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Self-consistent electronic structure of a vortex line in a type-II superconductor
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The electronic structure of a vortex line in a type-II superconductor is calculated self-consistently
in the framework of the Bogoliubov —de Gennes theory. The Debye frequency, the Fermi velocity,
and the coupling constant of the electron-electron attractive interaction are used as microscopic in-

put parameters. The resulting quasiparticle-excitation spectrum, the pair potential, and the current
distribution are studied as a function of temperature, and can be used to define a coherence length
and to determine the magnetic penetration depth. The local density of one-particle excitations, cal-
culated from the quasiparticle amplitudes, explains the results of scanning-tunneling-microscopy
(STM) experiments by Hess et al. [Phys. Rev. Lett. 62, 214 (1989)] on NbSe2. The main spectro-
scopic features in the experimental results are caused by bound states in the vortex cores. Spatial
distortions of the bound-state wave functions caused by neighboring vortices and by the crystalline
lattice are discussed in terms of a simplified two-band model. In the case of NbSe2, the resulting lo-
cal density of states has a characteristic star shape in real space, whose orientation is energy depen-
dent, in agreement with recent STM experiments [Phys. Rev. Lett. 64, 2711 (1990)].

I. INTRODUCTION

The determination of the electronic properties of vor-
tex lines in type-II superconductors has been a problem
of longstanding interest. The phenomenological
Ginzburg-Landau theory' has been used extensively to
describe the properties of either isolated flux lines or of
an Abrikosov flux lattice, and formed the basis for dis-
cussions of macroscopic equilibrium quantities in terms
of the empirically determined coherence length g and
magnetic penetration depth A.. Since the Ginzburg-
Landau theory is strictly valid only at temperatures close
to the critical temperature T„orwhen the magnetic field
is close to the upper critical field H, z, various
modifications have been proposed in order to extend its
validity, in particular in the dirty limit, or when the
Ginzburg-Landau parameter Ir=A, /g is large. On the
other hand, calculations based on the microscopic BCS-
Gor'kov theory have been limited by the complexity of
the Gor'kov equations for inhomogeneous systems.
Eilenberger managed to reduce this complexity by trans-
forming the Gor'kov equations into first-order equations,
at the price of integrating out the energy variable of the
Green functions. Ground-state properties, such as the
gap parameter b, (r) and the vector potential A(r) can be
determined from such energy-averaged Green functions.
This method was used by Kramer and Pesch, and later
by Klein to calculate numerically the structure of a vor-
tex line at low temperatures. A different approach was
followed by Caroli, de Gennes and Matricon and later
by Bardeen et al. , who solved the Bogoliubov —de
Gennes equations for a vortex line using various approxi-
mations. This procedure, which relies of the assumption
that there exist well-defined quasiparticles in the super-
conductor, has the advantage of providing information
about the one-particle excitations of the system. The
quasiparticle excitation spectrum can be obtained, to-

gether with the corresponding quasiparticle amplitudes.
The Bogoliubov —de Gennes formalism is essentially
correct in the weak-coupling regime, but also yields qual-
itative results in situations of very strong coupling, as was
pointed out by Bishop et al. The interest in microscopic
electronic structure calculations of this type was reviv-
ed recently by low-temperature scanning-tunneling-
microscopy (STM) experiments which provided extreme-
ly detailed, spatially resolved, excitation spectra of a
type-II superconductor in the presence of an Abrikosov
flux lattice. An explanation of these results requires the
knowledge of the one-particle local density of states of
the system, which is best described in the framework of
the Bogoliubov —de Gennes theory. " In that spirit,
Shore et al. ' and Gygi and Schliiter' recently obtained
numerical solutions for quasiparticle amplitudes in a vor-
tex core starting with approximate forms for the pair po-
tential. This allowed them to discuss the most important
features of the solutions, i.e., the presence of strongly
bound low-energy states, already mentioned by Caroli
et al. responsible for an enhanced local density of states
at the Fermi level at the center of a vortex core. This
enhancement explains anomalies observed in the
scanning-tunneling-microscopy (STM) experiment by
Hess et al. ' on NbSez. It is important to note that, in
these two calculations, ' ' the pair potential used as in-
put was modeled from the experimentally inferred coher-
ence length. The effect of the spatial dependence of the
magnetic field was neglected, which seemed to be justified
by the fact that the Ginzburg-Landau parameter ~ is
large in NbSez. The self-consistency of the solutions so
obtained could not be checked in either case; in Ref. 12
because scattering states were not included in the calcula-
tion, and in Ref. 13 because only the lowest angular
momentum eigenstates were included. A fully self-
consistent solution of the Bogoliubov —de Gennes equa-
tions is therefore desirable since it provides information
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about the detailed structure of the pair potential and of
the current and magnetic field distributions in a vortex
line at any temperature, as well as the dependence of
these quantities on microscopic parameters. This allows
one to calculate without empirical parameters one-
particle properties such as the local density of states,
which can in turn be used to determine the tunneling
conductance measured in an STM experiment.

