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Ground state of the uniformly frustrated two-dimensional XYmodel near f= l /p
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Teitel and Jayaprakash have conjectured that the ground states for the uniformly frustrated XF
model (a model for the Josephson network in a magnetic field) are periodic on a q X q cell when the
frustration factor f (the magnetic fiux measured in units of the fiux quantum) is a rational number

p/q. We have found examples for f close to 1/2 where a larger cell —apparently 2q X2q —is re-

quired. We conjecture that something similar occurs whenever f is suKciently close to a simple ra-
tio.

I. THE UNIFORMLY FRUSTRATED MODEL

—Jg cos(P, +i, —4, i
—

XJ ),

where y =2rrfj (mod 2m) is the frustration function.
This is a model for an array of superconducting grains in
a magnetic field; then H describes the Josephson coupling
between the phases P, of the grains and y represents
the vector potential in the Landau gauge, with
f=a 8/C&c being the magnetic fiux per unit cell of the
lattice, measured in terms of the fIux quantum +0.

The ground states of Eq. (1) have been discussed by a
number of authors. ' " When f is rational, described by
integers p and q such that f=p/q, the frustration factor

is periodic on the lattice with interval q; correspond-
ingly Teitel and Jayaprakash' have conjectured that the
ground-state phase distribution is periodic on a q Xq
square. This conjecture gives reasonable results for small

q, and it is difficult to study the more exotic cases that
arise when q is large; however, we believe that the under-
lying physics suggests some counterexamples.

Visualizing and understanding the spatial dependence
of p; J is hampered by the need to factor in the spatial
dependence of g, as well as the invariance under the
transformation P, ~P, +C. It is preferable to study
the pattern of the Josephson currents defined by

I,'=J sin(P; —P, +, —y ),
I~~ =J sin(P; i

—P, J +, ) .
(2)

In the ground state [and other local minima of Eq. (1)j,
these currents are conserved at every site. The current
circulating around a unit cell of the lattice-is small for
most sites, but for a fraction f of the sites, the directed
sum around the plaquette,

is large (i.e., greater than unity); these plaquettes have

The uniformly frustrated two-dimensional XY model
on the square lattice is described by the Hamiltonian

H= —J g cos(P; +, —P; . )

resident vortices. For example, the ground state for
f=

—,
' has vortices on half of the plaquettes, arranged in a

checkerboard pattern. Many of the ground-state
configurations can be understood in a simple model
which regards the vortices as being mutually repelling
particles.

Halsey has described a family of configurations for
which

U = —(2J/q )csc( vr/2q ), (4)

and conjectured that this is the ground-state energy for
f)—,'. Teitel has disproved this with a counterexample
for f=

—,', ; however, this is still a useful result since it
represents a rigorous upper bound.

II. GROUND STATES FOR F NEAR
2

A specific example where the ground state is not
periodic on q Xq is the case f=

—,', . This case is of in-

terest because it is close to the maximally frustrated case
f=

—,'. Teitel has found the minimum-energy
configuration periodic on an 11 X 11 square; it consists of
domains of checkerboard pattern of opposite registry
with two vacancies. Its energy is quoted as —1.29466
per site (we have reproduced Teitel's state and find—l. 294 758, using double-precision arithmetic). Halsey s
Eq. (4) would give —1.277 58.

Our conjectured ground state is constructed from the
uniform checkerboard pattern with a low density of va-
cancies (the density of defects is f'= —,

' —
—,', =

—,', ). This
state violates the Teitel-Jayaprakash conjecture because
the checkerboard pattern will not fit in a cell of odd edge,
suggesting that the domain structure found by Teitel is
an artifact of forcing the incommensurate boundary con-
dition on the checkerboard pattern; thus we were led to
study the 22 X 22 cell.

For any one variable P, i, it is easy to find the value
that minimizes Eq. (1) with all other variables held fixed;
iterating this over all sites many times quickly leads to a
configuration which is stable against small perturbations,
but generally is not the global minimum. Monte Carlo
annealing, which shakes the system out of local minima
by the introduction of a controlled amount of random-
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ness, was tried; however, this is not an efFicient way to
perfect the configuration. It was useful in suggesting the
optimum arrangement of vortices; we then found that we
could "edit" the arrangement of phases by replacing the
phases of the sites in a chosen 5X5 cell by the phases
from another cell (adjusting these by a constant so that
the phase at one corner was unchanged) and then relax-
ing the result to local equilibrium. In this way it was pos-
sible to eliminate the regions of incorrect registry and
move the vacancies about, eventually attaining the state
represented by Fig. 1, which has an energy of—1.295 650 per site, slightly lower than Teitel's state.

This editing procedure does not necessarily produce a
state with zero current —it may construct (or attempt to
construct) a configuration with a persistent current circu-
lating through the periodic boundary. Indeed, shifting a
vortex pattern by one lattice spacing is equivalent to the
introduction of a phase difference 2rrfL across the system
and gives rise to a current of the same order of magni-
tude. It should also be noted that any configuration that
lacks inversion symmetry will have nonzero average
current. Since current-carrying states have higher ener-
gy, Monte Carlo methods will tend to avoid these
configurations. However, both in the editing approach
and in Monte Carlo annealing, it is possible to have a
"seed crystal" present, which will lead to a current-
carrying state if completed by purely local changes in the
phases. Thus, in constructing ground states by any
method, it may be useful to check for the circulating
current and correct for this condition when it arises.

