenholtz and Pines theorem, where the new term,
the last one in (3.10), exphcitly displays the e6'ect of the
broken symmetry. It is the analog of the fictitious energy
first obtained by Talbot and GriKn in the Hugenholtz
and Pines theorem. As these authors have pointed out,
this term removes, in a natural way, the infrared diver-
gences that appear in the work of Gavoret and
Nozieres. ' This point will be further discussed in Sec.
IV.

An explicit expression for the superAuid density can be
obtained from the second Ward identity (3.7). We first
recall that

—R —C
LAB +AB ++AB (3.3) n =ng+n~ (3.1 1)

The irreducible and improper correlation function can, in
addition, be given in terms of (regular) vertex functions,
A„(k,co), defined by

where n~ is the normal Quid density and n =N/V is the
total density, the latter given by the hydrodynamic limit
of the longitudinal part of the current correlation func-
tion

C„=A G„,
so that

(3.4)
n = —limm 'HAJJ(k, O) .

k~O
(3.12)

B
yAB =A„G„A (3.5)

The normal Quid density is defined as the transverse
response from a moving boundary, i.e.,

where the summation convention over repeated indices
(p, v=+, —

) is assumed, and G„(k,co) is the irreducible
one-particle Green's function.

Now, from Eqs. (2.9)—(2.12) in the second paper of
Ref. 25, one easily obtains the following Ward identities:

(3.6)

2

~ xnn '(
I. Jk~pk] ~+m HAJJm

nz = —lim m 'HAJJ(k, O) .
k~0

(3.13)

This result can be shown to be diagrammaticaHy
equivalent to

n~= —lim m 'gq~(k, O) .
k~O

(3.14)

We then consider the identity (3.7) in the k~0, co=0
limit. From the commutation relations (2.31) an (2.32),
we have

n0 p p XgJk 'PA —k
( l~k&Pk l ~ (~+ 2kbkbk+b —kb —k ) &

mV
(3.15)

~+s no ~p + ( IPk Pk llP V

where P„—:sgn p and the sub- or superscripts n (instead
of p) refer to the particle density. The irreducible one-
particle Green's function satisfies the Dyson-Beliaev

The evaluation of the right-hand side of Eq. (3.15) de-
pends on whether the hydrodynamic limit or the thermo-
dynamic limit is taken first. Since nz and n& are defined
according to their respective linear responses to bound-
ary motion, we assume the following order:
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lim lim V ([Jk,pJ, ])= (n +/no) .
k

V~ ook~O I
The second term on the right-hand side of (3.16) disap-
pears if the order of the limits is inverted. This is also the
case of the symmetry-breaking scheme (2.18), where bo
and bo are canonical, so that /=0. Likewise, we shall see
that, in the quasicanonical region (g ((1)this term can be
neglected. It will be relevant though in the Bogoliubov
region (g- 1).

Now, combining Eqs. (3.7), (3.11), (3.14), and (3.16), we
finally have

ns= lim [no k '/3„A~(k, 0)+k 'ps'(k, 0)]—(no .

(3.16)

IV. CONDENSATE DENSITY: Rk MODEL

It is instructive to first illustrate the formalism of the
previous sections with the source Sk given by Eq. (2.21).
The algebra is simpler and the result is nevertheless unex-
pected. It also serves as a comparison with the Sk model
to be discussed in the next section.

In order to determine the source vertex function that
appears in Eqs. (3.6) and (3.10), we start from the
definition

(3.17)

Equations (3.10) and (3.17) are exact to within the Bose
broken-symmetry model. They are the basis for the study
of the condensate density we take up next.

The first Ward identity (3.6) then becomes

(4.&)

Substitution of (4.4) into the generalized Hugenholtz and
Pines formula (3.10) gives

@=X++(0,0)—X +(0,0)—i} . (4.6)

Equations (4.5) and (4.6) are identical to the ones first ob-
tained by Talbot and Griffin. As these authors have
pointed out, the last term in (4.6) implies an infinitesimal
energy gap in the excitation spectrum. Talbot and Griffin
argue that the fictitious energy gap used by Gavoret and
Nozieres' is actually not fictitious, but a consequence of
the broken symmetry.