In this paper, we present the first fully self-consistent
electronic structure of an isolated vortex line in a type-II
superconductor, calculated in the framework of the
Bogoliubov —de Gennes theory. The solutions are ob-
tained iteratively. First, the Bogoliubov —de Gennes equa-
tions are solved in the presence of a spatially varying
model vector potential A(r) corresponding to a total
magnetic Aux of one flux quantum Po=mficie. The re-
sulting quasiparticle amplitudes and excitation energies
are then used to determine a new pair potential and a
new current distribution. A new vector potential is deter-
mined from the current distribution by solving Maxwell's
equation and the process is iterated until convergence is
attained. All input parameters used in the calculation are
microscopic parameters which can in principle be ob-
tained from band structure calculations. These parame-
ters are the Debye frequency coD, the Fermi velocity v~,
and the coupling constant g describing the electron-
electron attractive interaction. After a self-consistent
solution has been obtained, the coherence length g and

I

the magnetic penetration depth A, can be defined, and
their values can be determined from the spatial depen-
dence of the self-consistent pair potential and of the
current distribution.

In a further step, the interaction of a vortex line with
the crystal potential is then investigated in more detail
for the case of NbSe2. An angular band structure is de-
rived using a simple two-band model. The resulting local
density of states' explains more recent STM results
showing star-shaped patterns in the tunneling conduc-
tance images of a vortex line' in NbSe2. Furthermore,
the energy dependence of the spatial orientation of these
stars is well accounted for by the simple model.

The rest of this paper is organized as follows. In Sec.
II, we describe the method of calculation. Section III
contains self-consistent numerical results computed at
various temperatures for a superconductor comparable to
NbSe2. In Sec. IV, we discuss various perturbations that
can distort a Aux line and modify its excitation spectrum
and density of states.

II. BOGOLIUBOV —de GKNNKS EQUATIONS
FOR A VORTEX LINK

In the presence of a magnetic field, the Bogoliubov —de
Gennes equations' for the quasiparticles amplitudes
u;(r) and v;(r) read

1 e
p ——A(r) + U(r) EF u;(r) —+b(r)v;(r) =E;u;(r),

'2
1 ep+ —A(r) + U(r) —EF v;(r) +b, "(r)u;(r) =E;v;(r),

where U(r) is the one-particle crystal potential, b, (r) is
the pair potential, and A(r) is the vector potential. The
index i denotes all quantum numbers. The pair potential
and the current density depend on the solutions of Eq. (1)

b(r)=g g u, (r)v;*(r)[1 2f(E, )], —
E 'flQ)D

j(r) = g f(E;)u;*(r) V — A(r) 'u;(r)
2mi, .

+ [1 f(E; )]v;(r)—
X 'P — A(r) v;*(r)—H. c.

Ac

where g is the coupling constant describing the electron-
electron attractive interaction, coD is the Debye frequen-
cy, and f(E) is the Fermi distribution. The vector poten-
tial A(r) is related to the current distribution j(r) by
Maxwell's equation

vxvx A=
C

(4)

u(r)=u (r)e "I' '""e' *ik z
npk

v(r)=v (r)e'" ' ' enpk

(5)

A self-consistent solution of these equations is obtained
by repeatedly solving Eq. (1) and calculating h(r) and
A(r) using Eqs. (2), (3), and (4), and reinserting them into
Eq. (1) until convergence is attained.

We consider now the case of a vortex line oriented
along the z direction. We neglect details of the one-
particle potential U(r) in Eq. (1), but include part of its
effect by using effective masses m and m, in the kinetic
energy of Eq. (1). The system is therefore invariant under
all rotations about the z axis, so that the solutions of the
Bogoliubov —de Gennes equations have a well-defined pla-
nar angular momentum. This, together with translation-
al invariance in the z direction, allows us to write the
quasiparticle amplitude as
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where n is a radial quantum number and p is half and
odd integer. Following Bardeen et ai. , we chose the
gauge in which b(r) = ~b(r) ~e

' . In this gauge, and be-
cause of cylindrical symmetry, the vector potential
reduces to

A(r) = A e(r )es .