The significance of this new ground state goes beyond
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FIG. 2. Case f= —', : (a) the ground state, periodic on 7X7;
(b) a defect superlattice state periodic on 14 X 14.

the slight decrease in energy, because it has (in common
with the states for smaller q and p) a periodic vortex
structure, and thus the resistive transition can be under-
stood in terms of the melting of the vortex lattice (or, in
this case, the defect superlattice). The theory of the criti-
cal current is also diA'erent in the two cases: the mecha-
nism which limits the phase strain that can be applied to
the defected lattice is the motion of a vortex into a defect,
which must go through a higher-energy state involving
adjacent vortices and thus has a high critical current; a
domain wall is easier to displace because it only entails
recruiting vortices from one domain to the other.

We have verified these assertions by imposing a phase
difference at the periodic join (as previously described )
and find that, for currents along one axis, the vortex lat-
tice shown in Fig. 1 is stable up to a current density
0.184/bond, at which point some of the defects relocate
(as the phase difference continues to increase, further re-
location takes place, eventually regenerating the
configuration of Fig. 1 displaced two lattice sites); a cor-
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FIG. 1. Ground state for f= —„.The short lines point along
the bonds of the lattice and indicate the direction and magni-
tude of the current; the dots mark the plaquettes having vor-
tices, and the circles are plaquettes which do not have vortices,
but would in the f= —' checkerboard pattern.

FIG. 3. Case f=
—,5: (a) the lowest-energy state having

15 X 15 periodicity; (b) the ground state, with 30X 30 periodici-
ty.
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FIG. 4. Case —,'0: (a) the lowest-energy state having 10X 10
periodicity; (b) the ground state, with 20X 20 periodicity.

FIG. 5. Ground state for —„.

responding study of the Teitel state found a critical
current 0.11S, with the initial motions being displace-
ments of the domain wall.

We have sought to generalize this construction to oth-
er f. The most likely and obvious cases are for f close to

We have succeeded in constructing the analogous
configuration for f=—', , but its energy density ( —1.2601)
is greater than the ground state (E/E= —1.2840) found
by Teitel and Jayaprakash (Fig. 2). (Halsey's expression
also gives this value. ) For —,', the best configuration that
we have found on 1SX 15 has an energy density of
—1.312 18 (Fig. 3); we find a structure on the 30X30
square with an energy density of —1.316444 (this case
was chosen with the anticipation that this nearly hexago-
nal structure would have a low energy). These three ex-
amples help characterize how close to —,

' f must be: The
defect superlattices have a length scale of at least several
lattice spacings.

It was also noted for f=
—,', on 30 X 30 that the energy

difference between the ground state and the state with
one defect displaced one plaquette diagonally (that is, to
the nearest available position) is higher by 0.428, whereas
the corresponding defect in the f=

—,
' arrangement

(which has vortices at the positions that f=
—,', has vacan-

cies in the vortex checkerboard pattern) has DE =0.576.
This suggests that vortex-lattice melting temperatures
(i.e., the resistive transitions) are comparable.

These examples, together with previously published
ground-state configurations, support the observation that
the current pattern and vortex structure have a unit cell
which is much smaller than q Xq (typically its area is q)
and from this point of view our observation is that close
to f=

—,
' its area should also be even for consistency with

the f=
—,
' structure.

When using periodic boundary conditions, it will al-
ways be necessary to use panels whose width is a multiple
of q, because this is the period of y; however, this is of
doubtful relevance to the periodicity of gauge-invariant
quantities such as the currents. In any case the periodici-
ty rules seem to be more closely related to the minimum-
energy configurations of a gas of particles interacting
with a potential which is repulsive and somewhat aniso-

tropic at short distances (where it is weaker in the diago-
nal direction). Thus the unit cell for Fig. 3(b) is a cen-
tered rectangle having edges 10 and 6, neither of which
divide 15.

The energy densities for the three examples of vacancy
superlattices found here can be fitted with the expression

U= —1.414—( —' —f )[ —0.501 —ln( —,
' —f)], (5)

in which the first term is the energy density at f= ,' and-
the correction describes a distribution of vacancies with a
logarithmic repulsive potential. Comparison of this ex-
pression with Halsey's (which is essentially constant for
q ) 10) shows that the vacancy superlattice has lower en-
ergy for f )0.45.

III. OTHER VALUES OF Q

The f=
—,
' checkerboard pattern is special because its

excitations (i.e., defects and reverse-registry domains) are
relatively high energy. In contrast, the ground states for
other f have low-energy excitations (for example, the
ground state for f=

—,
' consists of diagonal chains of vor-

tices, and there are configurations with kinked chains
that have only slightly higher energy), and their more
complex structures allow other ways to incorporate the
defect structure. For example, we have studied the case
f=

—,', which is slightly less than f=
—,', in hope of

demonstrating a 30X30 periodicity with nine vacancies
in a f=

—,
' structure. The best structure we have found

that is periodic on 10X 10 has no smaller periodicity; its
energy density is —1.320 12. On 30X30 we were unable
to force the construction of the proposed configuration
and could only find configurations with slightly lower en-
ergy density (

—1.320 25 ). However, on 20 X 20 we found
the structure shown in Fig. 4, with an energy density of—1.3275. The current pattern is periodic on 10X 10, but
the phases are not, so that P; =P;z+ +ion (mod 2ir).
This rather surprising example represents a second mech-
anism for periodic doubling. It also points out that for
smaller f there are more ways to alter the local density of
vortices. For f=,~, we have found a structure that inter-
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polates between f=
—,
' and —' (Fig. 5) and is periodic on

ll X 11. There is still the possibility that, for f closer to
(e.g, ,'o'0', ), the f=

—,
' structure with a vacancy superlat-

tice will eventually appear.
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