We now consider the second Ward identity (3.17) in
the SPA, which amounts to evaluating all regular func-
tions in the noninteracting Bose gas approximation. Ac-
cordingly,

06„=G„, X„=O, (4.7)

The irreducible part of the Fourier transform of Eq. (4.2)
yields

C+ (k, co) = g—no~ [G++ (k, co) —G + (k, co)], (4.3)

and this equation combined with (3.4) gives

(4.4)

C (k r) = —V ' ( T,Sk(r)bq ) .

Substituting Eq. (2.21) into (4.1), one obtains

C+ (k, r}=qno [(T,bk(r)bk ) —( T,b k(r)bk ) ]

= —rjno [G++ (k, r) —G + (k, r)] .

(4.1)

(4.2)

and, from previous results, ' ' one has

A"=n'~ A (k)= 'kn' /3—
}M 0 & p 2 0 p (4.8)

Similarly to A„, the source-longitudinal-current correla-
tion function is determined from the respective definition.
Accordingly, from Eqs. (2.16), (2.21), and (3.1), we obtain

ysJ(k, r) = —m V '( T,Sq(r)Jk )
1/2

k g (p+ —,'k)[(T,bk(r)b +qb ) —(T,b k(r)b +kb„)] . (4.9)

In the SPA, the ensemble average of a ~-ordered product
factorizes in pairs of unperturbed Green's functions.
Since the averages in (4.9) contain an odd number of am-
plitudes, only the nonvanishing averages must contain
zero-mode amplitudes. Hence,

( T,bk(r)b +qb ) =5 o( T,b„(r)bq~ ) (bo)

+5~ k ( T,bk(r)b i ) (bo ), (4.10)

(T,b k(r)bp+kbp ) =5 o( T,b k(r)bkt)(bo)

( T,bk(r)b +l, bp ) = 5~0NO~ G++(k,—r),
(T,b k(r)b +kb ) = —5 „No~ G (k, r),

(4.12)

(4.13)

Substituting Eqs. (4.12) and (4.13) in (4.9), and taking the
Fourier transform, we And

The ensemble averages in Eqs. (4.10) and (4.11) refer to
unperturbed states and the anomalous noninteracting
Green's functions (3.9) vanish. Thus, Eqs. (4.10) and
(4.11) reduce to

gsJ(k, co) =
2 ilnok [6—++ (k, co)+G (k, co)] . (4.14}

+5~ k ( T,b k(r)b q )(bto ) .

(4.11)

According to (4.7},the SPA solution of (4.6) simply reads

(4.15)
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and combining Eqs. (3.9), (4.14), and (4.15), one has hmk 'ysJ(k, O)=(l —2nUop ')no .
k~0

(5.5)

limk 'ps~(k, O)= —snop '=no .
k~0

(4.16)

The source contribution to the superAuid density turns
out to be independent of the arbitrary energy g. Substi-
tution of Eqs. (4.8) and (4.16) in (3.17) gives

As in Eq. (4.16), the contribution (5.5) turns out to be in-
dependent of the symmetry-breaking parameter and it is
by no means negligible. Substituting Eqs. (4.8) and (5.5)
into (3.17), we obtain a relationship between the conden-
sate and the superAuid densities,

ns
0 (4.17) ns

no=
2 —

g
—2nUop

(5.6)

Since [bo, bo]=1, g=O and Eq. (4.17) yields no=ns/2,
which means that no ~ n/2. This can be expected in the
strongly interacting dense Bose system (SIDBS), but not
in WIDBS, where the depletion of the condensate is
known to be small. From the arguments given after Eq.
(2.40), the IBG requires ho=ho or, equivalently, /=1.
Using this value in (4.17) we would obtain no=ns, as it
should be in this case. The source contribution comes
from Eq. (4.16) which is finite even in the limit r)~0.
This indicates how the source operator modifies, in an
essential way the relationship between n0 and nz. On the
other hand, it is also clear that Sk is inadequate to handle
the IBG, as already stated by Eq. (2.40). This argument
may be extended to WIDBS since g can be viewed as a
measure of the c-number nature of b0 and bo. This inter-
pretation will become apparent when the source S& is
considered in the next section.

V. CONDENSATE DENSITY: gk MODEL

We now apply the same procedure of the last section to
5&. The algebra involved in the SPA evaluation of A
and pe is described in the Appendix. Since we are only
interested in the long-wavelength limit, we have replaced
U& by the interaction constant

For UO=O, Eqs. (5.5) and (5.6) become identical to Eqs.
(4.16) and (4.17), respectively. Hence, S„may be viewed
as the zero-order approximation to S&. Moreover, Eq.
(5.3) gives /= 1, a feature that was missing in the discus-
sion of Eq. (4.17).

