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Theory of the phase-transition sequence in betaine calcium chloride dihydrate (BCCD)
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We construct a symmetry-based, competing-interaction model for the phase-transition sequence
in betaine calcium chloride dihydrate (BCCD). Our model qualitatively reproduces experimentally
observed behavior including the wave-vector sequence and the polarization properties. In addition,
the model predicts space-group symmetries for the modulated phases.

The dielectric anomalies discovered by Rother et al. '

in the crystal betaine calcium chloride dihydrate (BCCD)
brought to light a particularly interesting sequence of
structural phase transitions to modulated phases charac-
terized, at least. partially, by their modulation wave vec-
tors. The modulation wave vectors k =a(T)c* (where
c *= 2m /c ) of the most prominent of the modulated
phases have been directly determined by x-ray diffraction
by Brill and Ehses. They found that between the
normal-incommensurate transition temperature of 164 K
and the temperature 127 K the modulation is incom-
mensurate (INC) with a(T) varying from 0.32 to 0.285.
Between 127 and 125 K a commensurate phase occurs
with n= —,'. Between 125 and 116 K, there is a further
continuous change of wave vector (0.285 )a )0.25), and
below 116 K phases with ct = —,

' (116)T ) 73 K),
a= —,'(73) T) 47 K), and ct= —,'(47 K) T) occur. The re-
cent EPR result by Ribero et al. , however, suggests
that the low-temperature phase (say T (46 K) of BCCD
is unmodulated corresponding to a =0.

Between the phases just mentioned, a variety of
higher-order commensurate phases appear in experi-
ments. For example, Perez-Mato had suggested, on the
basis of the dielectric properties of BCCD, that three ad-
ditional phases that are polar in the b direction and that
would be likely to have e values of —,', , —'„and —,', occur at
temperatures of about 116, 75, and 56 K, respectively.
These three phases have been confirmed by pyroelectric
and dielectric measurements by Ribeiro et al. Still
high-order commensurate phases have been discovered
by Unruh, Hero, and Drorak using dielectric and
thermal measurement, and by Ao and co-workers using
pressure-dependent dielectric measurements.

Symmetry arguments, ' combined with the experimen-
tally determined polar properties of the observed phases,
have been used to assign a values to these phases for
which the a values have not been measured directly.
Perez-Mato's argument starts from an analysis of the
diffraction pattern of the incommensurate phases, from
which he determines both the incommensurate phase su-
perspace group and the phonon mode responsible for the
normal-incommensurate transition; this mode has
k =ac and A3 symmetry, i.e., little co-group characters
X(E)=X(o„)= 1 and X(C2, ) =X(cr ) = —1. Possible
space-group symmetries for the commensurate phases are

also determined by Perez-Mato. The dielectric measure-
ments and interpretation in the article by Unruh et aI.
also point to an order parameter of A3 symmetry (in
Perez-Mato's notation) for the normal-incommensurate
transition.

A successful theoretical model for the modulated
phases in BCCD must account for the modulation wave-
vector sequence, the space-group symmetries, and the po-
lar properties of the difterent phases. A number of au-
thors have pointed out that the wave-vector sequence of
the different phases in BCCD is of the "devil's staircase"
type produced by competing-interaction models such as
the axial next-nearest-neighbor Ising (ANNNI) model'
and the Janssen-Tjon model. " Unfortunately, the rela-
tionship of the basic variables of these models (e.g. , the
spin variables of the ANNNI model) to physical variables
appropriate to the BCCD system is either nonexistent or
obscure, and predictions of space-group symmetries and
polar properties for BCCD have not been made in terms
of such models.

Landau theories are capable of predicting symmetries
and polar properties of modulated phases, and some pro-
gress has been made in elucidating these properties in
BCCD in terms of Landau theoretical ideas. ' ' In a
conventional Landau theory, however, a different lock-in
term is required to stabilize each distinct commensurate
wave vector, and a universal theory describing the full se-
quence of phase transitions that occurs in BCCD would
require a large number of independent lock-in terms. An
initial step in this direction was recently made by Ribeiro
et al. ' who chose the magnitude of four distinct lock-in
contributions to the free energy in such a way as to stabi-
lize the four most prominent commensurate phases of
BCCD in appropriate temperature intervals without,
however, attempting to predict the symmetries of these
phases.

