
PHYSICAL REVIEW B VOLUME 43, NUMBER 10 1 APRIL 1991

Magnetic-fiux quanta in superconducting thin films observed by electron holography
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Singly quantized magnetic fluxes in superconducting lead films have been directly observed in the
form of magnetic-flux-line distributions by using an electron-holography technique. Combining this
with the digital-phase-analysis method, we were able to determine the flux quantum h /2e for indivi-
dual fluxes with a precision of -h /100e, and analyze the distributions of field-vector components
around the fluxon centers. The internal-field distributions obtained were compared with those cal-
culated from the Ginzburg-Landau equations with use of some models, and an overall agreement
was found between them. We also observed the changes of the magnetic-flux structures of lead thin
films as a function of their thickness. Fluxon pairs were observed in 0.2-pm-thick films, which may
correspond to those suggested by Kosterlitz-Thouless theory.

I. INTRODUCTION

An essential character of superconductivity which has
manifested itself in macroscopic quantum state is
magnetic-flux quantization in units of 4o =h /2e (fluxon),
a ratio between two universal constants. An exact mea-
surement of the quantity No and analysis of the internal
structure of a Auxon, therefore are of great importance
for basic research on superconductivity. ' Fluxons form
a Aux-line lattice in type-II superconductors under exter-
nal magnetic fields, and they are forced to move by trans-
port currents. When its electromagnetic driving force
exceeds the Auxon pinning force, the Auxon starts to
move in viscous Aow with energy dissipation, resulting in
Ohmic resistance and thus limiting the superconducting
critical current. Investigation of the static and dynamic
behaviors of the Auxons, therefore, play an important
role for basic research as well as for industrial applica-
tions of superconductors.

As reviewed in Sec. II various kinds of experimental
techniques have been employed for the observation of
Auxons since the prediction of Abrikosov. Although,
especially, the methods using electron waves such as
Lorentz microscopy were considered powerful, they have
not yet attained fully satisfactory results, because the ob-
servation had to be carried out near the measurement
limitation from the uncertainty principle, as suggested by
Suzuki and Seeger. Only some special techniques of
electron wave interferometry by Boersch et al. have suc-
ceeded in detection of the Auxon existence in a supercon-
ducting hollow cylinder without microscopic site deter-
mination.

By introducing an electron-holographic technique, on
the other hand, we have recently succeeded to overcome
the measurement limitation for simultaneously obtaining

high spatial resolution and magnetic-Aux sensitivity.
Singly quantized Auxes emerging on the surface of super-
conducting lead film has been directly imaged in the form
of magnetic-Aux lines. The present paper reports the de-
tailed analysis on the internal-field distributions around
the Auxon center by combining the digital-phase-analysis
method with electron holography. This method allows a
numerical measurement of the phase distribution of elec-
tron waves by the techniques of digital data processing.
A decomposition of the magnetic-field-vector com-
ponents from the electron phase distribution has become
possible by utilizing the axisymmetry of the Auxon-field
distributions. Then a direct comparison between the ex-
perimental analysis and the results of theoretical calcula-
tion is available. We have numerically calculated the
internal-field distribution around the Auxon center in
terms of the Ginzburg-Landau (GL) equations, using
some models such as the Clem model. In consequence,
an overall agreement was found between the experimen-
tal and calculated results.

We also observed structure changes in the magnetic-
Aux distributions of thin lead films, as a function of their
thickness. Our results on the structural transition from
the type-I to the type-II-state behaviors of lead films were
consistent with those of earlier works. ' Fluxon pairs
consisting of two antiparallel Auxons were also observed
in 0.2-pm-thick lead films, which may correspond to the
ones suggested in Kosterlitz- Thouless theory. '

In Sec. II we briefly review the earlier works on the
magnetic-Aux structures of thin films of type-I supercon-
ducting materials, and the experimental techniques for
their investigations. Section III is devoted to describing
our experimental details and analysis methods supple-
mented with some mathematical expressions. In Sec. IV,
we calculate the internal-field distributions of quantized
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Auxes penetrating through a superconductor by numeri-
cally solving the GL equations using some models. In
particular, the Aux spread near the surface of the super-
conductor is evaluated for a comparison with experiment.
Experimental results are shown in Sec. V, and compared
with the calculated results in Sec. VI, and finally summa-
rized in Sec. VII.

II. BACKGROUNDS

It is appropriate for the purpose of electron-
holographic observation to select a superconducting ma-
terial of the low value of the GL parameter ~, because the
Auxons in such a material are so fine that the Aux density
is high enough to be detectable. From this point of view,
we selected the material lead, of which pure thin films
could be simply prepared. The type-I superconductor
such as lead enters the intermediate state under the mag-
netic field between (1—D)H, and H, (H, is the critical
field; D is the demagnetization factor). In this state, the
macroscopic normal regions (Ã), through which magnet-
ic Auxes penetrate, appear in the superconducting phase
(S). When the thickness of the specimen along the exter-
nal field becomes thinner, the N/5 distribution structure
changes in the way that the Ã region is divided into
smaller dimension of normal spots. The variation is
based on the change of the thermodynamical free energy
which is composed of the X/S interface energy and the
nonuniform-magnetic-field energy. Both are in counter-
proportional relation with the %-S structure size, whence
its equilibrium size is determined from the minimum en-
ergy condition for given thickness of the superconductor.

The X/S interface energy can be expressed in terms of
the effective GL parameter ~. When the specimen thick-
ness becomes as thin as a critical thickness, the ~ value
approaches 1/&2 and the normal spot size is in micro-
scopic scale of the penetration depth A, , containing the
magnetic Aux quantized in units of No. This means that
sufficiently thin films of any superconducting materials
can go into type-II superconducting states with the mixed
state. At the intermediate region of the thickness, the
N/S structures and its corresponding magnetic-Aux dis-
tributions show various kinds of patterns; normal spots
(NS) containing macroscopic amounts of fiuxes, multiply
quantized fiuxes (MQF), and singly quantized fiuxes
(SQF).

Tinkham' has pointed out the possibility of the X/S
structure changes even for type-I superconducting ma-
terials. After this prediction, the magnetic-Aux struc-
tures in superconducting films have been theoretically
studied within GL theory in more detail by Guyon
et a/. ,

' Pearl, '8 Maki, ' Lasher, and Fetter and Hohen-
berg. ' They mainly discussed the stability of each
magnetic-Aux structure and the critical thickness of the
film. According to Lasher, as the film thickness in-
creases, the MQF line structures are increasingly more
energetically favorable than the SQF structures in the
high-field region. In the MQF structure, individual fiux
bundle with several Aux quanta can arrange in the lattice
form like Abrikosov's. With further increase of the film
thickness, normal-state spots with finite diameters appear

in the superconducting phase and semimacroscopic mul-
tiquanta Auxes penetrate therein. This is Goren's
normal-spot (NS) model. And finally, the laminar
structure is most favorable at the su%ciently thick super-
conductors.