The Bogoliubov —de Gennes equations are solved sepa-
rately in each subspace of fixed angular momentum p and
fixed k, by projecting the radial functions u„(r)and v„(r)
onto a set of Bessel functions normalized in a disc of ra-
dius R

v'2 r
4jm(") ~J ( )

Jm ~tjm ~ J
m+1 +jm

where m =p+ —,
' and where the argument o,'j is the jth

I

'2

zero of J (x). The quasiparticle amplitudes u„(r) and
v„(r)are expanded in the basis functions $~„,(2(r) and

P „+i (2( r ), respectively,

u„(r)=pc„P„,(2(r),
J

v„(r)=gd„P„+,(z(r) .
J

This reduces Eq. (1) to a 2N X2N matrix eigenvalue prob-
lem

T
T+ +n —En+n ~

where 0'„=(c„i,. . . , c„iv,d„„.. . , d„iv). The matrix ele-
ments of the Hamiltonian are

1T ~ jp+ +
2

1 e ., 1p+ —A —EF j'p+-
2m

2t72

2 As(r)+ ' k' &J&'+(V ')
~

—0,-„+i(2(r) 0f„*in(r)«r
R r

'2

+ 4j p+ i(2'(r) A g( r)AJ'@+i(2( r)r dr EF—e 2

Ac

and

&,, = (jp —
—,
'

~
&(r)

~

j'p+ —,
' )

= JP,„,(,(r)l~(r)lg, „+„,(r)r dr .

Solving the secular problem (8) yields a set of eigenvalues
E„andtheir associated eigenvectors 4„.The positive ei-
genvalues are interpreted as the energies required to
create excitations having an angular momentum p.
Negative eigenvalues correspond to the destruction of ex-
citations with angular momentum p. The
Bogoliubov-de Gennes equations are invariant under the
transformation

u;(r)~v;*(r), v;(r)~ —u (r), E;~ E, —

which relates an eigenstate to its time-reversed counter-
part. In the case of the vortex line, this allows one to
identify a negative energy excitation having angular
momentum +p with a positive energy excitation having
angular momentum —p, . This identification can be used
to reduce the computational efFort by solving Eq. (8) for
positive values of p only, and by using Eq. (11) to obtain
the positive energy eigenstates for negative angular mo-
menta.

In order to be able to discuss the results of STM exper-
iments performed in the presence of vortex lines, we need
a model of the tunneling current between the microscope
tip and the surface of the sample. This current is related
to the one-particle spectral functions in the tip of the mi-
croscope and in the superconductor. ' The latter can be
expressed in terms of the quasiparticle amplitudes

As(r, E)=2irg[u, (r)5(E E, )+v, (r—)5(E+E, )] . (12)

I(r, V) ~ J As(r, E)A~(r, E+eV) .dE
277

(14)

The tunneling conductance is then given by

dI(r, V) 2~ —g[u; (r )f '(E,. —e V)

+v; (r)f'(E, +eV)], . (15)

where f (E) is the derivative of the Fermi distribution.
The quantity, calculated from the quasiparticle ampli-
tudes, will be discussed in the next section, and compared
with experimental observations.

The microscopic parameters used in the calculations
were chosen so as to closely reproduce the properties of a
superconductor comparable to NbSe2. The supercon-
ducting gap of NbSe2 is Ao-—1.1 MeV. ' The value of the

we assume here that the presence of the surface does not
affect the quasiparticle amplitudes of the superconductor,
so that we can use the solutions of Eq. (1) in Eq. (12). We
also assume the spectral function of the tip to be that of a
simple metal

A~(r, E)=2ir+5(E Ek) . —
k

If the tip is small compared to Aux core dimensions, and
is centered at position r, the tunneling current due to an
applied voltage V is
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of thecoherence eng o1 th btained from measurements of
upper critical field ranges from ~~=r m /=150 a.u. to /=190 a.u.
(R f. 18). The magnetic penetration depth

' — 00th is X=1200e.
, =7.2 K. ' The Fermia.u. and the critical temperature T, =7.2 K.

of NbSe obtained from band structure ca cula-
consists of undulating cylinders oriented a ong etions consis s o

k direction and centered on the H-K axis o e g-f the hexa o-
Z

of a char e densi-1 8 llouin zone. However, the onset
~ ~ ~

g
ty wave at T= 32 K modifies its shape in certain paarts of
the Brillouin zone, so that the Fermi surface parameters
t 1 t mperatures are not well known. e assume,

however, that the Fermi surface remains approxim y
hi h cases m /m, (& I and we can

P Z

ne lect the k, dependence of the matrix elements (9). Weneglect t e, epen
f =2 set the radius ofchose a radial effective mass o. m =, se e r

the domain to = a.u.e 8=5000 . and defined the Fermi level

1.5

~ 1.0
E
C5r~

O
CL

c5 05

I I
I

I i
I

l I
I

l I

E
2m

p

2
~n m ——0F&

(16)

III. RESULTS

The self-consistent pair potential "(~~r& calculated at
0.5 to 6 K, is shown in Fig. 1.temperatures ranging from 0.5 t

At a temperature of 6 K the pair potential is similar to
As then of the Ginzburg-Landau equations. As t e

temperature is lowered, the slope of t e pair po en
'

near r =0 gets arger, in
'

1 indicating a drastic reduction in
ture of 0.5 K,the size of the vortex core. At a temperature o