For convenience we measure the energy n UO in terms
of IpI /2 and introduce the dimensionless quantity

v(T) =2nUDIp(T) I
(5.7)

Equation (5.3) then becomes

g=(1+v)
and substituting this result into Eq. (5.6) we obtain

(5.8)

n0

ns

1+v (1+v ')v
(1+v) +v (1+v ') +v

(5.9)

Equations (5.8) and (5.9) yield the central result. The Bo-
goliubov limit (g= 1) describes the IBG (v=O) with
no=ns The B.ogoliubov region (1 —g«1) corresponds
to a system with weak interparticle interaction (v « 1)
and, as a result, no=n~. Finally, the quasicanonical re-
gion (g (& 1) holds for the large interaction constant
(v ' « 1) and no «n& follows.

Uk —+ Uo =4mam —1 (5.1) VI. ARBITRARY D-DIMENSIONAL SPACE

where a is the s-wave scattering length. The source ver-
tex function determined in the Appendix is

A =gn 0~ (p 2n Uo —)P„. (5.2)

Combining Eqs. (3.10), (4.7), and (5.2), we obtain an equa-
tion for g; that is,

In this section we show how the source is a useful con-
cept in the discussion of the Bose-Einstein condensation
at finite temperatures in arbitrary D-dimensional space.
The Mermin and Wagner theorem states that a global
continuous symmetry cannot be spontaneously broken in
systems with dimensions D ~2. The theorem is based on
a rigorous inequality due to Bogoliubov,

g=(1 —2nUop ') (5.3)

As advanced in Sec. II, this result relates the symmetry-
breaking parameter with the interaction strength. Since
Uo in non-negative and g lies in the interval (0, 1], it fol-
lows from Eq. (5.3) that p (0. Therefore, the Bogoliubov
region (1 —g &(I) implies n Uo (& IpI, whereas the quasi-
canonical region (/&&1) holds for nUo )) IpI. Also, the
Bogoliubov limit (/= 1) corresponds to the IBG, where
Uo =0 and p is an infinitesimal negative energy.

We now turn to the condensate density. In the Appen-
dix we find

—,'(Ib„', b„I ) = ,'+(b„'b, ), - (6.2)

(6.3)

—,'( I A, A tj ) )k~T (6.1)

This inequality still holds if, instead of H as in the origi-
nal formulation, we take for & the grand canonica1 Ham-
iltonian, i.e., &=H —pX. The operators A and C are ar-
bitrary provided the ensemble averages exist. If we now
let A—:bk and a =—pk, one has

gn (p 2nUO)(Ek ——gp)
k 'pe(k, co) = ~' —(Ek —kp)'

The contribution to the superfiuid density (3.17) is

(5.4) (6.4)

In (6.4) use has been made of the continuity equation
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(2.14). Substituting Eqs. (6.2) —(6.4) into (6.1), and taking
into account Eq. (3.15) with k&0, we obtain

(6.6) is immediately evaluated and we find

(eo) =2qlm (no/n) . (6.7)

mks T ( n o /n )—~ (b„'b„) &
I' k~() (2qr)~ k2+B2

with

(6.5)

e'= ([p', ,s„]) .
nV

(6.6)

Before discussing the implications of (6.5), we first con-
wp

sider the quantity 6. For the source operator S&, Eq.

(e ) turns out to be k independent and a linear function
of the condensate fraction. Except for a complex g used
by Chester, Fisher, and Mermin, Eq. (6.7) equals the re-
sult found in that work. This is expected since these
authors have used a symmetry-breaking procedure simi-
lar to that of Eq. (2.20).

