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The reversible magnetization of anisotropic high-a type-II superconductors in an applied field H
of arbitrary orientation with respect to the principal axes of the sample is considered in the frame-
work of the Ginzburg-Landau theory with an anisotropic effective mass. We examine the procedure
of obtaining the free-energy density F from its corresponding expression in the isotropic case by
simply replacing the Ginzburg-Landau parameter a by a k that depends on the orientation of H rel-
ative to the principal axes. This procedure is valid when H is along one of the principal axes for ar-
bitrary values of H between H„and H, 2 and is also valid to a good approximation when H is not
along one of the principal axes, but only when H )&H, &. Because of the dependence of F on the
orientation of H, when H is not parallel to one of the principal axes, the average magnetic-flux den-

sity B is not parallel to H, and a torque associated with the transverse magnetization exists, tending
to orient the sample so that the value of K is the largest. Expressions for the magnetization and the
torque are obtained from a variational model that permits the analytic calculation of F in the
Ginzburg-Landau regime including, in addition to the supercurrent kinetic energy and the
magnetic-field energy, the kinetic-energy and the condensation-energy terms arising from suppres-
sion of the order parameter in the vortex core. It is also pointed out that a comparison of the
present theory with torque measurements can provide a way to estimate the upper critical field

H, 2(0, $), the thermodynamic field H„and the ratio m~. m2. m, (m;, i =1,2, 3, are the principal
values of the effective-mass tensor m;,-) in the temperature region where the Ginzburg-Landau
theory is appropriate.

I. INTRODUCTION

The goal of this paper is to derive expressions for the
reversible magnetization and torques in anisotropic
high-tc type-II superconductors. Although our theoreti-
cal starting point is the anisotropic Ginzburg-Landau
theory, analytic results can be obtained only near the
upper critical field. We therefore use a physically
motivated model that enables us to obtain results for the
reversible magnetization and torques. These results,
despite their relative simplicity, should be valid to goo'
approximation over a wide range of temperature and
magnetic field.

The effects of anisotropy on the magnetic properties of
type-II superconductors can be most simply accounted
for in the framework of the Ciinzburg-Landau theory' by
introducing a phenomenological effective-mass tensor
M,", which has the principal values M, (i =1,2, 3). It
is convenient to define a normalized mass tensor
m,"=M,"/M with principal values m; =M~ /M, where the
mean mass M =(M, M2M3)'; then m, mzm3=1.

In Ref. 8 the reversible magnetization is considered for
an isotropic type-II superconductor and for an anisotrop-
ic type-II superconductor when the applied field H is
oriented along one of the principal axes of the sample, in
the entire field range between the lower critical field H, &

and the upper critical field H, 2. In this paper we consider
an anisotropic type-II superconductor for the general
case that H is applied along an arbitrary direction with
respect to the principal axes. For an infinite sample in
the mixed state, the Ginzburg-Landau free energy per

unit volume over cross-sectional area A in an plane per-
pendicular to the vortices, measured relative to that of
the Meissner state, can be expressed in dimensionless
form as'

F =Fc +Fkg +Fk& +Ff
where

F, = 1 f d2 i(I f2)2 (2)

F„,= ' f d'p ',
m,,-'(a,f )(a,f),kg g 2 IJ (3)

1 2 2 —1Fk= dpfm; aa, ,
1

a, =a+ —Vy
/C

and

Ff= fd pb~

are the condensation energy, kinetic energy associated
with gradients in the magnitude of order parameter, ki-
netic energy associated with supercurrent, and magnetlc-
Peld energy; f and y are the normalized magnitude and
phase of the order parameter + = %Qe'r (%o is the mag-
nitude of the order parameter in the absence of a field); lc

is the Ginzburg-Landau parameter; I, ' is the normal-
ized inverse mass tensor (m; m k

' =5,k ), 8, =8/c)x;; a is
the vector potential satisfying V a=o; b= V Xa is the lo-
cal magnetic-Aux density; and the two-dimensional in-
tegral is taken over A. The convention of summing over
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where j is the supercurrent density.
For a vortex centered on the x3 axis, in terms of cylin-

drical coordinates (p, g, x3) we have Vy= —VP,
a, =a —$(1/~p), and therefore

- 2&VXa, =b —x3 5(p) .
K

For an array of vortices at positions p„, we have

V' X a, =b —x3 +5(p —p„),- 2~

n

(7)

where 5(p) is a two-dimensional 5 function and each term
in the summation represents one vortex carrying one Aux
quantum of mgnetic Aux centered at p„. We choose here-
after a coordinate system such that the x, axis is parallel
to the averaged magnetic Aux density B, i.e., X3=B, so
that b=b(x „xz).