These magnetic-Aux structures in thin films of super-
conducting materials have been experimentally observed
in various ways. Direct observations of the SQF static
distributions on lead alloy films were performed by Ess-
man and Trauble, ' and also by Sarma with use of the
modified Bitter method which had been applied for imag-
ing the domain boundaries in ferromagnetic materials.
This powerful method has been intensively applied for
the investigations of magnetic Aux distributions in type-I
and -II superconductors of various thicknesses by Bar-
bee, Rodewald et al. ,

' "" and Dolan and Silcox, ' '
and many other investigators. The transition from
the type-I to type-II-state behavior was also detected by
electrical and magnetic measurements. ' Since re-
ports on this particular subject are too numerous to cite
comprehensively, the reader should consult Ref. 1 in
which is cited additional literature on related work. Ear-
lier results on the magnetic-Aux structures in films of
type-I superconductors, e.g. , lead, may be summarized in
a phase diagram at a relatively high temperature T
(T( T, ), as sketched in Fig. l. Although the figure is

only qualitative and should not be taken strictly, it en-
ables us to explain the conditions under which each in-
vestigation is performed, involving the present work. Al-
though most of the earlier works, theoretically and exper-
imentally, were carried out in relatively high-field re-
gions, the present observation covers only very-low-field
regions, just above the Miessner phase, due to the ap-
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FIG. 1. Schematic phase diagram showing various
magnetic-flux structures in a film of a type-I superconducting
materials under the magnetic field perpendicular to the film sur-
face. The structures depend on the film thickness and the ap-
plied magnetic field. M: Meissner state, N: normal state, SQF:
singly quantized flux line structure, MQF: multiply quantized
flux line structure, NS: normal spot structure, L: laminar struc-
ture, SS: superconducting spot structure. H, b„,k indicates the
thermodynamical critical field of a bulk superconductor. D
denotes the demagnetization factor. Two types of multiply
quantized flux line structures, MQF-A and MQF B, are found-
in the present study.
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Pb
edge of the sample shadow, they were used for the
analysis of the inner field distribution around the Auxon
center.

W wire

FIG. 3. Scanning electron micrograph of the observation
sample. The lead film was deposited on one side of a tungsten
wire of 30 pm diameter.

l =(R~ —1) pl
P300 K

where the values of pt and p300 + are obtained from the

literature; pt =1.5X10 " Acm, p3QQ K=21 pQ cm.
From the values of R~ for our lead films; Rz =50—80 for
the 0.2-pm-thick films, we obtain t =360—560 nm.

In the case of su%ciently thin films, on the other hand,
the effective mean free path is limited primarily from
diffuse reAection of the electrons at the sample surfaces.
According to the Fuch's classical theory of the size
effect,

1 3 t
t t +8d t

B. Electron-holography microscope

Our microscope was an H-800 type Hitachi transmis-
sion electron microscope devised for electron holography
with a cold field-emission type electron gun and a
Mollenstedt-type electron biprism. Its operating volt-
age was 150 kV. It also had a sample cooling stage and
electromagnet pairs to apply the magnetic field perpen-
dicular to the lead film.

The sample-cooling stage depicted in Fig. 5 was set in
the sample chamber of the microscope column and
thermally connected to a liquid helium and nitrogen con-
tainer which was set outside the column. The sample
holder (SH) was introduced from the sample exchange
chamber (EC) through the gate valve (GT) and rapidly
cooled down from room temperature by thermal connec-
tion with the stage. The sample holder, which can be
cooled down to 2.5 K by pumping out the liquid helium
container, is surrounded with two shells for thermal radi-
ation shielding. The intermediate shell (HJ1) was cooled
down to 5 K with liquid helium and the outer (NJ) was
100 K with liquid nitrogen. The sample temperature
could be reversibly set at any points between 2.5 and 20

Incident Elect

where I is the mean free path of a bulk specimen of the
same purity and defect content, and d is the film thick-
ness. For the film of d =0.2 pm, using the value of t
above obtained, t should be longer than 1.1 pm estimat-
ed from Eq. (2). This implies that our lead films had
enough high quality and purity so that the mean free
path is not limited by the impurity and defect scatterings,
but primarily by the film thickness.

The wire was fixed on a sample holder with indium-
layer thermal contact. In our electron holography micro-
scope (Fig. 4), the lead film was cooled down to be super-
conducting with fIuxons under the magnetic field perpen-
dicular to the film surface. Because the electron beam
could not transmit through the film, we could only ob-
serve the Auxons spreading out into vacuum outside the
film surface, not the fIuxons in the film. So we had to
catch the root of the Auxon just above the film surface in
order to investigate the internal field distribution of the
Auxon inside the film. For this reason the film was
curved to ensure the Auxons exit at the extreme edge of
the sample shadow.

But the observed Auxons were not necessarily located
on the extreme edge of the sample shadow. In fact, Aux-
ons with difFerent root diameters were observed even on
the same sample. Therefore, we cannot measure the in-
trinsic Auxon diameters with fIuxons of broader roots
which do not stand on the extreme edge and are probably
shadowed by the edge. Since, however, it is considered
that the Auxons with the finest roots among the large
number of observed fIuxons really exit at the extreme

Sup erconduct
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Electron ~
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Imaging Le

FICx. 4. The electron wave propagation in the electron holog-
raphy microscope. The wavefront is deformed by the fluxons
and divided into two parts, an object wave and a reference wave,
by an electron biprism to form a hologram.
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K with a heater attached to the stage. Annealed silver
fiexible foils of 30 pm thickness (AF) were used for the
thermal connection of the sample to the refrigerant con-
tainer, and at the same time, for the absorption of the
external mechanical vibrations.

The first electromagnet pair (EM1) produces the trans-
verse magnetic field up to 35 Oe to create the Auxons in
the lead film. Since the field, however, deAects the elec-
tron beam (EB), we need the second (EM2) and third
electromagnet pairs (EM3) to correct the beam path for
microscopic observation. The excitation of the latter two
electromagnets are adjusted according to the first mag-
netic field strength. In this way it became possible to car-
ry out the in-field cooling and the in-field observation, of
which temperature and magnetic field ranges were
2.5 —20 K and —35—35 Oe, respectively.

The propagation of electron waves in the microscope is
illustrated in Fig. 4. The illuminating electron wave, em-
itted from the field emission tip, is regarded as a plane
wave g;„,=expIikoy I (the wave propagates along the y
axis and ko is the wave number of the electron).
Transmitting through the sample region, the wave front
is deformed by the magnetic field; the localized field of a
Auxon causes steep phase change, although the wave
front passing far from the lead film is only inclined
smoothly because of a uniform field. By electron biprism
action, the transmitted wave is divided into two parts, su-

g,b,
=exp{ ik, y +ikzx +i P(x, z) I, (3)

where P(x, z) is the phase shift caused by the fiuxons, and
the phase factor exp[ik2xI denotes the beam deflection
in the x direction by the electron biprism, and
ko =k

i +kz. Another wave, passed through the far dis-
tant region, -6 pm from the investigated lead film sur-
face at the specimen p1ane, acts as a reference wave. It is
expressed as a plane wave

P„f=exp I ik, y ik—2x I, (4)

because the beam deflection by the biprism occurs in the
symmetrically opposite ( —x) direction with the object
wave Eq. (3). The phase distribution of the object wave
P(x, z) is thus recorded in the form of interference fringe
distributions, an off-axis hologram Ih, &(x,z);

2k2x ~ z
Ih )(x,z)=~/, b, +Q„f~ —1+cos +$

perimposed, and interfere with each other. Interference
fringes were recorded on a hologram. One of the divided
waves, passed near the lead film surface, becomes an ob-
ject wave which contains the information on the fluxons.
It is expressed as

EB

~i&XXXXXAXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX~kkk&
NJ ii HJ1 HJ2

LH

EC
I

CR

]
I

FICx. 5. The sample cooling stage and the electromagnet pairs equipped in the sample chamber of the electron microscope column.
The sample holder (SH) is introduced from the exchange chamber (EC) through the gate valve (GT) into the column. The holder is

set at the observation position by the elevator (EL) and thermally connected to the cooling stage. The stage is connected through a
Cu rod (CR) to a liquid helium (LH) and nitrogen (LN) containers set outside the column. The stage and container are composed of
three shells; the outer shell (NJ) is cooled down to 100 K by the liquid nitrogen, the intermediate shells (HJ1) is 5 K by the liquid heli-

um, and the inner shell (HJ2), which contacts to the sample holder, is 2.5 K by pumping the inner liquid helium container. Thin flex-

ible Ag foils (AF) thermally connect the sample and the refrigerant container, and at the same time, absorb mechanical vibrations.
The first electromagnet pair (EM1) apply the magnetic field perpendicular to the sample lead film. The second (EM2) and the third
(EM3) electromagnet pairs correct the electron beam (EB) path deflected by EM1 for microscopic observation.
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I(x,z) = itj'j+, +P, i

—I+cosI2$(x, z) I . (10)

and were made to interfere with each other to form an in-
terference micrograph I (x,z);

3

S(x,z)= g I(x,z;n)sin
n=0

277n

4

The carrier fringes are in this way removed, and the in-
terference fringes in this image become contour phase
lines of m. interval. This is an interference micrograph.