1 at the center of thethe pair potential is rising very steep y a e c
vortex core. co eA coherence length g can be derived from

~ ~ f wa s. First, we e ne af w . F', dfineathese results in a variety of w y . F'
coherence engt ~& y1 h ~~ b fitting the pair potential to an ex-
pression of the form

with nF = . isF = 120. Th results in a Fermi velocity of
ofUF =8.2X10 cm s10 '. We chose a Debye frequency o

co =30 meV, which, together with a coupling constantcoD —30 me, w ic
=0.256 yields a superconducting gap 0 = . e6 =1.2 MeV at

T =0 in the absence of any magnetic field,eld and a transi-
tion temperature oi f T, =8 K. This choice of microscopic
parameters yie s a co e

'
ld herence length and a magnetic

penetration epd th comparable to the experimental va ues,
owever, theirill be shown in the next section. However, eir

va ues have not been optimized to reproduce ac yccuratelvalues ave no e
the experimental results on NbSez. uc a pSuch a rocedure
could in princip e e u e1 b sed to extract Fermi sur ace pa-
rameters from the experimentally measured g and

I

();

0 I I I I I I I I I I

300 600 900
r (a.u. )

1200

FIG. 1. Self-consistent pair potential as a function of dis-
tance from the vortex core, calculated at various temperatures.
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The definitions of gt and g2 agree at high temperatures
where E . (17) is a good approximation of the pair poten-w ere q. i
tial. However, at low temperatures, z e
smaller than g„and is ultimately comparable to the Fer-
mi wavelength. The temperature dependence of the

Close to T=T„g,( T) and g2( T) can be described by an
expression of the form

(19)

b(r) = b,otanh— C3
2x10

C3

This ex ression is a good approximation of the pair po-
tential for temperatures larger than T, / .

is expres

it is not valid at low temperatures. We can define a
second coherence length g2 in another way y eb the relation

0 1

I I I

2 3 4 5
T(K)

I

7 8

r
limb, (r) =bc
r O

(18)
FICx. 2. Temperature dependence of 1/g', (open squares) and

1 =19.8X10 a.u. (notI/gz (solid circles). At T=0.5 K, / 2—
presented).
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Both g, and gz deviate significantly from this behavior at
low temperatures, where, e.g. , at T=0.5 K, gt =206 a.u.
and $2=35 a.u. This rapid variation of the pair potential
in the core at low temperatures is reminiscent of a conjec-
ture by Kramer and Pesch, who suggested that the pair
potential should reach a value comparable to 60 over a
distance of the order of the Fermi wavelength. Their ar-
gument was based on an approximately self-consistent
treatment of the pair potential close to the center of a
vortex line. Our results show that the pair potential
varies on two length scales: the first defines the slope of
the pair potential at r=0, which becomes indeed very
large as T~O, and the second a distance over which the
pair potential reaches its asymptotic value hp. This also
indicates that the definition of the coherence length in
terms of the upper critical field H, 2

1/2
0

2', 2

must be used with caution at low temperatures. Experi-
mental measurements of the upper critical field H, z(T) at
low temperatures' show that H, 2(T~O) is smaller than
the value obtained from a linear extrapolation using
dH, z/dT measured at T, . The values of the coherence
length g inferred from H, 2( T) using Eq. (20) are therefore
larger than those obtained from a linear extrapolation of
I/g (T) to low temperatures. However, our results (Fig.
2) show that the coherence lengths g, and g2 both become
smaller than what would be inferred from a linear extra-
polation of I/g (T) to low temperatures. This shows that
the definition of the coherence length in terms of H, 2 and
Eq. (20) is not equivalent to either g& or $2, but rather to a
length which remains larger than g, and $2 at low tem-
peratures. It also shows that a certain arbitrariness is al-
lowed in the definition of the coherence length, a fact that
should be kept in mind when making quantitative com-
parisons with experiment. Calculations carried out at a
T=0.05 K yield a pair density similar to that obtained at
T=0.5 K, with additional small amplitude Friedel-like
oscillations originating from the occupation of the lowest
bound state.

The quasiparticle-excitation energies calculated at
T= 3 K are presented in Fig. 3 for positive values of the
angular momentum p. The eigenvalues associated with
the bound states (E ( b,o = 1.2 MeV) form a branch
which is clearly separated from the continuum of scatter-
ing states (E)b,o) at low angular momentum, and ap-
proaches 60 asymptotically as p~ ~. The spectrum of
negative angular momentum excitations is similar, except
that the branch of bound states is absent (it is present for
negative energies). The apparent discreteness of the spec-
trum above the gap (E ) b,o) in Fig. 3 results from the
finite size of the domain in which we solve Eq. (1) and is
artificial. In the thermodynamic limit, i.e., R ~~, the
spectrum in this energy range becomes continuous. This
is not true of the bound-states eigenvalues, which corre-
spond to localized states, and are therefore insensitive to
changes in the domain size. Note, however, that keeping
m /m, finite in Eq. (1) would shift the bound-state eigen-
values upwards by an energy of the order of k, , resulting
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FIG. 3. Quasiparticle excitation energies for positive p calcu-
lated at T=3 K.
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FIG. 4. Temperature dependence of the minimum energy
gap E