In general the direction of b(p) is not a constant, and
b has a component transverse to B, of which the average
is zero (since the average of b is B by definition).

Using Eqs. (6) and (8), and with the help of the
Ampere's law

j=V'Xb (9)

and the divergence theorem, we find that the electromag-
netic free energy per unit volume F, =Fk +F can be
simply expressed as

F, =B b(0)=Bb3(0), (10)

where B =2m/~A„&~, 3„&& is the unit cell area of the
two-dimensional fiux-line lattice (B =$0/A, d& in conven-
tional units), and b(0) is the local magnetic-fiux density at
the center of a vortex.

Note that so far the discussion and the equations are
the generalizations of the special cases that were con-
sidered in Ref. 8.

From Eqs. (6), (8), and (9) we obtain the coupled equa-
tions for the components of b:

1 2'
+5;3 X5(p —p. »

repeated indices is employed.
Here the dimensionless units correspond to measuring

the magnitude of order parameter in units of %o, length
in units of the mean penetration depth
k=(Mc /16~e %0)', magnetic field in units of v'2H„
vector potential in units of V'2H, A. and energy in units of
H, /4m, where H, is the thermodynamic critical field.
The mean coherence length g' and ~ are e~xressed in
terms of M by the usual relations /=$0!2V2~AH, and
v=A. /g, where go=bc/2e =2.07X10 Gcm is the fiux
quantum ($0 corresponds to 2vr/a in the dimensionless
expressions). The mean values of g and A, are related to
the values g; =g/Qm; and k,. =XQm, for spatial varia-
tion of order parameter and supercurrent, respectively,
along the principal directions i (i = 1,2, 3) via
g=(g, A+3)'~ and A. =(A, ,X~A3)'~ .

The second Ginzburg-Landau equation is

where E'
jp is the Levi Civita symbol.

Since f is also an unknown in Eqs. (11), in principle
one has to solve these equations and the first Ginzburg-
Landau equation' ' simultaneously. Because of the
nonlinearity, however, these equations cannot be solved
analytically. The simplest approximation is the London
model, '" in which the order parameter is assumed con-
stant, i.e., f =1. Although the London model can give a
good qualitative account of the mixed state in the low
and intermediate field regions, it suffers from its inability
to account for the effects of the depression of the order
parameter to zero at the vortex center, a deficiency that
can produce a significant quantitative error in calcula-
tions of the magnetization. This point will be discussed
in detail in a forthcoming paper. '

As an improvement of the London model, one of the
authors proposed a variational model' for an isolated
vortex, which reduces to the London model well outside
the vortex core but has the added advantage of yielding
realistic results in the vortex-core vicinity. This model
was later extended to the case of a Aux-line lattice. ' It
permits one to calculate the free energy analytically in-
cluding, in addition to the term F, , the terms F, and

FI, arising from the suppression of the order parameter
in the vortex core, and is able to produce results that are
not only qualitatively but also quantitatively good ap-
proximations to the solutions to the Ginzburg-Landau
equations. ' '

In the next section we first use the London model to
show that, when H))H„, the free-energy density of an
anisotropic type-II superconductor in a field H that is ar-
bitrarily oriented with respect to the principal axes of the
sample can be obtained from its corresponding expression
in the isotropic case by simply replacing K by an angle-
dependent K that depends on the orientation of H. In
Sec. III we then apply the variational model of Ref. 8 and
calculate the magnetization, which is not parallel to H in
general as a consequence of the dependence of F on the
orientation of the Aux-line lattice. In Sec. IV we evaluate
the torque that arises from the transverse component of
the magnetization and discuss its dependence upon the
magnitude and the orientation of the applied field and
upon the temperature. In Sec. V we summarize our re-
sults.

II. THE LONDON EQUATIONS

It is shown in Ref. 5 that the free-energy density and
the Ginzburg-Landau equations can be transformed to
isotropic forms by a simple transformation of variables if
K is replaced by K that depends on the orientation of the
vortices with respect to the principal axes. This transfor-
mation was later shown to be valid only when the applied
field H is along one of the principal axes ' and to be ap-
proximately valid for K))1 and H near H, z when H is
not along one of the principal axes. In this section we
show that this transformation is valid to good approxi-
mation for arbitrary orientation of H for the case that
~ )) 1 and H ))H, &

(including intermediate and high
fields). The London model is used for the derivation of
our conclusion.
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When f = 1, Eqs. (11) reduce to the London equa-
tions, which read

bi =m hb, +(mz3BiBz —m, Bz)b3

bz =m33bbz+(m, 3B,Bz —mz38, )b3,

3 (mzz i 2m, zB,Bz+m, Bz)b3 mi3kb

(12)

(13)

—mz3b. bz+ +5(p —p„),
n

where 6=01+8&, V.1=0, B,b; =0 and m; =m;. The
quantity we want to solve for is b3(0) as a function of B,
since F, =Bb 3 (0).