The challenge is thus to establish a single theoretical
model that accounts for the physical properties of the se-
quence of modulated structure observed in BCCD. Re-
cently, Chen and Walker' constructed a model that suc-
cessfully described the structural properties of the vari-
ous modulated structures occurring in the sequences of
phase transitions found in the A2BX4 family' (of which
K2SeO& is the prototypical example). Here, we show that
a similar approach is successful in the case of BCCD also.
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The normal-phase structure of BCCD is orthorhombic
(space group Pnma) with four formula units
[(CH3)3NCH~COO. CaC12.2HzO)] in the unit cell. De-
tails of the structure can be found in the article by Brill,
Schildkamp, and Spilker' For our purposes, rather than
following the motions of all the ions in the unit cell dur-
ing the successive phase transitions, it will be sufficient to
following the motions of only the four nitrogen ions, or
equivalently, of the four calcium ions. The four nitrogen
ions in the unit cell can be associated with planes at
z=c/4 and 3c/4 (two ions to ea,ch plane) through the
unit cell as shown in Fig. 1. Furthermore, it will be con-
venient to consider all of the ions in unit cell as being as-
sociated with one or other of the planes at z =c/4 and
3c/4. For example the betaine unit (CH3)3NCHzCOO
associated with each nitrogen is associated with the plane
to which the nitrogen belongs. Similarly, the
CaClz. 2HzO unit associated with each calcium ion is as-
sociated with the plane to which the calcium ion belongs.

It was noted above that the three-dimensional symme-
try mode, which is responsible for the phase transition
from the normal high-temperature structure to the modu-
lated structure, has wave vector k =ac' and is of A3
symmetry. Our approach is to develop a competing-
interaction type of model that will necessarily be based
on local variables. To achieve this end we consider
BCCD to be made up of layers oriented normal to the c
axis as described in the preceding paragraph and analyze
the symmetry modes of the individual layers. The ap-
propriate local variables of our theory will be those layer
modes that can be used to make up three-dimensional
modes with wave vectors k =ac* and A3 symmetry.

To characterize a symmetry mode of a layer it is
sufFicient to give only the displacements that the nitrogen
ions have in that mode. The other ions in the layer move
also, in a given mode, but in a way that is determined
once the displacements of the nitrogen ions are given.
Since we will ultimately consider structures that are
modulated in the c direction, but not in the a or b direc-

tions, it is necessary to consider only those symmetry
modes of a layer for which the relative ion motions in the
layer unit cell are the same for all layer unit cells in that
layer. The relevant layer symmetry modes are called here
the I z and I 3 modes and are shown in Figs. 2 and 3.
These modes can be represented more formally in terms
of the vectors

e, (1 )=(1,—1), e, (1 )=(1,1) .

where j =2, 3 and the minus (or plus) sign in the third
equation goes with I 2 (or I 3). The last two of these equa-
tions, for I =0, generate the characters of the I 2 (or I 3)
representation for a single layer.

The Bloch states corresponding to the layer modes I .

are

e] =g exp(ikz( )e((1,),
1

(3)

where zI =Ic', and c'=c/2 is the interlayer distance. By
making use of Eqs. (3), one can show that e] (for j=2, 3)
is a mode of A3 symmetry as defined above provided
0 & k~ (vr/(2c'). [For m/(2c') ( ~k~ &vr/c', e/ trans-
forms as a Az mode with characters y(E)=g(C2, )=1,
g(o„)=g(o~ ) = —1.] Furthermore, the other single-
layer modes not considered above, which may be called
the I

&
and I 4 modes, give three-dimensional modes of A&

and A4 symmetry (in Perez-Mato's notation) and there-
fore need not be considered.

Here the first and second entries describe the displace-
ments in the b direction for ion (2) and ion (4) for odd l,
and for ion (1) and (3) for even l (here l is an integer label-
ing the layer). The transformation properties of the
symmetry-mode eigenvectors under the generators of the
Pnma space group of the BCCD structure can be shown,
from inspection of Figs. 2 and 3, to be

[o„~—,
'

—,
'

—,
' Ie,(r, ) =e, +,(I, ),

l0 —,'0] eI (I ) = —e&(1 ),
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FIG. 1. The structure of BCCD at its normal phase. Each
unit cell contains four formula units. The four nitrogen ions
(open circles) and the four calcium ions (solid circles) are shown
explicitly in this figure to characterize the symmetry. The be-
taine units are attached to the N ions, and the CaC12 2H20 units
are attached to the Ca ions (compare with Fig. 4 in Ref. 16).