The fringe intensity distribution in the real micrograph
is, however, expressed as

I(x,z) =a (x,z)+b (x,z)cosI2$(x, z) I,
instead of Eq. (10), because the average fringe intensity
a(x, z) and the fringe contrast b(x, z) are not constant
over the image due to the nonuniformity of the illuminat-
ing laser beams, nonlinearity of the photographic film,
the speckle noise, and others. Although the interference
micrograph Eq. (11) directly shows the phase distribution
P(x, z) in units of m, moreover, we cannot measure the
phase distribution with the phase resolution higher than

Ig. other words, the phase information between the
neighboring fringes in the interference micrograph can-
not be displayed. To read out the subfringe information
from the hologram with higher accuracy, then, we have
adopted a digital phase analysis method called "fringe
scanning interferometry" which utilizes the digital
image-processing technique with a computer. This
method allows the numerical measurement of the phase
distribution of the wave reconstructed from the hologram
and improve the phase measurement precision up to-m /50.

Stepwise movement of the mirror A of the interferome-
ter of Fig. 6, driven by a piezoelectric transducer (PZT),
causes a fringe shift in the interference micrograph Eq.
(11)because the relative phase difference between g+ and

changes with the mirror movement. Images at four
different mirror positions, of which position interval is
A, /8 (A, is the wavelength of the He-Ne laser beam, 6328
A),

=I (x,z; 1) I (x—,z; 3 ), (14)

are calculated from the four images Eq. (12) to extract
the sinusoidal parts of the intensity variation. This
method enables one to separate the phase information
P(x, z) from the fringe average a (x,z) and contrast b (x,z)
of the interference pattern. The phase of the pixel is then
given by

S(x,z)
P(x, z) =arctan

C x, z

I(x,z; 1) I(x,z—;3)=arctan I (x,z;0) I (x,z—;2)
(15)

The calculated arctangent values are wrapped between
+m. The unwrapped phase value gives the correct shape
corresponding to the phase profile. By performing the
above calculation all over the pixels in the image, the
electron wave front is numerically reconstructed.

D. Electron phase and magnetic Aeld

We now review the relation between the phase of the
electron wave and the magnetic field for preparing the
analysis of the Auxon fields. The Aharonov-Bohm effect
predicts that the magnetic Aux 4 causes the phase shift
b, P between the electron wave front elements passing
through either side of the flux (Fig. 7):

b, /=2m (16)

Incident Electron

A single flux quantum h /2e( =2.07 X 10 ' Wb), there-
fore, causes the phase shift of m. The contour phase lines

2&nI(x,z;n)=a(x, z)+b(x, z)cos 2$(x,z)+

(n =0 3) were synchronously stored through a TV cam
era (512X512 pixels) in a HIDIC-IP Hitachi image-
processing minicomputer. A pixel corresponds to a —8-

nm-square on the specimen plane. The irradiance at each
pixel in the interference micrograph goes through one cy-
cle of periodic variation with the mirror movement. The
computer determines a best-fit sinusoidal function for the
irradiance versus the amount of phase shift at each pixel
in the micrograph. The phase of the best-At function is a
direct measure of the investigated wave front. According
to the fringe-scanning phase-detection principle, " sum-

mations with sinusoidal weights
Trans
Electr

27Tn

4

=I (x,z;0) I (x,z;2), —

3

C(x,z)= g I(x,z;n)cos
n=0

(13)

FICx. 7. The Aharonov-Bohm effect predicts that the phase
shift bP of the electron wave transmitted through the magnetic
flux @ is related by 6$=2vrC&/(h/e).



SHUJI HASEGAWA et al. 43

in the interference micrograph drawn in units of ~ in the
way previously mentioned directly correspond to the
magnetic Aux lines in units of h /2e.

It is not only the amount of the Aux, but also the inter-
nal field distribution of the Aux that we can measure from
the curvature of the transmitted wave front. We set up a
coordinate system as shown in Fig. 8 to give some
mathematical expressions. The z axis is the core axis of
an isolated Auxon, and the region of z ~ 0 is occupied by a
semi-infinite superconductor. The region of z ~ 0 is vacu-
um and the surface of the superconductor is the plane
z =0. The incident electron wave g;„,= exp Iikoy I comes
from y = —~ along the y axis. Its wave front is parallel
with the (xz) plane and infinitely spreads in the vacuum
z ~ 0. Transmitting through the fluxon, the wave gets the
phase shift P(x, z) which is expressed by a line integral of
the vector potential A along the path of the wave front
element of interest:

pat

Observation plane

g(z, z)

P(x, z) = ——f A ds .
pathi

FIG. 8. Coordinate system for analyzing the internal field
distribution around a Auxon center from the measured phase
distribution of the passed electron wave.

Taking into the spatial resolution of our observation, we
can neglect the deflection of the path by the fIuxon field.
In fact, its deAection angle is —10 rad and the decrease
of the spatial resolution by this effect in an in-focused
hologram is estimated 0.001 nm. So path 1 is regarded as
a straight line passing through the point (x, O, z) and
parallel to the y axis. In the same way we obtain

BP(x,z) e
dy B,(x,y, z) .

ax A

In the same way we get

(23)

P(x+dx, z)= ——f A ds
path2

(18)
ay(x, z) e

dy B (x,y, z)
az oo

(24)

A.ds-
i6 . path2 path1

A-ds (19)

We can regard path 1 and path 2 as the same at y =+~,
Eq. (19) is rewritten as

Bh(x, z) e
dx = f A'ds,

ax
(20)

where the integral is carried out along the closed path
determined by paths 1 and 2. According to the Stokes
theorem and rot A=B (B is the magnetic fiux density
vector),

BP(x,z)
d

e

ax
(21)

where the surface integral is performed over the surface
bordered by the closed path. Since the surface element
dS points to the positive direction of the z axis and
idSi =dx dy,

BP(x,z) edx= ——dx f dyB, (xyz),
ax

and consequently

(22)

for the neighboring wave front element. Subtracting Eq.
(17) from Eq. (18) we get

P(x +dx, z) —P(x, z)

ay(x, z)
„

Bx

for the field-vector component parallel to the supercon-
ductor surface. In this way, by differentiating the mea-
sured phase distribution of the electron wave, we obtain a
two-dimensional projection of the three-dimensional
magnetic field distribution along the direction of view.
Data processing of the numerically measured phase is
possible with an image processing computer.

On the next step we calculate the field vector com-
ponents B„B„(orB ) themselves from their projections
Eqs. (23) and (24). Since the magnetic field distribution B
of the Auxon and the persistent current j circulating
around the Auxon are axisymmetric with respect to the z
axis, we introduce the cylindrical coordinate (p, y, z) (Fig.
8). j has only the cp component only in the superconduc-
tor. But B has the z and p components near the super-
conductor surface and in vacuum, although it has only
the z component in the sufticiently inner bulk region of
the superconductor.