The system of Eqs. (12)—(14) can be solved by introduc-
ing the Fourier transforms

b;(p)= I b;(k)e' P (E =1,2, 3),d k

(2~)

and

where

2mi =m11 —m13/Pl 33

2
m2 =m22 Pl 23/m33

m12 =m12 —m13Pl 23/P233 ~

(22)

(23)

(24)

Pl 12m33 m 13m23 0 (25)

We determine such axes in the Appendix. Then Eq. (21)
becomes

b, (0)=B 1+g. . . (H»H„) . (26)
1

G~P m2G1+I 162

We notice that Eq. (26) could have been obtained by
solving the equation

We can diagonalize the denominators of the terms in the
summation of Eq. (21) by choosing the axes x& and xz
properly so that m, 2 =0, or

2'ir ~5( )
277 ~I d k ik.(p —p„) b, =(m, az+m, a', )b, +

K
(27)

=I z(2~) B+5(k—G)e'"P .
(2~)

(16)

A„„ge "=(2~) g 5(k —G)
G

(17)

and B =2~/KA „1,. We find

Here Cx is the reciprocal lattice vector of the correspond-
ing two-dimensional Aux-line lattice, such that e ' =1,
and we have used the relations

by the method of Fourier transformation under the same
condition that 0 &&H, 1. This proves the useful property
that, for H &)H„, the system of Eqs. (12)—(14) and Eq.
(27) are equivalent in calculating b3(0), and therefore
F, . Equation (27) is of the same form as that for the
case when 8 is parallel to a principal axis, as can be seen
from Eq. (14) when the coordinate axes are the principal
axes, so that m; =I;5; . This means that we may use the
approximation

1+m 33k
b3(k)= (2~) B+5(k—G),

where

(18)
I,- =m, 5,- for H))H, 1,

where m i and m z are given by Eqs. (22) and (23),

Pl 3
=Pl 33

(28)

(29)

d(k)=(1+mzzk, —2 m, zk, kz+m» kz)(1 +m33 k) and

—k (mz3k, —m»kz) (19) m 1 Pl 2 Pl 3
—1 (30)

and therefore
2

b, (0)= J
" ",b, (k)

(2m )

1+m 33G

a~0
(20)

x, =Qm3m;x;, (i =1,2), (31)

which can be shown using Eq. (25) and det(m, )=1, m
analogy to the relation m imzm3=1. m, (i =1,2, 3) de-
pending on the orientation of 8, and reduce to rn, when
8 is aligned along a principal axis.

Using a simple transformation of variables, ' '
In all terms of the summation, because ~G ~;„is the order
of the inverse of the intervortex spacing L (~G~;„=X/L
in conventional units), G;„ is the order of v B/H, z.
When H )&H„, G i z )&1, and we may expand Eq. (20) in
powers of the small quantity G, obtaining to first or-
der"

we can transform Eq. (27) into the isotropic form

b, =(3z+8,')b, + y5(P —P„),
K

where

~=~/Qm,

(32)

(33)

b3(0)=B 1+ g 1

GWO ~2G1 2~12G1G2 ~1G2

(H»H„), (21)

and 5(ax) =a '5(x).
It is expected from Eq. (32) that the final expressions

for b3(0) and F, are the same as those of the isotropic
case, except that K is replaced by K. This means that the
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procedure of obtaining the free-energy density of an an-
isotropic superconductor from its isotropic counterpart
by replacing v by k, a procedure which is valid for the
case that B is parallel to one of the principal axes for ar-
bitrary values of H between H, &

and H, 2,
' is also valid

for the case that B is not parallel to one of the principal
axes, but only if H ))H„. Although this result was ob-
tained using the London model, we expect it also to be
valid in the context of the Cxinzburg-Landau theory.

For H close to H, &, when the intervortex spacing is
comparable to or less than the penetration depth, the vor-
tex interactions for the case that B is not parallel to one
of the principal axes differ strongly from the case that B
lies along a principal axis. For example, it has been ar-
gued' ' that parallel vortices in uniaxial layered super-
conductors (m& =m2 (m3) can attract each other when
the vortices are not parallel to one of the principal axes
and the intervortex spacing is of the order of the penetra-
tion depth.