(a) even-I layer (b) odd-I layer

FIG. 2. The nitrogen-ion displacements in the single-layer
modes of I 2 symmetry for (a) even-l layers and (b) odd-l layers.
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(a) even-I layer (b) odd-I layer

FIG. 3. The nitrogen-ion displacements in the single-layer
modes of I 3 symmetry for (a) even-l layers and (b) odd-l layers.

The displacement of ions in layer l are thus represented
by the vector

u(=u, e)(I ~)+w(e((1 3) . (4)

+ —,
' g ( Jul V(+, +J'wrw(+, )

+2+(uiwt+i u~+iwr) .
I

There are five independent parameters in Eq. (3),
a+ =

—,'(a+a'), J+ =
—,'(J+J'), and b.

This free energy of Eq. (5) is identical to that used by
the authors in Ref. 14 to describe the modulated struc-
tures found in the A28X4 family. We therefore refer to
Ref. 14 for a discussion of the details of minimizing this
free energy. Different classes of behavior, differing, for
example, in the space-group symmetries assigned to
phases of different wave vectors, can be obtained depend-
ing on the numerical values chosen for the parameters
appearing in the free energy. In this article we fix
a =0.4, J =0, and b =3, and allow a+ and J+ to
vary, thus producing the phase diagram shown in Fig. 4.
This choice of parameters produces a phase diagram that
accurately describes the structural properties of BCCD.
There is a range of parameters around the chosen values
for a, J, and b that would do equally well, and no
claim is made that the particular set of parameters
chosen is the best.

The different phases in Fig. 4 are labeled by the quanti-
ty o. in the relation k =ac*. Only commensurate phases
were investigated, and for these we took a=2n /m (the 2
in the numerator occurs because the unit cell has two lay-
ers; also, the ratio n/m is assumed to be irreducible).
Phases corresponding to all rational ratios n/m ~ 1/2
with m from 1 to 15 were considered, and the phase dia-
gram of Fig. 4 gives the results indicating which phase

The free energy, which is invariant under the transforma-
tions of the space group Pnma, can be written as

Fo =g ( —,'auI + —,'ut + ,'a'w, + ,'w—( + ,'buI —w( )—

FIG. 4. The phase diagram produced from our model with
@=3, a =0.4, and J =0. The commensurate phases are
represented by 2n/I, where (2n/m)c is the wave vector and
where the integer I is taken from 1 to 15. The shaded areas
represent high-order commensurate and/or incommensurate re-
gions. A possible trajectory of the sequence of the phases in
BCCD at ambient pressure is also shown.

has the lowest free energy at the stated values of the pa-
rameters. The shaded areas indicate higher-order com-
mensurate and/or incommensurate regions.

The parameters in our model are assumed to be tem-
perature and pressure dependent. Changing the tempera-
ture at ambient pressure for BCCD will therefore corre-
spond to our phase diagram following a particular trajec-
tory in the model parameter space. A trajectory giving
the sequence of phase transitions observed in BCCD is
shown in Fig. 4, where it can be seen that, as the temper-
ature is lowered, a follows the sequence of modulation
wave vectors a = INC

~g
INC 7 INC

&5 4 9 5

and 0. Also, the relative sizes of the temperature inter-
vals over which the various phases are stable correspond
approximately to the relative sizes of the corresponding
intervals in Fig. 4.

The pressure-temperature phase diagram of BCCD, re-
ported by Ao and co-workers from a dielectric constant
measurement, qualitatively agrees with Fig. 4 if we as-
sume that the variables a+ and J+ are temperature and
pressure dependent. The phase diagram of Ao and co-
workers also contains some high-order commensurate
phases; since we only took m + 15 in Fig. 4, these high-
order commensurate phases are not explicitly shown in
Fig. 4 (see, however, Fig. 6 for an exploded phase se-
quence).