We now employ the same algorithm as the reconstruc-
tion of the three-dimensional structure from the electron
microscope image using the Fourier transform. We at
first calculate the Fourier transform F(X,z) of Eq. (23)
with respect to x:

~(X z) — dx ~ & e 2vrix&()k(, )

00 Bx

= ——f dx f dy B,(x,y, z)e '" . (25)
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Transforming into the cylindrical coordinate,
B,(x,y, z) =B,(p, z) (B, is independent of y coordinate)

J (x)— d ei(x cosy+ny)2m-

2mi"

Equation (26) is rewritten as

(27)

F(X,z) = ——f dy f dp pB, (p, z)e
o o

(26)
F(X,z) = — f dp pB, (p, z)Jo(2vrpX) .

0

Taking into account the definition of the nth order Bessel
function

After multiplying X Jo(2vrtX) to both sides of Eq. (28),
and integrating with X we get

f dX XF(X,z)Jo(2n tX) = — f dp f dX pXB, (p, z)Jo(2vrpX)JO(2vrtX) .
0 o o

(29)

By replacing iI =2~X, the right-hand side of Eq. (29) is

27' 0 0f dp f dg pqB, (p, z)JO(pg) Jo(tel) . (3O)

B,(p, z) = — f dXXF(X,z)JO(2mpX) .
e o

(32)

In the same way, the p component is given as described in
the Appendix by

Using the identity for the Fourier-Bessel integral theorem
for an arbitrary function f (t),

f (t)= f ™dpf dil pelf (p)J„(prt)J„(trl), (31)

Equation (30) is equivalent to —(e/2nA')B, (t, z) Cons.e-

quently Eq. (29) is reduced to

computer.
Since we could not observe the Auxons in the supercon-

ductors, but only the Auxons appearing on the supercon-
ductor surface as mentioned so far, the comparison with
theories is not straightforward. For the Aux begins to
spread even below the superconductor surface so that the
field distribution around the core axis differs from that in
the inner bulk. Then we numerically solved the GL
equations in the superconductor and the Maxwell equa-
tions in vacuum in order to correctly evaluate the Aux
spreading near the surface. Although our experiments
were carried out in the range of low magnetic fields and
low temperatures, in which the GL theory is not applic-
able, we start from the equations often used for phenome-
nological understanding. Since, however, the GL equa-
tions,

B (p, z) = f dX XS (X,z)J, (2~pX),
ie o

where

(33)
2

2
2ie

V — A 4 =a'0 —f3 4' 2

2m
(35)

g(X ) dx w I e2mxxa~(x, z)
oo QZ

(34)

By differentiating the measured phase distribution of the
electron wave and taking their Fourier transforms, each
component of the field vector 8 can be in this way calcu-
lated. In Sec. V we actually calculated the components
from the phase data measured by the fringe scanning in-
terferometry, and then the results are compared with the
field distribution calculated from the Ginzburg-Landau
equations.

IV. MODEL CALCULATIONS OF INTERNAL FIELD
DISTRIBUTIONS

In this section we numerically calculate the internal
field distributions of quantized magnetic Auxes near the
surface of a superconductor. The magnetic-Aux distribu-
tion around the Auxon center in the superconductor has
been qualitatively described by the London model ' and
semiquantitatively by the Clem model. For quantitative
discussions for the field distribution, the GL equations, or
more strictly speaking, the Eilenberger equations de-
rived from the Gor'kov equation, should be solved. But
it needs a huge numerical calculation with a high-speed

1 rotrotA=n, . (O'*V+ —V%'*0') — I+I A2e

Po 2mi

(36)

B(r)=rot A(r),

1j(r) = rot rot A(r) .
Po

(38)

Using the coordinate system shown in Fig. 8, the Auxon
near the surface is described by

where %(r) is the order parameter, A(r) the vector po-
tential, po the permeability of the vacuum, n, the number
density of the Cooper pairs, a and P are the coefficients
calculated from the BCS theory, are nonlinear for the un-
known functions %(r) and A(r), we cannot easily solve
them. So we assumed some functions for %(r) and solved
Eq. (36) only for A(r). Once the vector potential is ob-
tained we can calculate the fiux density B(r) and the per-
sistent current density j(r) circulating around the fiux:
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'p(p v» )=l+(p,.)l.
A(p, q, z) = a, (p, z)+,
B(P,k, z) =Bp(p, z)p+B, (p, z)z,

j(p 0' z)=j (p, z)q,

(39)

C'0
A„(p,z) — l%'(p, y, z) =0, (40)

2&p

where p, y, and z are the unit vectors for the respective
directions. Equation (36) then has only the p component:

t) A (pz)
rip p dp

+ — [ 3 ( z)

The boundary conditions Eq. (45) should be differ t b-
tween an isolated fIuxon and a fIuxon in a Aux line lattice,
but the calculated internal field distribution around the
fIuxon center near the superconductor surface was almost
independent of the boundary conditions and the calcula-
tion area size. Our main interest in the analysis of the ex-
perimental results lies in the internal field distribution at
the Aux root just above the superconductor surface.

For numerically solving the GL equation Eq. (40) with
the Clem model Eq. (44), we must estimate the charac-
teristic parameters of our lead films, A, and g. In the case
of superconductor s characterized by the local field
theory, the weak-field penetration depth A, (T,d), which
depends on the temperature T and possibly on the film
thickness d, is given by

where the magnetic-Aux penetration de th
A, =(m /2e

ep
pon, ', and the magnetic-Aux quantum

No =h /2e. And then, from Eqs. (37) and (38),
A(T, d)=A, (LT) 1+

1/2

(46)

BA (p, z)
B (p, z)=—

8B,(p, z) =—
I p A (p, z) I,

p

(41)

(42)

Here, A,L (T) is the London penetration depth, go is the
Pippard coherence distance, and l is an effective mean
free path arising from either scattering by impurities or

j (pz)=
Po

aB,(p, z)

az

dB, (p, z)

Bp 0..
(p, z) — lip(p, lp, z)

l
. (43)

27Tp

For the SQF line we adopt the Clem model for the or-
der parameter.

vacuum

-0.2 i-
superconductor

04-———————————I I

I I I I I I I I I I i

f$fPj; '(b
'

I I
I)I

I I

, ,

s. i- ——————————————(a)(I I
I I I I I

IV

P, ( 2+~2)ized'
Vi(p 0 z): 0 ( )() (44)

( =gpnm
A =50nm

=0, because of the symmetry on p=0 '
7

~'0 1
implying B =0, on p=1 pm

'7T P p

No P
2mz2 4o0 '

(45)

implying B,=const, on z =0.5 pm 'pm,
3A

=0, implying B =0, on z = —0.5 pm

where g is the coherence length which approximately
corresponds to the radius of the fIuxon. We assume the z
independence of the order parameter near the supercon-
ductor surface. Equation (40) then becomes the Maxwell
equation in vacuum z) 0. Equation (40) with E . (44)q.
was numerically solved by the finite difference method us-
ing the DEQsOL (differential equation solver) program
with a Hitachi computer HITAC M680H. The area for
solving the equation was a square of p =0—1p —— pm,
z = —0.5 —0.5 pm with 200X200 square meshes (Fig. 9),
and the boundary conditions were

400-- ( =76nm
A =63nm

rder parameter

(a

0.6 0.4 0.2 0 p.2 0.4 0.6 0.8 1.0
p(pm)

FIG. 9. TThe magnetic-flux distributions of a fluxon near the
superconductor surface, calculated th thwi e DEQsoL program
using the Ginzburg-Landau equation Eq. (40) combined with
the Clem model equation (44). The curved solid lines are calcu-
ated with the parameters, /=90 nm, A, =50 nm, and the curved
ash lines are with /=76, A, =63 nm. Th fi

t e ux-line distributions. The lower figure shows th filows e pro es
o e e distribution along the lines indicat d

'
th

' ae in e upper
gure. e field-vector components are separately shown.
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the surfaces of the film. Since a real sample lead is not
owever, recognized to be quite local, Tinkham ' has

suggested the following modification of Eq. (46) as a suit-
able extrapolation form for A, ( T,d);

(47)

I~(T, d)=~(T, oo ) 1+ [Al (T)]
[g(T, oo )]2 l

where

(49)

)1( T, d) =A, ( T, oo ) 1+
/l, l (T)&

[A(T, oo )] l

where A, (T, oo ) is the bulk weak-field penetration depth.
We assume the temperature dependence of A, 's by the
usual Gor ter-Casimir ones, namely, )1 ( r ) = ) (0)/
(1—t )'/, where t = T/T, . Then, Eq. (47) becomes

X(0, ) [i ]' 4
( 1 $4)1/2 [g( T ~ ) ]2

Using the values of the effective mean free path l ob-
tained in Sec. III and [Al (T) /A(T, oo ) ](0=69 nm at
T=4.2 K, A, (0, oo )=44 nm, ' we get A, (4.2 K, 200
nm) =50—52 nm.