III. THE VARIATIONAL MODEL
AND THE REVERSIBLE MAGNETIZATION

F, =
—,'(1 f—„)+ (1 f—)ln

2

Bf (1+BR/, )
Fkg =

rc(2+BR/, )

2+BR/,
(38)

(39)

Bf Eo(g', Qf +2BK)
F, =B+

k(, K, (f g, )
(40)

m3 =m&sin 0cos P+ m2sin 9 sin P+m3cos29, (41)

where 0 and P are the polar and azimuthal angles of 8
with respect to the principal axes.

In principle the variational parameters f„and g, are
determined as functions of B and k by solving

and F is the sum of F„Fk, and F, . For the details of
the calculations, the reader is referred to Ref. 8.

Note that F depends on the orientation of B only
through k or m 3, which is found in the Appendix to be

In the following we consider only the case that
H ))H, &, and simply apply the conclusion obtained
above using the London model to the variational model
in Ref. 8. Using the approximation of Eq. (28) in Eq.
(11), we get

and

BF
v

(42)

(43)

simultaneously, but this involves a significant amount of
numerical analysis. Instead the following approximations
can be used for K))1:

+ +5(p —p„), (34)
2 B=1-

k

4

and Eq. (3) becomes

Fk — d p
1

I

(35) k.o

2 '2
B ' B

1 —2 1 ——
4-

(45)

Following Ref. 8, if we assume for the order parameter
the trial function where g, o satisfes

p

Qp +g,
(36) (46)

with

1X
p

m2

X2+ '.
m&

(37)

where g„and f are the two variational parameters
representing the effective core radius and the suppression
of the order parameter due to overlapping of vortices, re-
spectively, then by the simple transformation of Eq. (31)
we can transform Eq. (2) for F„Eq. (35) for Fi,s, and Eq.
(34) for b3(0) and thus for F, into the corresponding iso-
tropic forms with ~ replaced by K. The final result for F
is therefore obtained simply by replacing ~ by k in the ex-
pression for the isotropic case obtained in Ref. 8, i.e.,

from which we see that Kg,o=&2 for K))1. Note that
k=H, 2=B,2 in the dimensionless units used here.

The thermodynamic magnetic field H is given by

H =
—,
' VSF,

and the magnetization M is

—4mM=H —B .

(47)

(48)

Equations (47) and (48) give us the implicit function
M(H). Note that H is the internal field, which is equal to
the applied field only when the demagnetization effect
can be neglected. For ~)) 1 and H ))H„, the demagnet-
ization effect is unimportant since the magnetization is
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small compared with the applied field.
In terms of spherical coordinates, with unit vectors B„

0, and P we have

H=(Hzi, Hg, H~),
4'—M=(Hg B,—Hg, Hp),

We see that the longitudinal magnetization—4~M~ =II~ —B is the same as that for isotropic case
(except that a. is replaced by K), which has been con-
sidered in Ref. 8, so we consider here only the transverse
components —4~M& =H z and —4~M& =M&. A
straightforward calculation gives

where

1 BF
(51)

(m3 —micos {{)—mzsin P)sin2i9
Hg= — Q(B,K)

4B m3

(54)

1 BF
2B at9

' (52) 1
H~ = — Q(B,K)48

(m, —mz )sin8 sin2$

m3
(55)

1 BF
2B sinO BP

The quantity Q(B,a), which we call the torque function,
is given by

Q(B,K)= —K
aF
BK

(56)

Bf„ 1 f—
Q(B,X)= — —k g, ln +1

Q(BK 2 Bkg,

1 f —f 2+ 3Bkg~ +2B:
—. + .— +

2+Bag, (2+BR/, ) (2+BR/, )

"t/ f „+2BK
(57)

where the three terms within the large curly braces corre-
spond to F„Fk, and F, , respectively.

The torque function Q is found to be positive. There-
fore, if m 3 )m i )m z, for example, from Eqs. (54) and
(55) we have Hg & 0 and H& & 0, which means 9' & {9 and
P' & P, where 0' and P' are the polar and azimuthal angles
of H. This shows that, as compared with B, H orients
closer to the axes along which the corresponding princi-
pal values of the mass tensor are larger.

For k ))1 and H ))H„, we have Kg, o =&2,
2Blc))f„, and f„g„K,(f g, ) = 1, such that Q (B,K)

reduces to

tunately, because the magitude of the magnetization is
small compared with both H and B for H &)H„, we may
simply replace 8 in —4wM(8) by H to calculate the mag-
netization. In the following 8 and i)) are considered as the

2,0—

1.5

Q(b)=bf „—g (1 f )ln +1—1

&g 1+bg
1.0—

2(1+bg)

1+3bg +4b g
4(1+bg )

+&bg rC, (2&bg ) (58)

0.5

0.0
0.0 0.1 0.2 0.2 0.4 0.5 0.6 0.7 0.8 0.9 1.0

where b =B/K, and f and g =(g, /g, o) are given by
Eqs. (44) and (45).