In the case of Sk [Eq. (2.38)], the evaluation of (6.6) is

lengthy, but otherwise straightforward, and we write
6 =6p+6~, where

(6.8)

B = (bb+b „b „)
n

pm Uo
rf r (bp+kbqbp+qbk+b —kbp+qbqbp —k )

nV

—2$(bkb b bk+bt kb~b b k )+s(bkb kb b +bt b b„b k ) (6.9)

We see that ek=0(V '), thus vanishing in the thermo-
dynamic limit. Hence, 6=6p, which is also k indepen-
dent. In the SPA, the ensemble averages in Eq. (6.8) fac-
torize in pairs of unperturbed contractions and we im-
mediately obtain

Bo=2mg(2nUo —p)(no/n) . (6.10)

Substituting Eq. (5.3) into (6.10), eo becomes g indepen-
dent and we write

so—=Bo/2m = —p(no/n) . (6.11)

Recalling Eq. (4.15), rI= —p, we see that Bo is consistent
with (e ) .

We turn now to the inequality (6.5). The left-hand-side
equals n —n p, which implies a nondivergent integral

f d~k ( oo
k +6 (6.12)

Otherwise, one must have no =0 in the numerator of (6.5)
if T )0. Hereafter, we assume that 6 is k independent
such that the convergence of (6.12) depends solely on the
space dimensionality.

An analogous approach to this problem was taken by
Hohenberg, except that, instead of Eq. (6.4), a source-
free (Sk =0) continuity equation was considered. Conse-
quently, condition (6.12) would have to be satisfied with
6=0.

The integral (6.12) can be set in a more general context
by the dimensional regularization method introduced in-
dependently by Bollini and Cxiambiagi ' and 't Hooft and
Veltman. Accordingly, this integral can be regarded as

a function of D by the process of analytic continuation in
D. It is then a simple exercise to show that

f "a de=0 (6.13)

for all values of cx, including a= —1. Therefore, in the
case 6=0, T & 0, Bose-Einstein condensation occurs
whatever the space dimension. For BAO, on the other
hand, it is easy to show that '

d k =~ "e -'r(1 ——'D) .
k +6 2

(6.14)

Due to the I function this integral diverges as a simple
pole at D =2. According to (6.5) and (6.12), one must
then have no=0 in two-dimensional (2D) systems. As
6 ~0 in the neighborhood of this dimension, i.e.,
D =2—s, the integral (6.14) depends on whether s) 0 or
c. (0. Therefore, the properties of Bose systems are fun-
damentally diA'erent below and above the critical dimen-
sion D, =2.

From Eq. (6.13) we see that the source-free (B=O)
treatment of Hohenberg does not lead to a critical
dimensionality. Chester, Fisher, and Mermin have
modified Hohenberg's arguments by considering the
symmetry-breaking procedure (2.18) with Hss equivalent
to (2.20). But this is really an implicit way of taking into
account the source (2.19) in Eq. (6.4). According to the
anomalous average rule, these authors set g —+0 at the
end of the calculation, which obviously corresponds to
(e ) ~0. Consequently, the critical dimension emerges.

We finally note that the SPA result (6.11) is g' indepen-
dent and therefore Bo does not vanish when $~0 (or

1). However, the limit Bo~O is to be taken as D, =2
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is approached from above because no~0 is required in
order to keep the integral in (6.5) bounded.

VII. APPI.ICATIQN TQ SUPERFLUID He

In the so-called strong-coupling regime (n Uo
))ksT), ' response functions of Bose systems that ex-
hibit a large depletion of the condensate have been ana-
lyzed in the SPA. ' ' In those works the contribution of
the source term is not taken into account and conse-
quently no=nz. On the other hand, we have shown in
Sec. V that the condensate reservoir disentangles no from
ns. In particular, n Uo ++

~ p ~
'mphes "o +& ns

Strong interactions, no &(n, and nz ~ n are well-known
properties of bulk superfluid He. One is naturally
tempted to use superfluid He data in Eq. (5.9) in order to
extract the condensate fraction. There remains, however,
the conceptual diSculty of applying the low-order SPA
to a dense, strongly interacting system.

The next step past the SPA consists in calculating the
regular functions in the one-loop approximation. The
latter, however, cannot be worked out explicitly and, as
pointed out by Talbot and Griftin, the SPA contains
some of the same physics as the one-loop approximation.
In fact, for a dilute Bose gas, Payne and Griffin have
shown that the one-loop approximation gives only small
corrections to the SPA.

By the same token we recall Anderson's basic principle
of continuation. This means that such systems as Fer-
mi liquid and superAuid He can be referred back to
simple~ problems involving only noninteracting particles.
Without crossing past a symmetry boundary, one can fol-
low some adiabatic path from the simple state to the one
including more or less strong interactions.