in a continuous distribution of bound states above the
lowest energy excitation E(p= ,', k, =0). T—his lowest ei-
genvalue is of the order of b,o/E~=0. 037 MeV and de-
pends on temperature. It is maximal at low temperatures
as can be seen in Fig. 4. The experimental observation of
this energy gap is in principle possible at temperatures
lower than T=0.5 K. The slope dE„/dp of the disper-
sion relation of bound states also depends on tempera-
ture. Caroli et a/. have derived an approximate expres-
sion for this dispersion relation in terms of the coherence
length,
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0.12

0.10 —

~ 0.08
Q)

E
~ 0.06
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0.02

0.00 '

0 1 2 3 4 5 6
T(K)

7 8

FIG. 5. Temperature dependence of dE„/dp as obtained
from the self-consistent calculation (open squares) and from Eq.
(21) using the coherence length g, defined by Eq. (17) (solid cir-
cles).

~oE ~p =p
kF g m-m 'g' (21)

Figure 5 shows the temperature dependence of dE„/dp,
as obtained from the self-consistent calculation, and com-
pared with the value obtained by inserting g, (T) defined

by Eq. (17), into Eq. (21). The two values coincide at
temperatures larger that T, /2, but deviate significantly at
lower temperatures, where Eq. (21) ceases to be valid.
Note that if (2(T) is used instead of g, ( T) in Eq. (21), the
discrepancy with the results of the self-consistent calcula-
tions at low temperatures would become even larger.

The quasiparticle amplitudes associated with low-
energy eigenvalues are strongly localized in the vortex
core. As an example, the radial functions u(r) and v(r)
corresponding to the lowest eigenvalue E&&2 are shown in

Fig 6. They oscillate with a period of the order of the

Fermi wavelength, and their envelope decays exponen-
tially over a distance of the order of the coherence length.
Radial functions corresponding to bound states of larger
angular momenta are small close to the vortex core and
have a maximum at a distance of the order of r =p/kF.
Beyond that distance, their behavior is similar to that of
the lowest bound state, except that their exponential de-
cay length diverges as E„—+ho. The quasiparticle ampli-
tudes associated with eigenvalues larger than Ao are
scattering states which are extended throughout the sys-
tem.

The contribution of the bound states to the total pair
potential is shown in Fig. 7 where it is compared to the
total pair potential for T=0.5 K. At low temperatures,
the sharp rise of the pair potential at the vortex center is
essentially due to the occupation of the lowest bound
states. At larger temperatures, the contributions of
bound and scattering states to the pair potentia1 become
comparable as r ~0.

At large distances from the vortex core, the quasiparti-
cles are essentially unaftected by the presence of the Aux
line, so that the pair potential for large r is expected to
depend on temperature in the way predicted by the BCS
theory of a homogeneous superconductor. This can be
seen in Fig. 8, where the value of the pair potential at
r=1200 a.u. from the vortex core is compared with the
BCS prediction for a homogeneous system having the
same microscopic parameters. The value obtained at
T=6 K is slightly smaller than the BCS prediction. This
is due to the fact that, at this temperature, the coherence
length is large (g, =620 a.u. ), so that the pair potential
has not yet reached its asymptotic value at r=1200 a.u.
(see Fig. 1).
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FIG. 6. Quasiparticle amplitudes u(r) and U(r) correspond-
ing to the lowest eigenvalue E&/2.

FIG. 7. Self-consistent pair potential at T=0.5 K. The
dashed line shows the contribution from the bound states.
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The self-consistent current distribution, calculated
from Eq. (3) is shown in Fig. 9. At low temperatures, the
current rises to its maximum over a distance of the order
of (2, which is consistent with the sharp rise of the pair
potential in the same region. In this region, the current is
mainly carried by the lowest bound state. Away from the
vortex core, the current density decays exponentially.
The magnetic penetration depth A, can be derived from
the large r behavior of the current density by matching it
at a cutoff radius r, = 1200 a.u. with the asymptotic solu-
tion of the Ginzburg-Landau equations for large r

where IC I (x) is a modified Bessel function. The continui-
ty of the current density at r„together with the Aux nor-
malization