In the same way, the GL parameter s(T,d) is given
31

2

1 —exp e ''P (z ~0),

0 (z&0),

instead of the Clem's one Eq. (44), using (=90 nm, k= 50
nm. The calculated results are shown with the curved
dash lines in Fig. 10, indicating that the difference of the
Aux distribution between the Clem model and the model
equation (52) is clear only near the fiuxon center, and is
vanishing in vacuum.

lines (/= 90 nm, A, =50 nm) and the curved dash-lines are
distinguished in the superconductor, it is vanishing in
vacuum with the distance from the superconductor sur-
face. As a matter of course, the Aux distribution in vacu-
um reAects less the internal field distribution in the super-
conductor. Since our experiments could catch the Aux
distribution only above the superconductor surface, it is
difficult to quantitatively determine the values of the GL
parameters. The calculated results with the both pairs of
parameters are utilized for the comparison with the ex-
perimental results.

For comparison, moreover, the magnetic-fiux distribu-
tion is also calculated with an order parameter:

2&2~ H(T)[A( Too )]
I~(T, oo)=

h /2e

2&2 ~H, (0)[A(0, oo )]2

(1+t )h /2e
(50)

0.4—

0.2-
v'ac U

I'/C((

&i)

gc)
'(b)

Here, H, is the thermodynamical critical field,
H, (0)=803 G., and h/2e =2.07X10 ' Wb, the fiux
quantum. We obtain, therefore, 1~(4.2 K, 200
nm) =0.56—0.59, and consequently, from the relation
g(T d)=A(T d)/s(T d), we get g(42 K, 200
nm)=88 —90 nm. These values of the parameters, A, and

for our lead films are not dissimilar to other
12, 14

er re-
ports, ' in spite of our unusual substrate for the lead
deposition. We adopt these values hereafter.

The curved solid lines in Fig. 9 show the magnetic-Aux
distributions around the Auxon center, calculated from
Eqs. (40) and (44) using the parameters (=90 nm, A, =50
nm. It shows that the Aux begins to spread even below
the superconductor surface. The field distribution in the
inner bulk region of the superconductor coincides with
the original Clem model:

-0.2

-0.4

~ W

Cl

~ W

Q

hD

superconductor Ill
I

)

1 ~

ll&il ~ I

400, gn)

&*(p)

(s '+(') ~

I +i I= 1 —c*p(-~C)

( =90nm
A =50nm

der parameter

[( 2+ (2)1/2/)1 ]B,(p)=
2vrk, g &1(g/& )

(51)

I

10 08 06 04 02 O O.2 O.4 O.6 O.s Z.O

p(pm)

where Ko and K1 are the modified Bessel functions. The
result with a wider calculation area (p =0—2. 5 lti mpm,
z = —0.5 —2 pm) is utilized for the comparisons with ex-
perimental results in Sec. VI.

The same calculation was performed for comparison
using the literature values for the parameters of a ol-
crystalline thin film of lead, /=76 nm, A, =63 nm. The
calculated results are shown with curved dash-lines in
Fig. 9. Although the difference between the curved solid

FI~G. 10. The magnetic-Aux distributions of a Auxon near the
superconductor surface, calculated with the DEQsoL program
using the GL equation Eq. (40). The curved solid lines are cal-
culated with the Clem model Eq. (44), and the curved dash lines
are with a model Eq. (52). Both are calculated with the parame-
ters (=90 nm, A, =50 nm. The upper figure shows the fiux-line
distributions. The lower figure shows the profiles of the field
distribution along the lines indicated in the upper figure. The
field-vector components are separately shown.
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e„(p)= +, (53)

According to Lasher, the order parameter iIi„(p)of a
state consisting of MQF (n-Aux quanta) is given in terms
of that of the state of SQF %,(p) as

tinguis ed even in the vacuum above the suve e superconductor

For the SQF line in a film of thickness d, the flux distri-

ter'
bution was calculated by utilizing Cl ' dem s or er parame-

Then, using the Clem model Eq. (44), the order parame-
ter of the MQF structure is given by

n l Il IP (z & 0 )

p +(2
n

0 (z &0),
iIi ( ) P —i

i P~V'~
( +g2 )1/2

e ~ (
—d &z&0)

0 (z& —d) .

(55)

@„(p,y, z) =
() (0 (z&0) . (54)

Figure 11 shows the calculated results from E (40) dqs. an
( ) for n =1 and 4 using (=90 nm and A, =50 nm. The
ordinate, Aux density, in the lower figure is normalized
for the flux density of a SQF. The difference of the Aux
distributions between the two models can be dis-

The calculated result using /=90 nm, &=50 nm, «om
q. (40) with Eq. (55) for d =4k, is shown in Fig. 12(b). It

shows that the flux distribution just above the surface of
the film is almost the same as that of the semi-infinite su-
perconductor Fig. 12(a). We therefore utilize the results
calculated for the semi-infinite superconductor for the
comparison with the experimental results in Sec. VI.
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FIG. 11. The ma ng etic-flux distributions of a fluxon near the
superconductor surface, calculated 'th th
using the GL equation Eq. (40). The curved solid lines are cal-
culated with the Clem model Eq. (44) d h, an t e curved dash lines
are with the Laser model Eq. (54). B th 1o are ca culated with the
parameters =90 nm —50 nm. The upper figure shows the
flux-line distribu

'

the field
'butions. The lower figure shows th fil fe pro es o

e distribution along the lines ind t d h'n ica e in t e upper
gure. e field-vector components are separately shown.

(b')

FIG. 12. The flux u(upper figures) and circulating current
(lower figures) distributions of a fluxon penetrating through (a) a
semi-infinite and (b) a thin film of thickness d =4k of supercon-
ductors are calculated w'd with the DEQsoL program using the GL
equation Eq. (40) combined with the Clem models, Eqs. (44) and
(55), respectively.
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V. EXPERIMENTAL RESULTS

A. Observations of magnetic-Aux structures

After the in-field cooling in which the film was cooled
down from 15 to 4.2 K under the magnetic field of the
fixed strengths, the holograms were taken during apply-
ing the field (in-field observation). We observed three
kinds of magnetic-Aux structures in superconducting lead
films, depending on the film thickness and the applied
magnetic field. Figure 13 shows the interference micro-
graphs with m-phase interval, in which a single interfer-
ence fringe exactly corresponds to a magnetic-Aux line of
a single Aux quantum h/2e. The shadowed areas are the
curved lead films and we can only observe the Aux

spreading out into vacuum after penetrating through the
films. The observation areas for a lead film are not neces-
sarily the same under the different applied magnetic
fields.