We thus regard the present SPA formalism not as a
rigorous approximation, but simply as a model calcula-
tion to gain physical insight into the phenomenon of
Bose-Einstein condensation in superAuid He. Accord-
ingly, we now use bulk superAuid He experimental data
in Eq. (5.9) and extract the corresponding condensate
density. Maynard has calculated self-consistent tables
of n (T,P), ns(T, P), p(T, P), and the phonon velocity
c ( T,P) for temperatures T ~ 1.2 K from saturated vapor
pressure (SVP) to 25 bar. The interaction constant Uo
can be obtained from the excitation spectrum. In the
SPA, Szepfalusy and Kondor' have shown that the
k —+0 excitation spectrum in the strong-coupling regime
are phonons with isothermal sound velocity given by

c =(nU / o)'mi (7.1)

Similarly, from sum-rule arguments in the k —+0 limit,
Aldrich and Pines use Eq. (7.1) as the scalar polarization
potential to deduce the phonon-roton spectrum in excel-
lent quantitative agreement with that observed in
neutron-scattering experiments.

At SVP we take, for the isothermal sound velocity,

c(T=O, SVP)=238. 3 msec

For this value and m the He-atom mass Eq. (7.1) gives

nUO =27.32 K consistently with Aldrich and Pines. By
using the Gibbs free energy tabulated by Brooks and
Donnelly, we infer from Maynard's value of the chemi-
cal potential at T =1.2 K that

p( T =0, SVP ) = —14.882 J g '( = —7. 1617 K )

and, therefore,

v '(T=O, SVP)=0. 1311 .

In Fig. 1 we compare the calculated values, furnished by
Eq. (5.9), with the more recent data analysis performed
by Mook on neutron-scattering experiments at SVP. ' '

In particular, one finds no(T=O)=0. 1051n. We remark
that the works of Maynard, Aldrich and Pines, and
Brooks and Donnelly, make no reference to the conden-
sate density. The curve shown in Fig. 1 does not involve
any adjustable parameter, hence, the agreement between
theory and experiment is surprisingly good.

We now apply Eq. (5.9) to the condensate density un-
der pressure. In order to find out no(T =O, P), we deter-
mine the variation of the input quantities between T =0
and 1.2 K according to Brooks and Donnelly and nor-
malize them with respect to Maynard's T =1.2-K data.
The predicted condensate densities, relative to

no( T =0, SVP) =0.1051n,

are displayed in Fig. 2. About I'-23. 8 bar, the conden-
sate vanishes with the chemical potential. For still higher
pressures, p becomes positive and an unphysical negative
no would result. Actually, Eq. (5.9) does not apply in this
case, for g would be negative. One is usually more in-
clined to expect that no falls to zero at the superAuid-
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FIG. 1. Condensate fraction as function of temperature at sa-
turated vapor pressure. Curve: as calculated by Eq. {5.9). Cir-
cles: experimental values from Ref. 5.
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FIG. 2. Condensate density as function of temperature at
various pressures calculated by Eq. (5.9) and normalized with
respect to no(T =0 SVP) =0.1051n.

solid transition pressure I' -25 bar. Unfortunately,
Mook s investigation of no under pressure is limited to
about 15 bar. In any case, we must await an accurate
determination of the condensate fraction as a function of
density. Nevertheless, the strong dependence of the con-
densate fraction on pressure implies that no is also
strongly dependent on density. This behavior is con-
sistent with the experimental trend observed by Mook.

As a final application of the foregoing theory to
superAuid He, we consider the infrared cutofF discussed
in Sec. VI. It has been conjectured that such a cutofF
might be attributed to the zero-point motion. Thus in
Eq. (6.11) we use the quantities found above for
superAuid He at T =0 and SVP to obtain

lim g Uo = —
—,
'
p, n

O'O ~ oo
(8.1)

Thus, Sk remains finite even in the case of an infinite hard
core. The interaction strength in Sk is therefore at-
tenuated by the symmetry-breaking parameter, which
might indicate that the condensate reservoir gives sensi-
ble results in the SPA.
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Jasnow have studied superAuidity in the Bose system in
terms of a helicity modulus that measures the incremen-
tal free energy due to a twist of the order parameter.
These authors have found no=nz for the IBG. Inciden-
tally, one may interpret —(8 in (2.36) as a twisting phase
angle with respect to the overall phase. Fisher
et al'. 's microscopic definition of nz requires specified
boundary conditions, a procedure that corroborates the
arguments leading to Eq. (3.16). In the IBG, no=n& is
also strengthened by Anderson's continuation principle
mentioned in Sec. VII.