4n J~ r . iric 4o

c 0 2 2e 277
(23)

determines the value of A, . In our case, this yields a value
of X=1054 a.u. at T=O.S K. The temperature depen-
dence of the magnetic penetration depth calculated in
this way is shown in Fig. 10. The linear behavior of 1/A,

as T~T, is consistent with the expected long wave-
length response of a local homogeneous BCS supercon-
ductor. The current distribution can be decomposed in
terms of bound states and scattering states contributions.
This is shown in Fig. 11 for a temperature of T=4 K.
Close to the vortex core, the current density arises mainly
from the occupation of the bound states. The effect of
scattering states becomes important only at distances
larger than the coherence length. The bound states and
the scattering states contributions to the current density
have opposite signs. The current density originating from
the bound states is paramagnetic, whereas scattering
states contribute a diamagnetic term. At distances larger
than the penetration depth, the paramagnetic and di-
amagnetic parts essentially cancel, resulting in exponen-
tial decay of the total current density. The paramagnetic
behavior of the bound states, which are localized in the
vicinity of the core, is consistent with the picture of a
vortex core behaving like a normal metal. Conversely,
the scattering states are mainly located in the supercon-
ducting region r )&g, and generate diamagnetic currents.

The magnetic field generated by the total current dis-
tribution is shown in Fig. 12 for various temperatures.
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FIG. 9. Self-consistent current density calculated at various
temperatures.

FIG. 10. Temperature dependence of 1/A, ', where A. is the
magnetic penetration depth defined by Eqs. (22) and (23).
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FIG. 11. Current density calculated at T=4 K.

h (0)oL= (lna. —0. 18)
2vrA, (T)

(24)

The temperature dependence of the magnetic field at the
center of the vortex core is shown in Fig. 13. It is ap-
proximately linear over the entire temperature range.
This is to be contrasted with the prediction of the
Cxinzburg-Landau theory (for ~)) 1)

which implies that the temperature dependence of h (0)
should be the same as that of 1/A, . A comparison of
Figs. 13 and 10 shows that this is true only above T, /2.
The continuous increase of h (0) below T, /2 is due to the
sharpening of the current distribution (see Fig 9), which
is itself caused by the reduction of the core size at low
temperature.

The tunneling conductance was calculated using Eq.
(15) and the self-consistent quasiparticle amplitudes ob-
tained at T=1 K. The conductance at various distances
from the vortex center and for bias voltages ranging from—4 mV to +4 mV is shown in Fig. 14. It is normalized
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FIG. 12. Magnetic field distribution around the vortex line at
various temperatures.

FIG. 14. Normalized tunneling conductance spectra calcu-
lated at various distances from the center of the vortex line.
Distances are indicated in atomic units.
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M'„
E =„

Bp

We then get the approximate relation

(25)

BE„E (r)=E„k„—"kFr, r &g .

At temperatures larger than T, /2, BE„/Bpcan be relat-
ed to the coherence length via Eq. (21) (see Fig. 5) so that

(26)

(27)

At low temperatures, Eq. (26) is still valid, although the
simple model Eq. (21) is not applicable. In Fig. 15, the
conductance calculated at T= 1 K (left panel) is com-
pared with the experimental conductance measured at
T=0.3 K by Hess et al. (right panel). Both functions
show a characteristic enhancement of the zero-bias con-
ductance due to the presence of bound states in the vor-
tex core. The calculated value of this enhancement is
larger than the experimental value, as discussed in Refs.

to the conductance of the normal state. At the center of
the vortex core (r =0), the conductance is strongly
enhanced at zero bias (V=O) due to tunneling into the
p= —,

' lowest bound state, which is strongly localized in
the core (See Fig. 6). Note that the conductance in the
core is not enhanced around V=+Ao as would be the
case in a homogeneous superconductor. At a finite dis-
tance r from the vortex center, the conductance has two
peaks centered at finite voltages +E (r). This corre-12

sponds to tunneling into bound states having larger angu-
lar momenta p with eigenvalues 0&E =E (r) &b, (seesee
Fig. 3). These eigenstates have maximal amplitude at a
distance of order r =p/kF from the vortex core. This al-
lows us to relate the position of the conductance peaks
E~(r) to the dispersion relation of the bound states,
which is linear for small angular momenta

ar(r, V)
BV

—r//r
oc —e

v=o

as is expected from an analysis of the asymptotic behav-
ior of the solutions of Eq. (1). Using this expression to fit
the calculated conductance yields ro=275 a.u. which is
comparable with the value of g, (T =1 K) =240 a.u. ob-
tained from Eq. (17). This suggests that the length r0 can
be used as a measure of the size of the vortex core, via the
degree of localization of its lowest bound states. A simi-
lar fit to the experimental data yields ro-—360 a.u. . Be-
cause of residual noise in the measured conductance at
large r, this value is only approximate.