Although the Auxons were observed in the 0.2-pm-
thick film under the 1.0-0e field, the Auxons did not ap-
pear under the fields be1ow 2.0 Oe for the 1.0-pm-thick
film, and below 5.0 Oe for the 1.7-pm-thick film. This
fact indicates that the Meissner phase is extended into the
higher field region with increase of the film thickness (see
Fig. 1).

In the case of films of 0.2 pm thickness [Figs.
13(a)—13(c)], the fiuxes penetrate in the form of the SQF
lines, independent of the applied fields. They are the SQF
structures of Tinkham. ' With an increase of the film
thickness to 1.0 pm [Figs. 13(d)—13(f)], fiux bundles with
several Aux quanta penetrate in the form of thin fila-
ments, and their exits on the surface are pointlike. This
is a MQF structure, which we call "MQF-A type" here-
after. In this structure, with the applied magnetic field,
the amount of the fiux contained in a single MQF line in-
creases and the number of the MQF lines also increases.
In the case of 1.7 pm [Figs. 13(g)—13(i)], moreover, the
Aux penetrate in the form of Aux bundles, as in the case
of the 1.0-pm-thick film. But the diameters of the flux
bundles are much larger than those of the MQF-A lines.
We call this structure "MQF-B type" from now on. In
this case, with increase of the field strength, the diameters
of the Aux exits on the film surface seem to increase, al-
though the diameters seems to remain unaltered in the
MQF-A structure in the 1.0-pm-thick film. Figure 13
clearly shows three kinds of structures, SQF, MQF-A,
and MQF-B, in the form of the distribution of magnetic
Aux lines. The differences between these structures will
be more clearly shown in the detailed analysis of the
internal field distributions around the Auxon center in the
next subsection.

Although the SQF lines tend to arrange in the lattice
form according to Tinkham, ' the observed SQF lines in
the film of 0.2 pm seem to arrange at random. This is
thought to be originated from the strong pinning force
caused by the inhomogeneity of the film, the most prom-
inent of which are grain boundaries. ' The arrangement
can also be made random by the creation and annihila-
tion of the vortex-antivortex pairs in the Kosterlitz-
Thouless (KT) region' just below the superconducting

transition temperature. KT theory has been extensively
discussed concerning the melting of the Aux line lattices
in two-dimensional super conductors. ' The Auxon
pairs observed in Figs. 13(a) and 13(b) may correspond to
the ones predicted in KT theory. The pairs may have
been created when the film was cooled down through the
KT regime, and "frozen" by pinning so that the opposite
Auxons would have not met to annihilate each other. The
polarity of each Auxon is easily distinguished in the in-
terference micrograph. Unless the polarities of the two
Auxons are opposite, the Auxons individually stand up
and fan out, not make a pair. This is one of the unique
features to the electron holographic observation com-
pared with other experimental methods. The pairs were
not observed in the films of 1.0-pm and 1.7-pm
thicknesses. This is naturally understood because KT
theory is applicable only for the two-dimensional system,
and on the contrary, for this reason, it is suggested that
the observed Aux pairs are the ones predicted by KT
theory.

Figure 14(a) shows the interference micrograph of the
SQF line appearing in the 0.2-pm-thick film under the
3.7-0e field, in which a single fringe exactly corresponds
to a single fiux quantum. Figure 14(b) is a phase-
difference-amplified interference micrograph analyzed
from the same hologram as Fig. 14(a). This micrograph
was obtained by setting the contour phase lines at tr/4
phase intervals, instead of m interval in Fig. 14(a), from
the phase data numerically measured by the fringe scan-
ning interferometry. This is called "eight-times
amplified" so that a single fringe corresponds to a mag-
netic fiux line of h/Se. The total amount of fiux and the
detailed Aux distribution can be estimated with higher ac-
curacy.

The MQF-A lines with four fiux quanta emerging in
the 1.0-pm-thick film under the 5.0-0e field are shown in
Figs. 15(a), and 15(b) is its eight-times phase-difference-
amplified interference micrograph in which a single
fringe corresponds to a magnetic flux line of h/Se. The
Aux penetrating through the superconductor looks as fine
as that. of the SQF in Fig. 14.

Figure 16 shows the MQF-B lines with four fiux quanta
appearing on the 1.7-pm-thick film under the field of 12.2
Oe. The root of the Aux is much broader than that of the
MQF-A line in Fig. 15, while the amounts of the fiux are
the same.

In this way, the structural changes from the SQF to the
MQF- A and the MQF-B structures are clearly and
directly shown in the form of magnetic-Aux distributions
in interference micrographs. The changes seem to origi-
nate only from the increase of the film thickness, because,
from the R~ measurement, the quality of the films is es-
timated to remain unaltered with the thickness change.

B. Internal field distributions of quantized magnetic cruxes

The phase distributions of the electron waves transmit-
ted through the Auxons were numerically measured and
then the field vector components around the Auxon
centers were decomposed using the digital phase analysis
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(b)

FIG. 14. A singly quantized fiux (SQF) line appearing in the
0.2-pm-thick lead film under the 3.7-0e field. (a) Interference
micrograph showing the Aux lines in units of h/2e, and (b) in
units of h /8e (an eight-times phase-difterence amplified interfer-
ence micrograph). The curved dash lines in (a) and the curved
solid lines in (b) are the Aux distribution calculated from the GL
equation Eq. (40) with the Clem model equation (44) using the
parameters /= 90 nm, A, = 50 nm.

FIG. 15. A multiply quantized flux (MQF-A) line appearing
on the 1.0-pm-thick lead film under the 5.0-0e field. (a) In-
terference micrograph showing the Aux lines in units of h/2e
and (b) in units of h /8e (an eight-times phase-difference
amplified interference micrograph). The curved dash-lines in (a)
and the curved solid lines in (b) are the Aux distribution calcu-
lated from the GL equation Eq. (40) with the Clem model equa-
tion (44) using the parameters (=90 nm, A. =50 nm.

method as described in Sec. III.
At first, we analyzed the hologram taken from the 1.0-

pm-thick lead film under the 5.0-0e field (MQF-A ). Fig-
ure 17(b) shows the line profile of the phase distribution
along the line 2 3 just above the superconductor surface
in the interference micrograph Fig. 17(a). It shows that
the phase steeply shifts at the Aux exits and does not shift
between them. This shows the Aharonov-Bohm effect.

The wave front numerically reconstructed in this way
is three dimensionally displayed in Fig. 18. The near side
of the wave front (z =0) is adjacent to the lead film sur-
face. This wave front is an expected one shown in Fig. 4.
The sudden phase shifts at the flux exits are multiples of
m, and their multiples are the number of fringes in Fig.
17(a). This fact precisely means the fiux quantization in
units of h/2e. The phase measurement precision in the
fringe scanning interferometry corresponds to the Aux
resolution of —h /100e.

On the next step, the field-vector components were de-
rived from the numerically measured phase distributions
by the data processing method mentioned in Sec. III.
The derivative t)P(x, z)/t)x is calculated from the phase
profile Fig. 17(b) and presented in Fig. 17(c). It has peaks
at the Aux exits because it is the line integral of the field-
vector component 8, normal to the surface along the
electron path as expressed by Eq. (23). In the same way
Fig. 17(d) is the derivative BP(x,z)/Bz which corresponds
to Eq. (24). Using these data, then, the field-vector com-

ponents were calculated according to Eqs. (25), (32), (33),
and (34). The solid broken lines in Fig. 19 show the re-
sult obtained from the Aux bundle with four-Aux quanta
appearing at the left end of Fig. 17(a) or Fig. 15. The or-
dinate is normalized for the fiux density of a SQF. Elec-
tron holography combined with the digital phase analysis
method in this way enables the quantitative measurement
of the field-vector components near the center of an indi-
UiduaI Aux in terms of the distance from the core axis.