In order to calculate —4vrM(H) from H(8) [Eq. (47)]
and —4aM(8) [Eq. (48)], one must first calculate numeri-
cally 8 for a given H from the relation H(8), and then
compute —4~M. This is obviously a tedious task. For-

FIG. 1. Transverse magnetization function (1/h)Q(h) vs the
reduced applied field h =H/H, ~ in the limit w)&1: (a) this
work [Eq. {58)] (solid) and {b) high-field result of Kogau aud
Clem (Ref. 7) [Eq. (59)] (dashed). The transverse magnetization

4nMi is proportional —to (1/h)Q {h) for constant T and fixed
direction of H.
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Q~c(h) =h (1—h)//3~ (59)

where the Abrikosov constant P„=1.16, in Eqs. (54)
and (55). Note that for the longitudinal magnetization
the result of the variational model is almost identical to
that of the Abrikosov high-field result in the field region
0.4~h ~1, while for the transverse magnetization the
corresponding field region is limited to 0.8 ~h ~ 1. The
magnitude of the limiting slope of —4~M~ versus H as
h —+1 is slightly less than that of Kogan and Clem.

angles of H.
The magnitude of the transverse magnetization

Mt=(Me+M~)' at constant temperature T and fixed
orientation of H is proportional to (1/h)Q(h), where
h =H/R is the reduced field. The calculated result of
(1/h)Q versus h is shown in Fig. 1, curve (a). The high-
field result of Kogan and Clem for a uniaxial type-II su-
perconductor (m, =mz&m3), is also shown for compar-
ison as curve (b). This result is the solution of the aniso-
tropic Ginzburg-Landau equations for H near H, 2', for
k))1 it corresponds to replacing the torque function
Q(h) by

Q (h) =—ln
h

2
(64)

smallest. Generally, since a (or H, 2) is inversely propor-
tional to the effective mass, ~ tends to orient the sample
such that the value of a (or H, 2) is the largest.

In the same way as for calculating —4~M~, we replace
B by H in Eqs. (61) and (63) for calculating r. Note that
in Eq. (61) H, is a function of temperature T only, P is a
function of the angles 0 and P and the anisotropy ratio
m, :m2.m3, and Q is a function of the reduced field
h =H/H, ~ which depends on T, H, 0, (t, and I, :mz.m3.
Therefore, the dependences of ~ upon H, upon the orien-
tation of H, and upon T are determined by Q, QP
(I' = ~P~), and H, Q, respectively. Also note that Q and P
are dimensionless quantities and H, has the dimension of
torque per unit volume.

Torque associated with the transverse magnetization in
an uniaxial anisotropic type-II superconductor was first
studied by Kogan, and an expression for the torque in
the intermediate-field region (H, i «H «H, 2) was ob-
tained by using the London model, which corresponds to
replacing the torque function Q (h) by

IV. TORQUES

Consider an anisotropic type-II superconducting sam-
ple in the mixed state. When the transverse magnetiza-
tion is not zero, there exists a torque ~ associated with it.
For k)) 1 and H ))H, &, since the magnetization is small
compared with the applied field, demagnetization effects
can be neglected, and it is an excellent approximation to
consider the thermodynamic field H as uniform and equal
to the applied fields. In this case w is simply given by '

in Eq. (61), where r) is an unknown constant of order uni-
ty.

The torque ~ versus H at constant T and fixed orienta-
tion of H, is determined by Q the torque function. In
Fig. 2 we show the calculated result of Q versus h [curve
(a)]. Q~c(h) [Eq. (59)] [curve (b)] and QK(h) [Eq. (64)] for
various values of tI [curves (c)—(e)] are also shown for
comparison. Note that Q(h) [therefore r(h)] has a max-
imum at h =0.46, QKC(h) has a maximum at h =0.50,
and Q ~ ( h) has a maximum at h = it /e.