12 and 13. The splitting of the zero-bias conductance
peak into two maxima away from the vortex core is also
clearly visible in both the calculated and experimental
data. The energy separation between these two maxima
is 2E (r). Figure 15 shows that E (r) increases more rap-
idly for the calculated function than for the experimental
data. The radial dependence of E (r) is also illustrated inP
Fig. 16, which represents a gray scale image of the nor-
malized conductance as a function of bias voltage and
distance from the vortex core, calculated at T=1 K. The
availability of a direct experimental measurement of
E~(r) makes it possible to adjust the microscopic parame-
ters used in the calculation in order to reproduce this
feature. The conductance enhancement due to the bound
states is generally more pronounced in the calculated
data than in the experimental data, even though the tem-
perature used in the calculation is larger than the experi-
mental temperature. This discrepancy would be reduced
if a finite mass ratio m /m, were used in Eq. (1), causing
a widening of the spectral function associated with bound
states. Figure 15 also shows the profile of the zero-bias
conductance, which decays exponentially away from the

6, 7vortex core. ' This conductance profile is well represent-
ed at large r by the functional form

dl/dV
dI/dv

900 y 0

v (mv)

FIG. 15. Tun l'. Tunneling conductance represented as a function of bias volta e and distance fr m
calculation (l ft 1) d f h

'
n e pane an rom t e experiment (right panel).

ias vo age an &stance from the vortex core, as obtained from the



7618 FRANQOIS GYGI AND MICHAEL SCHLUTER 43

1200-

F000

800-

r (a.u. ) 600

400-

200-

0-

V (mV)

FIG. 16. Gray scale image of the tunneling conductance as a
function of bias voltage and distance from the vortex core. The
gray scale extends from dI/d V=O (black) to dI/O V =2 (white).

IV. DISTORTIONS OF A VORTEX LINE

More recent STM experiments on NbSez carried out at
very low temperatures have provided images of vortex
lines in which the contours of equal tunneling conduc-
tance are not invariant under rotations about the z axis,
but have instead a characteristic sixfold symmetric star
shape. ' Remarkably, the orientation of these star-
shaped conductance patterns relative to the Abrikosov
Aux lattice was found to depend on the tunnel bias volt-
age. At zero bias, the measured tunneling conductance
decays rapidly in the direction of the nearest-neighbor
vortex lines, and more slowly in a direction 30' away
from the nearest neighbors, i.e., the arms of the star pat-
tern point towards the interstitial sites. At a bias voltage
of 0.5 mV, however, the situation is reversed and the tun-
neling conductance decays more slowly in the direction
of the nearest-neighboring vortex lines, i.e., the stars are
rotated by 30' (see Fig. 17, left side). The hexagonal dis-
tortion can be caused by the presence of the neighboring
Aux lines, which form a triangular Abrikosov lattice, and
also by the one-particle crystal potential U(r) which, in
the case of NbSe2, has hexagonal symmetry. In this sec-
tion, we consider the perturbation to a vortex line caused
by a one-particle potential 5U(r) and by a vector poten-
tial 5A(r) having a sixfold symmetry about the z axis.
The one-particle potential 5U(r) is not pair breaking to
first order, and would therefore appear to be negligible
compared to the magnetic perturbation caused by 5 A,
which is pair breaking. However, since the relative mag-
nitude of these terms is unknown, both effects are con-
sidered in the perturbation. In order to describe the
changes occurring in the low-energy part of the spec-
trum, i.e., E & 60, it is sufhcient to expand the Hamiltoni-
an in the bound states calculated self-consistently in the
isotropic case. The sixfold symmetry of the perturbation
simplifies the problem considerably. Only bound states
whose angular momentum differ by 6p =6 are coupled by

FIG. 17. Tunneling conductance images at zero bias (top
row) and at finite bias (bottom row). The left column shows the
experimental results of Ref. 14. Calculated images are shown in
the right column. The nearest-neighbor direction of the Abri-
kosov Aux lattice is the horizontal direction.

the perturbation. Including the lowest order magnetic
perturbation, the diagonal blocks of the Hamiltonian in
Eq. (g) become

T— + 1 ep+ —A"' —E,
' 2m c

(5A p+p 5A)
2m C

e+ 5U(r)+ 5A A' 'I c

where A' ' is the vector potential in the absence of per-
turbation. In the subspace spanned by the twelve lowest
bound states, i.e., the bound states p= —,

' to p= —", , the
Hamiltonian reduces to a block diagonal matrix. Each
block is a 2 X 2 matrix of the form

(plIIlp) (plalp+6)
(p+6lalp) (@+6[Hip+6)

(30)

Note that due to the absence of rotational symmetry, the
quantum number p is not an eigenvalue of the angular
momentum operator. It is now limited to values
—,
' &p (—", and labels the irreducible representations of the
sixfold rotation group C6. The eigenvalues of H„form
two bands, labeled + and —,which are separated by an
energy gap of order l~ix21+l&iirzl The c«ssov«
from the lower to the upper band occurs at an energy
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E 11/2 + Ec +E 13/2
(0) (0) (31)