FIG. 16. A multiply quantized Aux (MQF-8) line appearing
on the 1.7-pm-thick lead film under the 12.2-0e field. An in-
terference fringe corresponds to the Aux quantum h/2e. The
curved dash lines shows the Aux distribution calculated from
the CiL equation Eq. (40) with a model Eq. (59) with R =0.4
pm, /=90 nm, I,= 50 nm.
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FIG. 19. Field-vector components, B,(p), normal to the sur-
face, and B (p), parallel to the surface, around the Aux center
just above the superconducting lead film surfaces. The broken
dash lines are for the SQF line shown in Fig. 14. The broken
solid lines are for the MQF-A line shown in Fig. 15. The
curved solid lines are the distributions calculated from the GL
equation Eq. (40) with the Clem model equation (44) using the
parameters /=90 nm, A, =50 nm. The curved dash lines are the
calculated ones with the parameters (=76 nm, k=63 nm.

FIG. 17. Digital phase analysis for the Auxes appearing on

the 1.0-pm-thick film under the 5.0-0e field. (a) Interference

micrograph showing the MQF-3 structure. (b) Line profile of
the phase distribution along the line 3 A just above the super-

conductor surface in the micrograph (a). (c) Its derivative with

x, BQ(x,z)/Bx. (d) Its derivative with z, BQ(x,z)/Bz.

The same analysis for the SQF line shown in Fig. 14
was carried out, and its result is shown as the broken
dash lines in Fig. 19. The field distributions of the SQF
and MQF- A almost coincide.

We next analyzed the fiux of the MQF-8 structure in
the 1.7-pm-thick film under the 12.2-0e field. Figure
20(b) is the line profile of the phase distribution along the

Pha

line 33 just above the superconductor surface in the in-
terference micrograph (a). Since, as in Fig. 17, the phase
shifts at the flux exists are multiples of m, it is included
that the fluxes are quantized in units of h/2e. But the
phase changes are slower in broader areas compared with
those in Fig. 17, which means the lower flux density in
the MQF-8 compared with that of the SQF and MQF-A
lines. The derivatives BP(x,z)/t)x and BP(x,z)/t)z were
calculated and shown in Figs. 20(c) and 20(d). We ana-
lyzed the field components of the flux with four-flux
quanta appearing at the left end in this figure. The result
shown in Fig. 21 is apparently different from the ones in
Fig. 19. The 8, distribution shows, in particular, the
nearly uniform flux penetration through a semimacro-
scopic normal region.

By introducing the digital phase analysis method, in
this way, we cannot only determine the flux amounts with
much higher accuracy compared with the interference
micrograph observation, but also analyze the internal-
field distributions in three dimensions.

VI. DISCUSSIONS

A. Detection of a single Auxon

FIG. 18. Electron wave front reconstructed by the digital
phase analysis method. The hologram taken from the MQF-A
structure shown in Fig. 17 was analyzed. The near side of the
wave front (z =0}is adjacent to the lead film surface.

The contrast produced by a single fluxon in Lorentz
microscopy have been calculated by several au-
thors ' ' to find that the position detection of a single
fluxon is near the observation limit from the uncertainty
principle.

Using the phase difFerence dP between the two paths 1
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and 2 in Fig. 8, d(() =(t)(t /Bx)dx, the deAection angle of
the incident electron beam P by the magnetic field of a
single Iluxon is given by P=d(t /k dx, where k~ is the y
component of the wave number vector of the incident
electron. The phase difference d(t is expressed with the
amount of the Aux between the two paths d 4 as
d(t =add&/C&o [Eq. (16)j, where 4o=h/2e. The momen-
tum change of the incident electron beam in the x direc-
tion dp„,on the other hand, is given by dp =p P, where

p is the momentum component in the incident direction.
Consequently we get

~ P4

U
~ sE

bI)
et(

4@0
cal.

1.2 03 0.4 0
p(pm)

0.4 08

I I I I I
'

I I 1 I I I

dp~ dx- h d4
0

(56)

On the other hand, the spread Ax of the wave packet in
the x direction consisting of plane waves with the
momentum uncertainty dp is related by

FIG. 21. Field-vector components, B,(p), normal to the sur-
face, and B (p), parallel to the surface, around the Aux center
just above the superconducting lead film surfaces. The broken
solid lines are the fiux distribution in the MQF-B line shown in
Fig. 16. The curved solid lines are the distribution calculated
from the GL equation Eq. (40) with a model Eq. (59) with
R =0.4@m, (=90 nm, A, =50 nm.

dp Ax ~h, (57)

from the uncertainty principle. Since the spatial resolu-
tion of real observations dx is always dx ~Ax, we get

therefore, from Eqs. (56) and (57),

(58)

This implies that the observation of magnetic Auxes with
spatial resolution of dx needs the (lux (change) of order of
+0 in the interval of dx. In other words, in the case of
the observation of a single Auxon, its position can b~
determined only with the precision of order of its diame-
ter.

The present report, however, shows the observation of
a single Auxon with the Aux resolution dN-No/100 and
the spatial resolution dx of approximately one-hundredth
of its diameter. This seems to contradict the uncertainty
principle mentioned above.

A classical picture such as the above discussion on the
connection between the spatial and flux resolutions is not
applicable to the electron holography. The observation
in image-electron holography is carried out essentially in
quantum mechanics. The spatial resolution is not deter-
mined by the wave packet spread in the direction perpen-
dicular to the propagation. In our holography electron
microscope, the electron wave packet widely spread —50
pm in the x direction at the specimen plane. Utilizing a
part of the wave packet as an object wave, an in-focused
image is formed with spatial resolution as high as conven-
tional electron microscopes. The remaining part of the
wave packet is utilized as a reference wave. The high
resolution for magnetic Auxes is achieved by interfering
the object wave with the reference one, irrespective of the
spatial resolution of the image. Utilizing the reference
wave in the electron holography, the high resolution for
magnetic Auxes can be obtained without any reduction of
the spatial resolution.

FIG. 20. Digital phase analysis for the cruxes appearing on
the 1.7-pm-thick film under the 12.2-0e field. (a) Interference
micrograph showing the MQF-B structure. (b) Line profile of
the phase distribution along the line AA just above the super-
conductor surface in the micrograph (a). (c) Its derivative with
x, BQ(x,z)/Bx. (d) Its derivative with z, BP(x,z)/Bz.

B. Magnetic Aux structures of lead films

Now we compare the experimental and calculated re-
sults on the internal field distributions of quantized
cruxes. The curved dash lines in Fig. 14(a) show the (lux
distribution calculated from the GL equation Eq. (40)



7648 SHUJI HASEGAWA et al. 43

with the Clem model Eq. (44) for the SQF line using the
parameters /=90 nm, A, =50 nm. The observed and cal-
culated distributions qualitatively agree, implying that we
actually observed the Aux exit just on the superconductor
surface. More detailed comparison is possible in Fig.
14(b) with a phase-difference-amplified interference mi-
crograph. The calculated distribution (curved solid
lines) considerably agrees, particularly at the fiux root
just above the surface.

In the case of the MQF-2 line in Fig. 15, the agree-
ment with the calculated distribution with the Clem mod-
el, which is the same as that of the SQF line in Fig. 14, is
also considerable. Since, as shown in Fig. 11, the
difference of the magnetic-Aux distribution between the
Clem model Eq. (44) and the Lasher model Eq. (54) for
the MQF lines (n =4) is evident, we can conclude from
our observation that the MQF-2 structure is better de-
scribed by Clem's order parameter for the SQF line than
that of Lasher's for n-quanta MQF line. Figures 14 and
15 show that the field distributions around the center of
the SQF and MQF-2 lines are in the same character with
the exception of their Aux amounts.