~= VMXH (60)

H,= —V QP,8~
(61) 0.30

where V is the volume of the sample, the torque function
Q is given by Eq. (58), and the vector 0.25

P= [
—0(m, —m2)sin0sin2$

Pal 3

+P( m 3
—m, cos iIi

—m &sin iI) )sin20] . (62)

We return in this section to conventional (Gaussian)
units. We also can express ~ in terms of the unit vectors
X, (i =1,2, 3) of the coordinate system whose axes coin-
cide with the principal axes:

1P = [Xi(m z
—m

&
)sin20 siniI) +Xz( m 3

—m i )sin20 cosP
foal 3

+ X 3(I,—m 2 )sin 0 sin2$ ] (63)

IfI 3 )I i )m2, for example, from Eqs. (61) and (63) and
remembering that Q )0, we see that r i )0, rz & 0, and
T3 (0. Therefore ~, which is acting on the sample, is
tending to rotate the sample to the position such that the
applied field is parallel to the x2 axis, along which the
corresponding principal value of the mass tensor is the

0.20

0.15
C3'

0.10

0.05

0.00 I I J I I I

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
h

FIG. 2. Torque function Q(h) vs the reduced field h in the
limit R)&1: (a) this work [Eq. (58)], (b) the high-field result of
Kogan and Clem (Ref. 7) [Eq. (59)], and (c)—(e) the
intermediate-field results of Kogan (Ref. 22) [Eq. (64)] for
q=1.5 (c), 1.0 (d), and 0.5 (e). The maximum occurs at h =0.46
(a), h =0.50 (b), and h =g/e (c)—(e).
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1.2

1.0
hp= 0.3 (a)

0.8

0.6
I

The Kogan result has been used to fit the torque mea-
surements on the high-temperature oxide superconduc-
tors, and agreement between the theory and experiments
has been reported. However, we have shown in detail
in another paper' that the London model is not adequate
for describing the magnetization. The reason for the ap-
parent agreement between the Kogan result and the ex-

periments is as follows. The only difference between the
result of the present work and that of Kogan is the
difference between Q(h) and QK(h). The Kogan result
was compared mainly with the measurements of ~ versus
9 at constant T and fixed H. Since r(0), as will be
shown later, depends strongly upon P and much less
strongly upon Q or QK, this comparison is not sufficient
to show the validity of Q~. Furthermore, rl was treated
as a fitting parameter that depends on the value of H; i.e.,
one was free to optimize the value of g for every fitting.
Also note that, since the values of H, 2 are large in the
high-temperature superconductors, the field region where
the torque measurements were done corresponds to
small values of h =H/H, 2. As we can see from Fig. 2,
for the low-field region (where h is smal/), ther torque
function Q of this work may be approximated by a func-
tion similar to Eq. (64), i.e.,
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h '9z
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but with g, &1 and g2&1. Since only the normalized
~/~ „was compared with theory, g& was canceled out
by taking the ratio, and the constant in the argument of
the logarithmic function obtained by fitting is not g of
Eq. (64) but il2. An effective way to check the validity of
Q or Qz is to compare the theories with the measure-
ments of ~ versus H at constant T and fixed orientation of
H.

The dependence of the torque ~ upon the orientation of
the applied field at constant T and fixed H is determined
by QP. In Figs. 3(a)—3(c) we show the normalized
~/~ „versus 0 for the simple case that m, =m 2 (m 3 for
values of the anisotropy ratio y = (m & /m, )' = 5 (a), 30
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FIG. 3. Normalized torque, ~/w „,vs the orientation of H
for constant T and fixed H for m& =m2 (m3 and @=5 (a), 30
(b) and 100 (c), where y = (m 3/m &

)' . 0 is the angle between H
and the X3 axis, and ho =H/H, 2~~3 is value of h at 0=0 (where
Hc

p~~ 3 is the upper critical field parallel to the X3 axis) .

FIG. 4. Reduced torque r( T)/~(0) vs reduced temperature at
t = T/T, for fixed magnitude and angle 0 of H for
ho =H/H 2( 0 T =0)=0.01, 0.05, and 0.1, assuming 1 —t tem-
perature dependences for H, ( T) and H„(0,T).
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(b), and 100 (c), for values of the reduced applied field
ho=H/H, 2~~3=0. 3 (solid) and 0.7 (dashed) (where ho is
the value of h at O=O, and H, 2|~3 is the upper critical
field parallel to the X3 axis). r(8) vanishes at 8=0 and
90 and shows a peak at a position close to the X,X2
plane, and the peak becomes sharper and closer to the
plane for larger anisotropy. This behavior is mainly
determined by P. It is not difficult to see from Eq. (63)
that the H-independent quantity P =0 at O=O and 90'
has a maximum at O= tan 'y and the peak of the max-
imum becomes sharper and closer to 0=90' as y in-
creases. For y=30, for example, O=86. 3', at which
r =r,„for h 0

= H /H,
2~~

3=0.3, is close to tan y =88. 1',
at which P =P,„. The diS'erence between the behaviors
of r(8) for different values of H arises from the field
dependence of the torque function Q (h).