—2ag„u„(r)Ilu„+6(r)I
cos60 . (32)

where a„andP„arethe components of the eigenvectors
of H„.The last term in Eq. (32) introduces an angular
(sixfold) modulation in the tunneling conductance, thus
giving the STM images a sixfold star shape. The orienta-
tion of this star-shaped conductance pattern changes with
the coefficients a„and /3 which in turn depend on the
value of the tunneling bias voltage. At small bias, the
tunneling process occurs in the lower band whose eigen-
functions have an angular "bonding" character, whereas
at a bias larger than E„the tunneling process involves
the upper band which has "antibonding" character. The
sixfold angular modulation of the conductance is there-
fore reversed as the bias increases from zero to above E„
i.e., the star pattern rotates by 30 .

The absolute orientation of the conductance pattern is
determined by the relative magnitude of the crystal po-
tential perturbation 5U(r) and of the magnetic perturba-
tion in a given direction Isee Eq. (29)]. The sign of 5U(r)
is a priori unknown but can in principle be obtained from
detailed band structure calculations. In order to derive
the sign of the magnetic perturbation, it is reasonable to
assume (in the low-field limit) that the vector potential of
the vortex lattice is the sum of the vector potentials of
isolated vortices. The two components of the vector po-
tential perturbation can then be approximated by

5 A, (r)sin68

The quasiparticle amplitudes, and therefore the tunneling
conductance, have now lost their cylindrical symmetry.
For example, in the lower band, we have

lu„(r)I'=a„'lu„(r)I'+0„'lu„+6(r)I'

small fields, the increasing magnetic perturbation may
cause the matrix element 8„to change sign, which
would result in an additional distortion of the star-shaped
pattern at large distances from the core, where the contri-
butions to the conductance from states with large p be-
come important. In such a case, the arms of the zero-bias
stars would be oriented along the interstitial directions
close to the vortex cores, and along the nearest-neighbor
directions away from the vortex core.

The tunneling conductance in the presence of a hexag-
onal perturbation was calculated as a function of distance
from the vortex core, assuming a value of

I W&l/DO=0. 05, independent of p. This value is compa-
rable to the energy spacing between the lowest quasiparti-
cle bound states of the isolated vortex. The resulting
modified spectrum is shown in Fig. 18, together with the
unperturbed spectrum. Conductance profiles calculated
in the direction of the nearest-neighboring vortex and in
the interstitial direction are shown in Fig. 19 at both zero
bias and a bias of ho/5, which corresponds to the bottom
of the lower and of the upper bands, respectively (see Fig.
18). The experimental curves of Ref. 16 are also shown in
Fig. 19 for comparison. The two-band model correctly
predicts the reversal of the anisotropy of the tunneling
conductance between low- and high-bias voltage, as can
be seen by comparing solid and dashed lines. The calcu-
lated conductance BI(r, 6, V)/BV was used to produce a
gray scale image, similar to the experiment image of Ref.
16. It is compared to experiment in Fig. 17 (right
column). The shape of the zero-bias star observed experi-
mentally is somewhat different from the calculated one.
This indicates that the angular modulation of the conduc-
tance has more structure than is described by the last
term in Eq. (32). The inclusion of more bound states in

5A'g" (r)+ A's '(r)cos60 (33)
0.4 I

I
I

I
I

I
I

where 0=0 is the nearest-neighbor direction of the Abri-
kosov lattice. The corresponding magnetic field has max-
ima in the nearest-neighbor directions. Including this
magnetic perturbation and neglecting 5U(r), we find that
the resulting zero-bias star would have arms extending
towards the nearest-neighbor vortices, i.e., in the direc-
tions where the magnetic field is stronger. This is con-
sistent with the picture of the lowest bound states extend-
ing preferentially into the regions where the magnetic
field is strongest, i.e., where the gap is more strongly
suppressed. This is however not the orientation of the
star observed experimentally at low field. Therefore, in
the low-field limit, the crystal potential perturbation
5U(r) has to be dominant, so that the total perturbation
is repulsive in the nearest-neighbor direction and attrac-
tive in the interstitial direction. In other words, the
orientation of the stars in NbSe2 seems to be determined
by the underlying crystal potential and not by the Abri-
kosov fiux lattice. This competition between the effect of
the magnetic field and the crystal potential suggests that
this situation might be reversed in high magnetic fields.
The magnitude of the matrix elements of the magnetic
perturbation also depends on p. At large p and not too
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FIG. 18. Low-energy part of the quasiparticle spectrum, of a
vortex line in the cylindrically symmetric case (open circles) and
in the presence of a sixfold symmetric perturbation (solid cir-
cles). The spectrum is Bragg reAected at the first Brillouin-zone
boundary p =6.
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the treatment of the perturbationi n would result in a more
accurate description of the conductance.
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