The space-group symmetry for each commensurate
phase can be found from the numerically determined
profile of vI and wI as in Ref. 14. In particular, our mod-
el predicts the space-group symmetries Pn2&a for wave
vectors o. =even-odd, P2&2, 2, for o. =odd-odd, P2, ca for
o, =odd-even, and the superspace-group symmetry P, "-, '
for the incommensurate phases. These results are in
agreement with those deduced by Perez-Mato (by com-
bining symmetry arguments with the results of polariza-
tion measurements) for the cases a =even-odd and
e =odd-even. For the case a =odd-odd, Perez-Mato ar-
rives at two possible space groups, one of these being the
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FIG. 5. Spontaneous polarization calculated from our model, where commensu pnsurate hases with m values from 1 to 15 are con-
sidered. The value of J+ shown here labels a point on the trajectory a+ =0.8J+ + 1.6, as shown in Fig. 4.

one predicted by our model.
To further compare the results of our model with ex-

perimental measurements of the polarization properties
in BCCD, we have calculated the polarization from our
model. To do this we consider the polarization to be a
function of the variables vl and wl. Expanding Pb in
powers of the vl and wl and keeping only terms consistent
with the symmetry Pn.ma of the normal phase, we find
that Pb, to first order in these variables, can be written as

Py =cb —g w( —cbPy
l

The polarization P, has no contribution linear in Ul or wl.
To second order, and including only products in which
both variables are associated either with the same layer
or neighboring layers, we find that P, can be written
Pa =Pz &

+P&2 +Pp 3 with

P„=c„—g ( —I )'v, (w, +,—w, , ) —=c„P„,
l

P,2=c,~
—g (

—I)'v, —=c,2P,g,
l

log�

(0

109(Op

8 6 5 10 8 5 1212 5 8 10
31 23 19 37 2918 43 41172733

6 7 8 1014
19 22253143

16

Pa3=ca3 g ( I) wl —c~3Po3
l

-0.8 -0.7 -0.6 -0.5

In Fig. 5, the quantities P, &
and Pb are plotted as func-

tions of J+ along the trajectory a+ =0.8J++1.6 shown
in Fig. 4. The orders of magnitude of the quantities P,2
and P, 3 are the same as that of P„; these two quantities
therefore are not shown in Fig. 5. The calculated relative
magnitudes of the polarization in the different phases,

FIG. 6. Spontaneous polarization calculated from our model
for J+ = —0.5 to —0.85 where commensurate phases with m
values from 1 to 45 are considered. As in Fig. 5, J+ labels
points on the trajectory shown in Fig. 4.
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and the calculated relative widths of the temperature (or
J+) intervals over which these phases are stable are in
striking agreement with the corresponding quantities
Ineasured experimentally by Ribeiro et al. ' This is so
for the phases corresponding to +=INC, —,', INC, —,', , —,',
—,', —,', —', —,', andO.

In Fig. 6, an expanded view of the interval from
J+ = —0.5 to —0.85 is shown. All of the additional
phases seen by Unruh, Hero, and Drorak in this interval
(e.g. , a= —,'„—,'„—,', , and —,', ) are found in this figure with

exception of the phase for which 0.'= —,', . The reason a
phase corresponding to o.= —,', is missing form our figure
is that our calculations went up to m =45 only (recall
a=2n/m ) and a= —,', corresponds to m =52. A number

of the phases shown in Fig. 6 have not been observed ex-
perimentally. The predicted magnitudes of the polariza-
tions of the unobserved phases are, however, much small-
er than those of the observed phases (note the logarithmic

scale in Fig. 6).
As a final point, note that the phases labeled a= —,

' and

—,
' by Unruh, Hero, and Drorak do not appear in Fig. 5

because of the special trajectory used. It is clear from
Fig. 4, however, that if we had raised the most negative
J+ end of our chosen trajectory slightly, we would have
obtained these phases also.

In conclusion, we note that the symmetry-based
competing-interaction model developed in this article to
describe the various modulated structures occurring in
BCCD gives a remarkably detailed account of all of the
observed phases and their polarization properties. Phases
other than those observed are also predicted by the
analysis, but have much smaller polarizations than those
of the phases already observed.

Note added in proof: Several relevant papers' were
overlooked in the initial preparation of this manuscript.
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Speakman Drive, Mississauga, Ontario, Canada, L5K 2L1.
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