The temperature dependence of ~ at fixed H is deter-
mined by H, g. In Fig. 4 we show r(T)/r(0) versus the
reduced temperature t = T/T„assuining 1 t temper—a-
ture dependences for H, ( T) and H, 2( T).

Note that M~ has the same angular and temperature
dependences as those of ~, as can be seen by comparing
Eqs. (54) and (55) (when written in conventional units)
with Eq. (61). This is because r ~ M~ at fixed H.

V. SUMMARY AND DISCUSSION

Using the London model, we have investigated the pro-
cedure of obtaining the free-energy density of an aniso-
tropic high-~ type-II superconductor from its corre-
sponding expression in the isotropic case by simply re-
placing ~ by k that depends on the orientation of H rela-
tive to the principal axes of the sample. This procedure is
valid when H is along one of the principal axis for arbi-
trary value of H between H, &

and H, z. We have shown in
this paper that this procedure is also valid when H is not
along one of the principal axes, but only for ~&&1 and
H »H, &. We expect this conclusion also to be valid in
the context of the Ginzburg-Landau theory, and have ap-
plied it to the variational model of Ref. 8 and obtained
expressions for the reversible magnetization and the
torques associated with the transverse component of the
magnetization. The theoretical expressions involve pa-
rameters H, (T), i~, and the principal values of the mass
tensor m &, m2, and m 3, which determine the upper criti-
cal field H, (O,2Q, T). These parameters can be obtained
by comparing the theory with experimental measure-
ments on the dependence of the torque upon the magni-
tude and the orientation of the applied field and on the
temperature. The theory also tells that, as compared
with the direction of B, H, orients closer to the axes
along which the corresponding principal values of the
mass tensor are larger; and that the torque tends to rotate
the sample so that the applied field is parallel to the axis
along which the corresponding principal value of the
mass tensor is the smallest (or, along which the value of
H, 2 is the largest).

The condition that H))H„or (L/A. ) «1 can be
easily satisfied for the case of high-~ materials, because
the intervortex spacing L is comparable to or larger than

A, only for small B, corresponding to H just above H„.
Therefore the present theory should be valid over a large
field region including intermediate and high fields.
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APPENDIX

x =P,"X

where

(A2)

P; =
cosO cosP

—sing
sinO cosP

cosO sing

cosP
sinO sing

—sinO

cosO

(A3)

In the (X„Xz,X3) coordinates the mass tensor is m;5;~;
in the (x', ,x2, x3) coordinates it becomes
m =P;k(mk5ki )PI ',or.

m'&& =(m, cos P+m2sin P)cos 8+m3sin 8,
m ', 2

= ( m ~
—m ) )cosO cosP sing,

mi3=(m&cos P+m2sin P
—m3)cosOsinO,

mzz=m, sin P+mzcos P,
m23 =(m2 —m, )sinOcosg sing,

m33 =(m, cos P+m2sin P)sin 8+m3cos 8,

(A4)

(A5)

(A6)

(A7)

(A8)

(A9)

where m'; =m . .
Next we rotate the primed frame an angle y about the

x 3 axis and obtain

I
XI' RlJXJ

where

(A10)

cosy siny 0
R,"= —siny cosy 0

0 0 1

(A11)

In this appendix we determine the coordinate system
(x &,x2, x3) in which Eq. (25) holds. The unit vector along
B obeys

B= (sinO cosP, sinO sing, cosO) (Al)

in the coordinate system whose axes coincide with the
principal axes X; (i = 1,2, 3), where 8 and P are the polar
and azimuthal angles of B. The transformation from
(X] X2 X3) into (x „xi,x 3 ) consists of two steps as fol-
lows.

First we tr'ansform (X&,X2,X3) into an intermediate
coordinate system (x', ,x 2, x 3) by a rotation of 8 about the
Xz axis and a rotation of P about the X3 axis, i.e.,
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m 1 )
=m ) ( cos I/ +m )2 sin2p +m 22 sin p

m]2 =
—,'(m~~ —m ], )sin2y+m ]2cos2y,

m, 3 =m )3cosf+m 23slnf

(A12)

(A13)

(A14)
I

Nate that x3=x 3=8. The mass tensor in the new frame
is m,"=R,&mkIR&. ', or

mpp=m]/sin y —m $psin2y+m22cos y,
m23 =m 23COSQ m )3sinf

I
m33 —m 33

(A15)

(A16)

(A 17)

where m.,- =m; . The angle y required to satisfy the con-
dition of Eq. (25) is given by