The good agreement without adjustments between the
present theory and superAuid He leads us to the conjec-
ture that the inclusion of Sk into the formalism is, by it-
self, more important than the approximations involved in
the solution of the exact Ward identities. This was, in

wo
fact, already suggested in Sec. IV where Sk reduces, by
half, the ratio np/ng ~ Moreover, the source operator
(2.38) depends linearly on (UO, and from Eq. (5.3), we

have

e =0.753 K, 6 '=2. 84 A . (7.2) APPENDIX

0
The inverse of the infrared cutofF lies between a =2.5 A
and n -1/3=3. 5 A. It is indeed reasonable to associate co
with the zero-point energy. In this case, the number of
condensed particles in the ground state is thus balanced
by the overall zero-point energy according to

pNO =- EON. —

VIII. CONCLUDING REMARKS

The key features of the foregoing theory are twofold:
(i) the symmetry-breaking scheme based on

[bo, bo]=1—g, and (ii) the corresponding source opera-
tor Sk. In the absence of interactions, )= 1 and no=ns.
A small interaction is characterized by g = 1 and no- ns,
while a strong one by g«1 and no «nz The phys. ical
picture is then straightforward: the stronger the inter-
particle potential, the larger are both the depletion of the
condensate and the operator nature of bo and bo.

It has been a controversial matter whether the IBG is

superAuid or not. According to Landau's criterion of a
critical velocity, it is not. This criterion is, however, a
sufticient, but not necessary, one. Fisher, Barber, and

SI, =R k
—Rk,

Rk = kpbobk+kV ' g—U~b~b~b~+~b„.

From Eq. (3.2) C„ is then given by

C' (k, r) = —V '"&r,S„(r)b„')-
=V ~ &Z- fY„(.)b„&

—V ' (TR „(r)bk) . (Al)

The first term in (Al) reads

In this appendix we derive Eqs. (5.2) and (5.4) in the
SPA. In Ref. 25, the p-dependent term of Eq. (2.17) was
incorrectly left out in the determination of Sk, Eq. (2.38),
on the argument that this term does not contribute to the
equation of motion (2.39). The [U,pk] contribution to Sk
has been discussed in the second payer of Ref. 25. For
completeness, however, we take for Sk the entire formula
(2.38).

To calculate A„ it is first convenient to split (2.38) as
follows:



7746 A. C. OI.INTO

& T,RI, (r)bi, &
= —

gp V '
& T,bo(r)bq(r)bi, &+(Uo V g & T,bp(r)bq(r)bp+q(r)bi, (r)bq &, (A2)

where we have made the substitution U& ~Uo. In the SPA, the ensemble average of a ~-ordered product factorizes in
pairs of unperturbed Green s functions. The factorization of an odd number of amplitudes, such as in (A2), is made
possible by the anomalous average (2.30). Accordingly, the average of the first term on the right-hand side of (A2) be-
comes

& T,bo(r)bi, (r)bi, &
=

& bo & & T,bi, (r)bi, &

N' —G (kr).
Likewise, the average of the second term yields

T bp(r)b (r)b +q(r)bi, (r)bi, & 2&ho &&bi, bi, && T bi, (r)bi, &+2&ho && T bl, (r)bI, & g &b bq &

2N,'"—(N+&btb„&)G' (k, r) . (A4)

The factor 2 in (A4) is due to the symmetry of p and q, and the diagonal property of the unperturbed Green's functions
greatly simplifies the factorization. Substituting Eqs. (A3) and (A4) into (A2), one has

V ' &T,Ri, (r)bi, &=/no [p 2Uo—(n+V '&bi, bi, &)]G++(k,r) . (A5)

Similar steps show that

V '
& T,R 1, (r)bI, & =2kno Uo V '&b i, b i, &G++(k, r) .

Combining Eqs. (Al), (A5), and (A6), we have

C+(k, r)=/no~ [p, —2Uo[n+V '(&bi, bf, &
—&b~ i, b i, &)]]G++(k,r) .