At the region far from the surface in the images of
Figs. 14 and 15, the calculated lines slightly deviate from
the observed ones because of the boundary conditions for
solving the GL equations. Equation (45) does not accu-
rately reAect the real circumstances, which affect the dis-
tributions at the circumference in the images. Experi-
mentally, moreover, the fringe distributions at the region
far from the superconductor surface are apparently
affected by the slight inclination of the mirrors in the op-
tical reconstruction interferometer (Fig. 6). Anyway, our
main interest lies in the internal field distribution at the
Aux root just on the surface.

As mentioned in the previous section, the root of the
MQF-B line shown in Fig. 16 seems much broader that
those of the SQF and the MQF-/I lines. This feature is
qualitatively explained by the Lasher's order parameter
Eq. (54) for the MQF line as shown in Fig. 11, which,
however, does not give quantitative agreement satisfacto-
rily with the observed MQF-B line. In order to better
simulate the fiux distribution of the MQF Bline shown in-

Fig. 16, we assume an order parameter

—(P —R) /g Ii/2e in' (z &0 p~R)
q/(p, y, z)= '0 (z (0, 0 p R),

0 (z ~0),

instead of Eq. (54). This model implies that a circular
normal region of the radius R appears in the supercon-
ducting phase and the magnetic-Aux bundle of n quanta
penetrates therein. The curved dash lines in Fig. 16 show
the Aux distribution calculated from the GL equation Eq.
(40) using this model of R =0.4 pm, n =4, /=90 nm,
and A, =50 nm. The agreement of the observed pattern is
fairly good, which shows distinct difference from the SQF
and the MQF-3 lines.

The field-vector components are also compared. The

curved solid lines and the curved dash lines in Fig. 19
show the calculated distributions with Clem's order pa-
rameter Eq. (44) using the parameters /=90 nm, A, =50
nm, and g =76 nm, A, =63 nm, respectively (compare
with the curved lines in Fig. 9). The experimental results
for the SQF (broken dash lines) and the MQF-/I (broken
solid lines) are considerably traced by the calculated
curves. The MQF-2 line, in particular, penetrates in the
form of a filament as fine as the SQF line. We cannot ob-
tain here a definite conclusion which pair of the GL pa-
rameters here adopted in the calculation is more ap-
propriate.

Concerning the MQF-B line, the curved solid lines in
Fig. 21 are calculated with a model Eq. (59), which fairly
well traces the experimental results (broken solid lines).
This field distribution cannot be explained by any curves
in Fig. 9, implying that the broadening of the Aux root in
the MQF-B line is intrinsic, not due to the shadowing of
a finer root by the curved lead film edge.

It should be pointed out here that the Aux density just
above the normal region on the superconductor surface
in the MQF-B structure is estimated approximately 180
G from Fig. 21, which is much lower than the thermo-
dynamical critical field —500 G of bulk superconducting
lead at T=4.2 K. The internal field in the normal
domain in a macroscopic intermediate state, on the other
hand, is expected to be approximated by the thermo-
dynamic critical field. This extraordinary reduction of
the fiux density in the normal region of the MQF-B struc-
ture is considered to come from the surface and size
effects. As estimated in Sec. IV and observed in Sec. V,
the Aux lines rapidly disperse out from the superconduc-
tor surface, and its Aux density fairly decreases even near
the center of the normal region compared with that in the
inner bulk region. Since the MQF Blines, mor-eover,
have much smaller size in geometry compared with a
macroscopic intermediate state, its characteristics such as
the Aux density in the normal region can be different
from that of the intermediate state in a bulk supercon-
ductor. For instance, certain reduction of the critical
field in thin films has been observed. '

Another remark remains to be made concerning the
implication of the observed MQF-2 and MQF Blines. -

They do not directly correspond to the Lasher's MQF
and the Goren's NS structures, respectively. They pre-
dicted their structures only applicable at relatively high
field regions, while our observations were carried out un-
der very weak fields, just above the "lower critical field"
(1 D)H, (see Fig. 1).—Since the critical value of the GL
parameter ~ for the transition between type-I and -II be-
haviors in superconducting characteristics is predicted to
be ~= 1/&2=0. 707 from the original GL theory, the es-
timated values ~=0.56—0.59 for our lead films at T =4.2
K seem to be considerably small for the transition. De-
tailed investigations, however, have revealed the attrac-
tive interaction among Auxons in a narrow ~ range near
v = 1/&2, called the intermediate-mixed state.
Auer and Ullmaier observed the transition from type-I
to -II states at a values as small as 0.6 in the range of low
temperature T/T, &0.4. The phase diagram in which
type-I and type-II states including the intermediate-
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mixed state are classified in terms of v and T, has been in-
vestigated by many researchers. Our observed MQF-A
and MQF B-structures, therefore, may be understood as
some transition characteristics between type-I and -II su-

p erconductors. Besides this effect, some additional
features such as the pinning and surface effects may raise
the variety of magnetic-fiux structures like the MQF-A
and MQF Blin-es under low magnetic fields.

VII. SUMMARY

1. We have succeeded to directly image a singly quan-
tized Aux emerging on the surface of superconducting
lead films in the form of magnetic-Aux line distributions
using the electron holography technique. Combining the
digital phase analysis method, furthermore, the Aux
quantum h /2e have been determined for individual Auxes
with prediction of -h/100e. This method has also al-
lowed one to analyze in detail the distributions of the
field-vector components around individual Auxon centers.

2. The fIuxon pairs, consisting of two antiparallel fIux-
ons, have been observed only in the lead films of 0.2 pm
thickness, not in thicker films. These may be the ones
predicted by Kosterlitz- Thouless theory.

3. Under certain restricted observation conditions, i.e.,
under low fields and low temperatures, we have clearly
observed the changes of the magnetic-Aux structures of
superconducting lead films with increase of the film
thickness. In addition to the singly quantized Aux struc-
ture in the 0.2-pm-thick films, two types of the multiply
quantized Aux structures have been newly observed in
thicker films.

4. We have numerically solved the Ginzburg-Landau
equations to calculate the field distributions around the
fIuxon center near the superconductor surface. Consider-
able agreement between the calculated and the experi-
mental results was obtained. In particular, the internal
field distribution of the MQF-A line appearing in the
1.0-pm-thick lead film has been found to be the same as
that of the SQF line in the 0.2-pm-thick film.

APPENDIX: CALCULATING THE Bp COMPONENT
FROM THE PHASE DISTRIBUTION

We derive Eq. (33) from Eq. (24) by the similar method
with the case of the B,-component derivation. Trans-
forming into the cylindrical coordinate, Eq. (24) is rewrit-
ten as

= —f dy 8 (p, z)cosy . (Al)

Taking the Fourier transform with respect to x,

t ) 21I txX

oo 'BZ

dx dy 8 p, z cosine
00

=—f dt's f dppB (p, z)cosrpe '~ ' '+ . (A2)
o o

The y integral can be performed by taking into account
the definition of the Bessel function Eq. (27):
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I

S(X,z)= f dppB (p, z)J, (27rpX) .
0

After multiplying XJ&(2vrtX) to both sides of Eq. (A3),
and integrating with X, we get

f dXXS(X,z)J)(2~tX)= f dpf dXpXB (p, z}Ji(2irpX)J)(2vrtX) .
0 o o

(A4}

By replacing iI=2vrX, the right-hand side of Eq. (A4) is (ie/2vrA') 8(t, z). Consequently Eq. (A4) is reduced to
Eq. (33):

f dp f d rl pgB (p, z)J, (pg)J, (tg) .
2+% o o

(A5)

Using the identity Eq. (31), Eq. (Aa) is equivalent to (p, z) = f ™dXXS(X,z)J, (2~pX) .
ie o

(A6)
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