2(m ')qm 33 m ]3m 23 )
tan2y =

(m'&& —m22)m33 (m p3 m23)

m3(mz —m, )cosOsin2$

m 3 m z ( sin P —cos 9 cos (() ) +m 3 m, (cos P
—cos 9 sin P ) —m, m 2 sin 9

In terms of m, (i = 1,2, 3) and the angles 9, P, and y, the masses m
&

and mz become

m, =[m, m2sin Osin y+m, m3(cosg cosy —cosOsingsiny) +mzm3(sing cosy+cosOcosgsiny) ]/m3

mz=[m, m2sin Ocos y+m, m3(cosg siny+cosOsing cosy) +mzm3(sing siny —cosOcostt cosy) ]/m3

where m3=m33 m33 is givenby (A9).

(A18)
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(A21)

'V. L. Ginzburg and L. D. Landau, Zh. Eksp. Teor. Fiz. 20,
1064 (1950) [English translation in Men of Physics: L D. Lan.
dau, edited by D. ter Haar (Pergamon, New York, 1965), Vol.
1, pp. 138-167].

2V. L. Ginzburg, Zh. Eksp. Teor. Fiz. 23, 326 (1952).
D. R. Tilley, Proc. Phys. Soc. London 85, 1177 (1965); 86, 289

(1965).
4K. Takanaka, Phys. Status Solidi B 68, 623 (1975).
5R. A. Klemm and J. R. Clem, Phys. Rev. B 21, 1868 (1980).
6V. G. Kogan, Phys. Rev. B 24, 1572 (1981).
7V. G. Kogan and J. R. Clem, Phys. Rev. B 24, 2497 (1981).
8Z. Hao, J. R. Clem, M. W. McElfresh, L. Civale, A. P.

Malozemoff, and F. Holtzberg, Phys. Rev. B 43, 2844 (1991).
A. L. Fetter and P. C. Hohenberg, in Superconductivity, edited

by R. D. Parks (Marcel Dekker, New York, 1969), p. 817.
' J. R. Clem, in Superconducting Electronics, edited by H. Wein-

stock and M. Nisenoff (Springer-Verlag, Berlin, 1989), p. 1.
"P.Ci de Cxennes. , Superconductivity of Metals and Alloys (Ben-

jamin, New York, 1966).
Z. Hao and J. R. Clem (unpublished).
J. R. Clem, J. Low Temp. Phys. 18, 427 (1975).

~4J. R. Clem, in Lou Temperature Physics —LT14, edited by M.
Krusius and M. Vuorio (Amsterdam, North-Holland, 1975),
Vol. 2, pp. 285 —288.
This procedure is similar to that used in V. G. Kogan and L.
J. Campbell, Phys. Rev. Lett. 62, 1552 (1989) and L. J. Camp-
bell, M. M. Doria, and V. G. Kogan, Phys. Rev. B 38, 2439

(1988).
J. R. Clem, Z. Hao, L. Dobrosavljevic-Grujic, and Z. Radovic
(unpublished).
A. M. Grishin, A. Yu. Martynovich, and S. V. Yampol'skii,
Zh. Eksp. Teor. Fiz. 97, 1930 (1990).

8A. I. Buzdin and A. Yu. Simonov, Pis'ma Zh. Eksp. Teor. Fiz.
51, 168 (1990) [JETP Lett. 51, 191 (1990)].
V. G. Kogan, N. Nakagawa, and S. L. Thiemann, Phys. Rev.
B 42, 2631 (1990).
By solving the linearized anisotropic first Ginzburg-Landau
equation, J. Rammer, Physica C (to be published), has shown
that the Abrikosov constant p„ is independent of the orienta-
tion of H. This conclusion also can be obtained by the fol-

lowing simple argument. The linearized anisotropic first
Ginzburg-Landau equation, of which the solution determines
the value of p„, can be transformed by a simple change of
variables into the corresponding isotropic form with ~ re-
placed by a rt that depends on the orientation of H [for exam-

ple, see Refs. 5 and 7]. Since P~ is independent of the value

of k, the only quantity that depends on the orientation of H,
we see that p„must be independent of the orientation of H.
J. D. Jackson, CIassicah E/ectrodynamics (Wiley, New York,
1975).

V. G. Kogan, Phys. Rev. B 38, 7049 (1988).
2 D. E. Farrell, C. M. Williams, S. A. Wolf, N. P. Bansal, and

V. G. Kogan, Phys. Rev. Lett. 61, 2805 (1988); K. E. Gray, R.
T. Kampwirth, and D. E. Farrell, Phys. Rev. B 41, 819 (1990).