(A6)

(A7)

where the overbar denotes the irreducible character of the correlation function. By taking the ~ Fourier transform and
comparing the results with Eq. (3.4), we immediately obtain

A+(k) =gn o [p 2Uo[n —+ V '(
& bi, bl, &

—
& b I, b i, & ) ] I (A8)

In a uniform system, the ensemble averages in (A8) cancel out and A+ becomes k independent, i.e. ,

A+ =gn o~ (p 2n Uo —) . (A9)

It is straightforward to see that the evaluation of C (k, r) leads to a vertex function A = —A+. Hence, Eq. (5.2) fol-
lows.

We next consider the correlation function g&J. Although this case involves some more algebra, the technique is basi-
cally the same as in the evaluation of A„. To begin with, the definition of g&J is

XsJ ( k, r) = —m V '
& T,S& ( r)J&

=mV (& T,RI, (r)JI, &
—

& T,R 1, (r)Ji, &) .

From Eqs. (2.16) and (2.38) one has

ysJ(k, r)=mV '& T R„(r)Ji, &

= —gp V 'k g (I + —,'k) & T,b(~)(r)bl, (r)bit+I, bi &

1

+QUo V k g (l + ~ k)& T b (r)bt(r)bp+q(r)bi, (r)bit+i, bi &

Ipq

To make the notation less cumbersome, we adopt the following convention:

(A10)

(A 1 1)

(A12)

The summation of the first term on the right-hand side of (Al 1) becomes
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g (l +—,'k)&b(~)b„lb, +„b, &
= g (I + —,'k)&bk ib, +k & &bo lb( &

I I

=
—,'kG++(k, ~)G (O, r) . (A13)

The summation of the second term in (Al 1) reads

y (I+ ,'k)&-bp'bq'bp+, bk Ib('~kbI & =2 y (~+ ,'k)(&-bk Ib('+I, & &b,'lb' & &b,'bp+q &+ & bp+, Ib('+k & &b,'Ib( & &b,'bk &)

=NkG+ ~(k, r)G (O, r)+2& bktbk & g (l + —,'k)G++ (1 +k, r)G++ (l, r) .
I

Substituting Eqs. (A13) and (A14) into (All), one has

mV '& T,Rk(r)Jk &
= —

—,'gkV '(p —2nUO)G++(k, r)G (O, r)

+DUO V &bkbk &k g (2l+k)G++(1+k, r)G (l, ~) .

(A14)

(A15)

The same procedure applied to the second term of (A10) gives

mV '& T,R k(r)J& &= —,'gkV '(p —2nUO)G (k, r)G++(O, r)

+gU0V &b kb k &k g(2l+k)G++(I+k, r)G (I,r) .
I

From Eqs. (A10), (A15), and (A16},we obtain a proper and irreducible correlation function

g sJ(,r)= —
—,'gkV '(p, —2nUO)IG++ (k, r)G (O, r)+G (k, r)G++ (O, r)]

+gUOV (&bkbk &
—&b kb k &)k g(2l+k)G++(l+k, r)GO (O, r) .

I

(A16)

(A17)

Again, translational and rotational invariance eliminates
the second term of (A17) whose Fourier transform then
reads

gsJ(k, co) = —
—,'gk (p 2nUO—)( V/3)

X g I G++ (k, co'+co)G++ (O, ro')

N (x ) = (e~' —1)

is the Bose distribution function. In the g formalism and
the SPA, N (c.„—p, ) is the average occupation of the
k&0 state, which does not result in a condensed state as
k —+0. Therefore, V 'N (Ez —p) can be neglected in

(A19). On the other hand,

+G++ (k, co')G++ (O, co'+co)] . N ( —(1—g)p)=(1 —g) '&bobo&,

(A18) hence,

(A20)

By using Eq. (3.9) in (A18) and performing the frequency
summations by standard techniques, we find

y~J(k, ro) =(1—g}gk (p 2n Uo)—

V 'INO( —(1 g)p) —N(E„——p)]=(1—g)

(V~~) . (A21)

The substitution of (A21) in (A19) gives

X V 'IN ( —(1—g)p) —N (ek —p)]

(A19)
Ek kp

~' —(e~ —
ks }'

where co was analytic continued to the real axis and

gk (Iu,
—2n Uo )no(Ek kp )

I'sq(k, co) =
~ —(e~ —kV)

which is identical to Eq. (5.4).
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